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Abstract

In 1874, Georg Cantor published an article in which he proved that
the set of algebraic numbers are countable, and the set of real numbers
are uncountable. This, at the time controversial article, marked the
beginning of modern set theory, and it finally gave mathematicians
the notation to explore the infinite. In the intervening century and
a half, set theory has blossomed into a central part of mathematics,
often acting as a language with which to formalize other branches of
mathematics [5].

In this paper, we explore some basic concepts in set theory, and
then consider a result that was proven in the Introduction to Higher
Mathematics notes: every countable, totally ordered set is embeddable
into the rational numbers. We generalize this idea to larger cardinalities
and introduce the notion of ℵα-universal sets. We show that ηα-sets are,
in fact, ℵα-universal, and conclude by providing a construction of the
minimal ηα-set whenever ℵα is a regular ordinal, and the generalized
continuum hypothesis holds.

1



Contents

1 Introduction 3
1.1 Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Cardinal Numbers . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Ordinal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Order Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Maximal POsets . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Distinct Order Types . . . . . . . . . . . . . . . . . . . . . . . 11

2 Countable Totally Ordered Sets 13

3 Cofinality 16

4 ℵα-universal sets 18
4.1 ηα-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Constructing a minimal ηα-set . . . . . . . . . . . . . . . . . 21

5 Conclusion 24

References 25

2



1 Introduction

The study of set theory is due primarily to Georg Cantor in 1874. In this
year, Cantor published a paper that proved the existence of a one-to-one
correspondence between the set of algebraic numbers and the set of natural
numbers. In the same paper, he also showed that no such correspondence
exists between the set of natural numbers and the set of real numbers. A few
years later, Cantor would coin the terms ‘countable’ and ‘uncountable’ to
describe these relationships. Cantor went on to spearhead the development
of set theory, creating an entirely new field of study in his wake [5].

Nearly 40 years later, in 1914, Felix Hausdorff introduced the notion of
universally ordered sets, which contain copies of all totally ordered sets of a
particular cardinality. Hausdorff showed that such universally ordered sets
are guaranteed to exist. Further, Hausdorff provided a way to construct
these sets in a select number of cases [2].

In this paper we consider the properties of infinite ordered sets. We begin
by reviewing some basic notions in set theory, and prove several nonintuitive
facts about infinite sets. We then define universally ordered sets, and discuss
their implications. We conclude by examining a construction of universally
ordered sets that is closely related to the ones that Hausdorff published.

1.1 Ordered Sets

The key objects in all of our explorations will be ordered sets: a set S and
an order ≤. We already have many preconceived notions about how an order
should behave. For example, we expect that an order should be transitive
in the same way that an equivalence relation is. That is, if a ≤ b and b ≤ c,
then we expect that a ≤ c. We use these expectations to guide of definition
of an order.

Definition 1 ([4]). Let S be a set, and let ≤ be a relation on S. Further
let a, b, c ∈ S be arbitrary elements. We say that ≤ is a partial order on
S if it satisfies three properties:

1. Reflexivity : a ≤ a.

2. Transitivity : If a ≤ b and b ≤ c, then a ≤ c.

3. Antisymmetry. If a ≤ b and b ≤ a, then a = b.

We call the pair (S,≤) a partially ordered set, or a POset. We say that
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two elements a, b ∈ S are comparable if either a ≤ b or b ≤ a. Otherwise,
we say that a and b are incomparable, and we write a||b.

The relation ≤ is called a total order if every pair of elements in S
is comparable. If this extra condition holds, we call the pair (S,≤) a
totally ordered set.

Let S be a totally ordered set, and let A,B ⊆ S be subsets. We will
write A < B when a < b for all elements a ∈ A and b ∈ B. We say that A
and B are neighboring if there is no element s ∈ S such that A < s < B.

Suppose s ∈ S is an element. Then we say that s is a successor element
if there is an element t ∈ S such that t < s, and t and s are neighboring. If
there is no such element, we say that s is a lower-limit element. Dually, we
say that s is a predecessor element if there is a t such that s < t, and s and
t are neighboring. If no such t exists, then s is an upper-limit element.

We say that a ∈ A is the least element of the subset A if a ≤ a′ for all
a′ ∈ A. There is also the dual notion of the greatest element of a subset. If
every subset of S has a least element, then the structure of S is very limited.
These sets are very important, so we given them a special name:

Definition 2 ([3]). Suppose S is a totally ordered set with order ≤.
Then we say that ≤ is a well-order and (S,≤) is a well-ordered set if
every subset of S has a least element. Analogously, we say that ≤ is a
reverse well-order and (S,≤) is a reverse well-ordered set if every subset
of S has a greatest element.

The structure of a well-ordered set means that all of the elements of S
can be listed in order starting with the least element: S = {s0, s1, s2, . . .}.

1.1.1 Examples of Ordered Sets

Before continuing, we consider several examples of ordered sets. We encounter
ordered sets in all aspects of math, sometimes without realizing. Other
examples are more contrived, but they highlight important aspects of ordered
set theory. This library of specific examples will allow us to ground abstract
arguments in particular examples.

The set of natural numbers, N, under the standard ordering is well-
ordered1, however the integers, Z, are only totally ordered because some
subsets (including Z itself) do not have least elements. The negative integers,

1Actually, we must assume that the natural numbers are well-ordered and introduce
a new axiom to this effect. But we almost always make this assumption, because it is
equivalent to assuming that standard induction is valid [3].
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∅
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Figure 1: Subset lattice for the set {1, 2, 3}. The lines between sets indicate
a subset relationship, with the set that is higher containing the set that is
lower.

Z−, are reverse well-ordered. Both the rational numbers, Q, and the real
numbers, R, are totally ordered with the standard ordering.

The operations of set theory can also naturally create orders. The power
set of a set S is the collection of all subsets of S. We write this as P(S).
Consider the set S = {1, 2, 3}, and observe that

P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The power set of S is a partial order under set inclusion. That is, if A,B ⊆ S,
then A ≤ B if and only if A ⊆ B. When the number of elements in a partial
set is finite, we can create diagrams to indicate the order structure of the
set. Such a diagram for the set S is shown in Figure 1.

The alphabetic ordering of words forms a total order. To determine
which word should come first in an alphabetical listing, we compare the first
letter of each word, and the word with an earlier first letter is listed first. If
the first letters are the same, we compare the second letters, and so on. For
example, consider the two words “love” and “long.” The first two letters of
each word are the same, so we compare the third letter of each word, and
because ‘n’ < ‘v’, we conclude that “long” < “love.”

Notice that in the alphabetical ordering, we are making use of the
underlying order of the letters, and then viewing a word as simply an ordered
tuple of letters. This style of ordering is called lexicographical ordering, and
we can also use it to order other sets consisting of ordered tuples. For example,
consider the set N× N, ordered lexicographically. This set is well-ordered
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because every subset has a least element, and thus we can list the elements
in order:

(1, 1) < (1, 2) < · · · < (2, 1) < (2, 2) < · · · < (3, 1) < (3, 2) < · · · .

Notice that the elements (1, 1), (2, 1), . . . are lower-limit elements, while
every other element is a successor. Every element in N× N is a predecessor
element.

1.1.2 Isomorphisms and Embeddings

Suppose A and B are POsets with orders ≤A and ≤B respectively. Then
we say that A and B are order-isomorphic and we write A ' B if there is a
bijection f : A→ B with the property that, for every x, y ∈ A,

x ≤A y =⇒ f(x) ≤B f(y).

If two sets are order-isomorphic, then they are identical from a set-
theoretic point of view. This means that anything we prove about a set A is
also true for every set B that is order-isomorphic to A.

Now suppose that, instead of a bijection, the function f : A→ B is an
order preserving injection. Then we say that A is embeddable into B, and
we write A � B. In other words, A is embeddable into B exactly when A is
order-isomorphic to some subset of B.

The notation that we use for embeddablity is suggests that that this
relation might, in fact, form an order. To determine if this is true, we must
check if the � satisfies the three conditions of a partial order: reflexivity,
transitivity, and anti-symmetry.

Theorem 3. The relation � is reflexive and transitive.

Proof. Let A, B, and C be arbitrary POsets. Note that the identity function
IA(a) = a is clearly an embedding of A into A, and thus A � A.

Now suppose that A � B and B � C. Then it follows that there are
embeddings f : A → B and g : B → C. We claim that the composition
(g ◦ f) : A→ C is also an embedding, and thus A � C.

To see why this is true, suppose a, a′ ∈ A with a ≤ a′. Then there are
images b = f(a) and b′ = f(a′) with the property that b < b′. Then finally,
we have that g(b) ≤ g(b′), and thus (g ◦ f)(a) ≤ (g ◦ f)(a′), as required.

Thus, if � was anti-symmetric, it would form a partial order on ordered
sets. However, this is not true, and it then follows that � is not a partial
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order. We can see the lack of anti-symmetry by considering the two sets
A = [0, 1] and B = (0, 1). Clearly these sets have different order properties
(particularly at the endpoints), so they are not order-isomorphic.

However, if we consider the embedding functions f : A→ B and g : B →
A defined by

f(x) =
1

4
x+

1

4
and g(x) = x, (1)

we can easily verify that A � B and B � A. Therefore, � is not anti-
symmetric, and thus not a partial order. We refer to a relation that is
reflexive and transitive, but not anti-symmetric as a quasi-order.

1.2 Cardinal Numbers

Suppose we would like to determine if two sets A and B have the same
number of elements. If both A and B are finite, then we can simply count
the number of elements in each set. However, this notion breaks down when
the sets become infinite. This was Cantor’s dilemma.

To resolve this difficulty, we say that two sets A and B have the same
cardinality if there is an isomorphism f : A → B. In this case, we write
|A| = |B|. For example, in Math 260, we showed that |N| = |Q| and that
|N| < |R|.

But what is |A|? If the set A is finite, then |A| is the number of elements
in the set, so |A| ∈W. However, the answer is less obvious if A is infinite.
Clearly the “size” of A cannot be represented by an integer, so |A| must be
from an even larger class of numbers that is somehow expanded to include
infinite numbers.

We call these cardinal numbers. The class of cardinal numbers contains
all W, but it also has an infinite number of other elements, each representing
an infinite size. The least infinite cardinal is |N| which we typically denote
as ℵ0 or just ℵ. The next larger cardinal numbers are ℵ1, ℵ2, and so on.

The cardinal numbers are well-ordered , so we can list them in ascending
order:

0 < 1 < 2 < · · · < ℵ0 < ℵ1 < ℵ2 < · · · .

1.2.1 Cardinal Arithmetic

We can use the cardinal numbers to do arithmetic. In fact, in very formal
treatments of mathematics, all numbers are actually sets. Before we give the
definitions of the arithmetic operations on cardinal numbers, we first need
to define some notation.
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Let X and Y be two sets. We define the disjoint union of X and Y as

X∪̂Y = ({0} ×X) ∪ ({1} × Y ).

Essentially, this disjoint union ensures that, if X and Y have some elements
in common, then the common elements are “repeated twice” in the union.
We also define XY to be the collection of all functions from X into Y . With
these definitions, we are now ready to define our cardinal arithmetic operators
[3].

Definition 4. Suppose X and Y are sets, then we will define addition,
multiplication, and exponentiation of cardinal numbers as

|X|+ |Y | = |X∪̂Y |, |X| · |Y | = |X × Y |, and |X||Y | =
∣∣XY

∣∣ .
There are a few interesting consequences of these definitions. For example,

suppose X is a set. Then there is a natural bijection between P(X) and 2X ,
where 2 = {0, 1}. In particular, suppose A ∈ P(X). Then we pair A with
the function f : X → 2 defined by

fA(x) =

{
1, x ∈ A;

0, x 6∈ A.

This means that |P(X)| = 2|X|. As we will see in next section, this relation-
ship can be very useful in some circumstances.

1.2.2 The Continuum Hypothesis

Let c = |R| denote the cardinality of the real numbers. There is no bijection
between the natural numbers and the real numbers, so we know that ℵ0 < c.
However, we can construct a bijection between the family of subsets of the
natural numbers and the real numbers, and thus we have |P(N)| = 2ℵ0 = c.

But neither of these facts actually tell us the cardinality of the real
numbers. We could have c = ℵ1, but we could also have c = ℵ5.

It turns that this problem is undecidable. That is, given the standard
axioms of set theory, it is impossible to prove the cardinality of the real
numbers. Thus, we must make some arbitrary choice, and introduce a
new axiom to enforce this choice. One such choice we could make is the
Continuum Hypothesis [1].

Axiom 5. Continuum Hypothesis (CH) The cardinality of the real numbers
is c = ℵ1.
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There is a order-isomorphism between P(N) and R, so this means that,
assuming the CH, P(N) = 2ℵ0 = ℵ1. That is, the power set of a countable
set is only “one infinity bigger” than the set itself!

Notice that the CH still has not told us anything about the relative sizes
of larger ℵ sets. However, we can use the notion of power sets to create
a more general axiom that specifies the relationships between all infinite
cardinal numbers:

Axiom 6. Generalized Continuum Hypothesis (GCH) Suppose S is a set
with |S| = ℵα. Then P(S) = 2ℵα = ℵα+1.

In what follows, we will not, in general assume that the CH or the GCH
holds. However, there will be several circumstances where we will find it
advantageous to assume these axioms to allow us to push our arguments
further. In every case where we rely on the CH or GCH, we will make an
explicit comment about their use.

1.3 Ordinal Numbers

Cardinality allows us to compare the sizes of arbitrary sets, however we can
do even better if the sets are well-ordered. If two well-ordered sets A and B
are order isomorphic, we say that A and B have the same ordinality, and we
write ||A|| = ||B||.

For a finite set A, there is exactly one well-ordered set (up to order-
isomorphism), and thus ||A|| = |A|. That is, the cardinality of A is equivalent
to the ordinality of A. However, this is not true when A is infinite. In fact,
for a given cardinality, there are an infinite number of well-ordered sets with
different ordinalities.

We call these objects ordinal numbers, and we typically denote them
using lowercase Greek letters (e.g. α, β, ν, µ). In fact, we define the cardinal
numbers to be a subset of the ordinal numbers such that ℵα = ωα [3].

The ordinal numbers are themselves well-ordered, so we can list the
elements, and also indicate the cardinality of each number:

0 < 1 < 2 < · · · < ω0 < ω0 + 1 < ω0 + 2 < · · ·︸ ︷︷ ︸
ℵ0

< ω1 < ω1 + 1 < ω1 + 2 < · · ·︸ ︷︷ ︸
ℵ1

< · · ·

The ordinal numbers are in fact sets, and their construction gives them
the somewhat unusual property that, for all ordinals µ and ν,

µ < ν ⇐⇒ µ ∈ ν.

For a much more detailed discussion of the construction of the ordinal
(and cardinal) numbers, see [3].
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1.4 Order Types

When we defined the ordinal numbers, we only considered order-isomorphisms
between well-ordered sets. However, we can relax this restriction to talk
about the structure of all ordered sets. As we noted earlier, if two sets are
order-isomorphic, then they are identical from a set-theoretic perspective.
With this in mind, we will organize POsets into order types such that every
set within a given order type is order-isomorphic to every other set in the
order type.

Definition 7. Suppose A and B are POsets with A ' B. Then we
say that A and B share an order type, and we write tp(A) = tp(B). If
tp(A) = α, then we say that A is a realization of α.

We refer to some order types so much that we assign them special names.
A few are

tp(N) = ω, tp(Q) = η, and tp(R) = λ. (2)

Suppose α and β are order types, and A and B are realizations of α and
β respectively. We say that α is embeddable in β, and we write α � β if A is
embeddable into B [1].

1.5 Maximal POsets

Suppose S is some set with a partial order ≤, and consider the set X≤ ∈
P(S × S) defined by

X≤ = {(s, t) | s, t ∈ S and s ≤ t}. (3)

That is, X≤ is the set of all pairs of elements in S for which the first element is
less than the second element. The set X≤ is called the graph of ≤. In formal
treatments of ordered set theory, the graph of a relation is the definition of
the relation.

Let’s consider the collection X ⊆ P(S × S) of all possible partial orders
of S. This family of sets is partially ordered under inclusion.

Theorem 8. The collection X has a least element. Namely, the identity
relation

IS = {(s, s) | s ∈ S}. (4)

Proof. Suppose X ∈ X is some partial order of S. Then X must be reflexive,
and thus (s, s) ∈ X for all s ∈ S. It then follows that IS ⊆ X, and thus IS
is the least element of X .
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We have shown that X has a least element, and now we would like to
investigate what it means for an order to be maximal in X . We claim that
an order is maximal in X if and only if it is a total order. Intuitively, this
should make some sense: in a total order, every pair of elements has a defined
order, so there are no more pairs of elements that could be added to the
graph of ≤ to create a larger graph. Let’s formalize this intuition.

Theorem 9. Suppose S is a set and ≤ is a partial order of S with the graph
X≤. Then ≤ is a total order exactly when X≤ is maximal in X .

Proof. First suppose that ≤ is a total order; we need to show that its graph
is maximal in X . To that end, suppose ≤′ is another partial order such that
X≤ ⊆ X≤′ . We will show that this is actually an equality.

Let (s, t) ∈ X≤′ be a pair of arbitrary, distinct elements. If (s, t) ∈ X≤,
we are done, so suppose this is not the case. Then s � t, and thus we must
have t ≤ s. However, this implies that t ≤′ s, and thus s = t, contradicting
our assumption that s and t are distinct. We therefore conclude that ≤ is
maximal in X .

Now suppose that ≤ is not a total order; we would like to conclude that
X≤ is not maximal in X either.

Let � be some well-ordering of S. Then we can use this ordering to
construct a lexicographic total ordering �L on the set 2S .

Now if s ∈ S, we define ŝ ∈ 2S as

ŝ(t) =

{
0, a � x;

1, a ≤ x.

Notice that ŝ is just the indicator function for the subset s = {t ∈ S : t <
s} ⊆ S. It follows that x 7→ x̂ is injective (i.e. if x and y map to the same
place, then x = y). Let Â ⊆ 2A be the image of A under this mapping.

It is easy to see that, for all x, y ∈ A, we have

x ≤ y =⇒ x ⊆ y =⇒ x̂ �L ŷ.

Therefore, we can extend ≤ with a new order ≤′ by letting x ≤′ y mean
x̂ �L ŷ. Since �L is a total order on 2A, we know that ≤′ is a total order on
A. It follows that X≤′ is maximal in X , and thus X≤ is not maximal.

1.6 Distinct Order Types

We know that there are an infinite number of POsets of a particular cardinality.
This is because, given a particular POset, we can replace some of the symbols
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in the POset to produce a new POset. However, these two sets would share
the same order type, and thus they would be, for all intents and purpose,
identical. In this section, our goal will be to determine how many unique
order types exist for a particular cardinality.

Let T be a totally ordered set, and let t ∈ T be an element. Then the
initial segment defined by t is the set of all s ∈ T such that s < t. Similarly,
the final segment defined by t is the set of all s ∈ T for which t < s. We write
(−∞, t) and (t,∞) to indicate the initial and final segments of t respectively.

We will let T [I] be the set of elements in T whose initial segments do not
have a greatest element, and we let T [F ] be the set of elements in T whose
final segments do not have a least element. Notice that if T and S are two
totally ordered sets with T ' S, then T [I] = S[I] and T [F ] = S[F ].

Consider the set A = ℵα ×W. The structure of A is

(0, 0) < (0, 1) < · · · < (1, 0) < (1, 1) < · · · < (2, 0) < (2, 1) < · · · .

Notice that every element (ν, n) ∈ A has a well defined successor; namely
(ν, n+1). Thus every final segment in A has a least element, and so A[F ] = ∅.
However, this is not the case for all initial segments. In particular, (ν, 0) does
not have a predecessor, and thus A[I] = ℵα × {0}. You might be concerned
about the element (0, 0) ∈ A[I], but notice that (−∞, (0, 0)) = ∅, and thus
the initial segment does not have a greatest element (i.e. has no elements at
all!).

Now we have the notation to answer the key question of this section:
how many non-order-isomorphic totally ordered sets with cardinality ℵα?
Consider X = P(ℵα) = P(ωα), the family of all subsets of ℵα. Our goal
is to construct, for every X ∈ X , a totally ordered set TX with cardinality
|TX | = ℵα, and with the property that TX = TY if and only if X = Y . That
is, each TX should define a different order type of cardinality ℵα.

For each X ∈ X , we define TX ⊆ ℵα ×Q such that

TX = (ℵα ×W) ∪
(
X ×

{
1

2
,
1

4
, . . .

})
.

Essentially, every TX is the set A that we considered previously, along with
some extra elements that limit down to (x, 0) for every x ∈ X. For example,
suppose X = {1}. Then the ordering of TX is

(0, 0) < (0, 1) < · · · < (1, 0) < · · · < (1, 14) < (1, 12) < (1, 1) < · · · < (2, 0) < · · · .

Notice that |Q| = ℵ0, and thus |ℵα ×Q| = ℵα. It then clearly follows that
|TX | ≤ ℵα.
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Observe that TX [I] = ℵα × {0} just as for our set A, however, unlike
before, TX [F ] is nonempty because the elements (x, 0) for x ∈ X do not have
a successor. It follows that TX [F ] = X × {0}.

Now suppose X,Y ∈ X are two sets with the property that an order
isomorphism f : TX → TY exists. We would like to conclude that X = Y ,
and thus none of the TX sets are order-isomorphic to each other.

Notice that, by the definition of our set T [I], we must have that

f(ℵα × {0}) = ℵα × {0},

but this set is well-ordered, so f must be the identity function for this subset
of the elements of TX and TY . It then follows that

f(X) = Y,

but we have already concluded that this subset of f is the identity function,
so we have X = Y , as required.

We have shown that there are at least P(ℵα) = 2ℵα non-order-isomorphic
totally ordered sets with cardinality ℵα. Have we found them all, or are
there more order types out there? The next theorem tells us that we have
indeed found all the possible sets that match our criteria.

Theorem 10. For any infinite cardinal ℵα, there are exactly 2ℵα order types
of totally ordered sets with cardinality ℵα.

Proof. Suppose S is a set with |S| = ℵα, and suppose that ≤1 and ≤2

are any two total orders of S. Then (S,≤1) and (S,≤2) will be order-
isomorphic if and only if ≤1 and ≤2 have the same graph. However, recall
that |S × S| = |S| = ℵα by our cardinal arithmetic rules, and thus there can
be no more than 2ℵα subsets.

We have just proven that there are at most 2ℵα non-order-isomorphic
totally ordered set with cardinality ℵα. Previously, we saw that there are at
least this many sets, so we conclude that there are exactly 2ℵα such sets.

If we assume the GCH, then we can say even more.

Corollary 11. Suppose the GCH holds. Then there are exactly ℵα+1 distinct
order types of cardinality ℵα.

2 Countable Totally Ordered Sets

In the final section of the Introduction to Higher Mathematics notes, we
proved that every countable, totally ordered set is order-isomorphic to a
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subset of the rational numbers [4]. This means that, in some sense, the
set of rational numbers Q contain every possible countably infinite, totally
ordered set. We would like to extend this notion of prototypical sets to larger
cardinalities, and use these sets to study the structure of totally ordered sets.

To aid in this generalization, we introduce the notion of universally
ordered sets [1].

Definition 12. Suppose S is a totally ordered set. Then S is ℵα-
universal if every totally ordered set A with |A| ≤ ℵα is order-isomorphic
to a subset of S. Equivalently, A must be embeddable into S.

In this new language, we rephrase our claim: we proved in Introduction to
Higher Mathematics that Q is ℵα-universal.

Notice that the every countable, totally ordered set is embeddable in the
real numbers as well. That is, R is also ℵ0 universal. But this is a not as
nice a result as the first one because the cardinality of R is greater than ℵ0.
In other words, R has more elements than needed for this property to hold.
With this in mind, we say that a set S is a minimal ℵα-universal set if S is
ℵα-universal, and |S| = ℵα.

Understanding the details of this argument are critical for what follows,
so, we state the Introduction to Higher Mathematics claim, and review the
proof given in the notes [4].

Theorem 13. Every countable, totally ordered set is order-isomorphic to a
subset of the rational numbers.

Equivalently, the set of rational numbers is ℵ0-universal.

Proof. Suppose the set A = {a1, a2, a3, . . .} is a countable, totally ordered
set. We will inductively construct an embedding function f : A→ Q.

We assign f(a1) be any rational number, say zero. Now suppose that we
have defined f(a1), f(a2), . . . , f(an) in such a way that the order relations of
A and Q have been preserved. We need to define f(an+1) so that f continues
to preserve order.

To do this, we partition the set {a1, . . . , an} into two subsets:

A+
n+1 = {ai : i ≤ n and ai > an+1}

A−n+1 = {ai : i ≤ n and ai < an+1}.

In Q, we clearly have that f(A−n+1) < f(A+
n+1), and so we can choose a

number q ∈ Q such that f(A−n+1) < {q} < f(A+
n+1). We then let f(an+1) = q,

which preserves the order relations of A and Q. When carried out infinitely,
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the resulting function will be defined for all of A, and it will be an order-
preserving injective function.

Therefore, we have successfully embedded A into Q, and thus Q is ℵα-
universal.

We know that Q is ℵ0-universal, but what are the unique properties that
make it ℵ0-universal? One property that was extremely important in the
previous proof was that, given any two rational numbers a and b with a < b,
there is always a third rational number c such that a < c < b.

Theorem 14. Suppose T is a totally ordered set. The T will be order
isomorphic to Q if and only if the following hold:

1. |T | = |Q|;

2. For all pairs of finite subsets A ⊆ T and B ⊆ T , if A < B, then there
is a t ∈ T such that A < {t} < B.

Proof. First suppose that f : T → Q is an order isomorphism. Then clearly
|T | = |Q|. To verify the second condition, suppose that A ⊆ T and B ⊆ T
are finite subsets of T with the property A < B. Observe that f(A) < f(B),
and thus there is an element q ∈ Q such that f(A) < {q} < f(B). Then
there is some element t ∈ T such that f(t) = q, and clearly A < {t} < B.

Now suppose that the two conditions hold. We will verify that T is
order isomorphic to Q by inductively constructing an order isomorphism
g : T → Q. Both T and Q are countable, so we can enumerate the elements:
T = {t1, t2, . . .} and Q = {q1, q2, . . .}. We pair the elements t1 and q1, so
that g(t1) = q1. Now we repeat the following algorithm:

1. Consider the first element tn+1 ∈ T that has not yet been assigned an
image. Form the sets

T+
n+1 = {ti | i ≤ n and ti > tn+1}
T−n+1 = {ti | i ≤ n and ti < tn+1}.

In Q, it is clear that g(T−n+1) < g(T+
n+1), and so we choose a q ∈ Q

such that g(T−n+1) < {q} < g(T+
n+1), and assign g(tn+1) = q. This

assignment is consistant with the orders of both T and Q.

2. Now consider the first element qj ∈ Q that has not been assigned an
image. Form the sets

Q+
n+1 = {qi | i ≤ n and qi > qn+1}

Q−n+1 = {qi | i ≤ n and qi < qn+1}.
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In T , it is clear that g−1(Q−n+1) < g−1(Q+
n+1), and so we choose a t ∈ T

such that g−1(Q−n+1) < {t} < g−1(Q+
n+1), and assign g−1(tn+1) = q.

Once again, this assignment is consistant with the orders of both T
and Q.

3. Return to step 1.

Clearly this process will create a mapping that is one-to-one because each
element is assigned only once. It will also be onto because every element
must be assigned within a finite number of steps. Namely, ti will certainly be
assigned within i steps (or it may have been assigned earlier in the process).
This type of argument is called a back-and-forth argument, and this is not
the last time that it will be used.

Also observe that g preserves the ordering of T , and so it follows that
T ' Q.

In the rest of this paper, our goal will to be to generalize the following
two results to higher cardinalities. We would like to construct minimal
ℵα-universal sets for every infinite cardinal ℵα. As we will see, this is almost
always possible.

3 Cofinality

However, before we can construct larger ℵα-universal sets, we first need to
review some more elementary concepts in set theory, beginning with cofinality
and coinitiality.

These two concepts are duals of each other, so we will mostly focus on
cofinality. Keep in mind that everything we prove about cofinal sets is also
true for coinitial sets, only in reverse.

The notion of cofinality seeks to understand the structure of a totally
ordered set. It essentially asks the question, how quickly is a set growing
toward infinity, and how many element must be included to bound this
growth [1]?

Definition 15 (Cofinality). Let T be a totally ordered set.

1. Let F ⊆ T . We say that F is cofinal in T if, for every t ∈ T , there
exists at f ∈ F such that t ≤ f .

2. Let ν be an ordinal. Then ν is cofinal in T if S has a cofinal
subset which is isomorphic to ν (i.e. the cofinal subset must be
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well-ordered).

3. Let µ be the least ordinal that is cofinal in T . Then we say that T
has cofinality µ, and we write cf(T ) = µ.

Note that clearly T is cofinal in T , and also that, if T has a greatest
element g, then the set {g} is cofinal in T . We might wonder if it is always
the case that there will be at least one ordinal that is cofinal in T . If that
was not the case, then the third piece of our definition would not make sense,
because we cannot guarantee that such an ordinal exists. However, we need
not worry about this, and the next therom shows [1].

Theorem 16. Let T be a totally ordered set with order ≤. Then there
exists a well-ordered subset W ⊆ T that is cofinal in T , and that satisfies
||W || ≤ |T |.

Proof. Recall that there is some well-ordering � of S with the property that
S has ordinality |S| under the order �. Then we can write S as

S = {s1, s2, . . . , s|S|},

where the elements sν are in ascending order under �. We will use this
enumeration to construct our cofinal subset W , however note that W must
be well-ordered under ≤, not �. To solve this problem, we choose a subset
of S where both orders agree. We define our cofinal subset W as

W = {sν ∈ S | sκ < sν for all κ < ν}.

The set W is ordered under �, and it is a subset of S, and thus it is clearly
well-ordered. Further, observe that ||W || ≤ |S|.

Finally, we claim that W is cofinal in S. To see that this is true, suppose
to the contrary that sν is the least element of S that satisfies {sν} > W .
Then sκ < sν for all κ < ν, and thus sν ∈W , a contradiction.

Consider the cofinality of a ordinal number ν. From Theorem 16, we
know that cf(ν) ≤ ν. And we can clearly see ν is cofinal in ν. Then an
interesting question is whether there is some other ordinal µ < ν with the
property that µ is also cofinal in ν.

Definition 17. We say that an ordinal ν is regular if cf(ν) = ν, and we
say that ν is singular if cf(ν) < ν. We also set cf(∅) = 0.

17



The ordinals 0 and 1 are regular, however the natural numbers greater
than one are singular because they have a greatest element, and thus their
cofinality is one. The first infinite ordinal (and the first infinite cardinal)
ω0 is a regular ordinal because it has cofinality ω0, and the ordinals w0 + 1,
w0 + 2, . . . are all singular because they have a greatest element.

It appears that the only zero, one, and infinite cardinal numbers can be
regular ordinals because any other ordinal will have a greatest element. Does
this implication go both ways? That is, are all infinite cardinals regular? We
can see easily that this is not the case by considering cf(ωω). We know that
the set S = {ω0, ω1, . . . } is cofinal in ωω, and also that S is order isomorphic
to ω0. But this means that cf(ωω) ≤ ω0, and thus ωω cannot be regular.
This leads us to the following theorem.

Theorem 18. A regular ordinal is 0, 1, or an infinite cardinal number ℵν .

Proof. We have already seen that a regular ordinal ordinal must be either
0, 1, or infinite. Our claim is that all infinite regular ordinals are actually
cardinal numbers.

To that end, suppose µ is an infinite regular ordinal with |µ| = ℵα = να.
It follows that να ≤ µ < να+1, and by Theorem 16, there is a well-ordered
subset W ⊆ µ that is cofinal in µ and has cardinality |W | ≤ ωα.

We can then conclude that

cf(µ) ≤ ||W || ≤ ωα ≤ µ, (5)

and since µ is regular, we have that cf(µ) = µ. It then follows that µ =
ωα.

We can use this result to show that the cofinality of any totally ordered
set must be either zero, one, or a regular initial number.

Let’s recap what we have learned about cofinality: every set S has a
well-ordered subset W ⊆ S that is cofinal in S. This cofinal set W itself is
regular, and thus it is 0, 1, or an infinite cardinal number ℵν [1].

4 ℵα-universal sets

Now that we have reviewed cofinality, we are in a position to construct
ℵα-universal sets. Recall that a set S is ℵα-universal if every totally ordered
set of cardinality ℵα can be embedded into S.

In this section, we will study a class of sets called ηα-sets. These sets are,
in some sense, a generalization of the rational numbers to larger cardinalities.
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In particular, these sets preserve the features that make the rational numbers
minimally ℵ0-universal. We will show that, if a few conditions hold, a
minimal ηα-set in also minimally ℵα-universal [1].

4.1 ηα-sets

Definition 19. We say that S is an ηα-set if it has no neighboring
subsets which both have a cardinality less than ℵα. The set S is a
minimal ηα-set if |S| = ℵα.

This definition sounds quite complicated, but in reality, it just describes
how “densely packed” the set S is. For example, if A and B are neighboring
subsets in an η0-set, then either A or B has cardinality ℵ0. If this is not the
case (i.e. both A and B are finite), then there is some element between A
and B.

For example, Q and R both have this property, and thus they are η0-sets.
If the sets A and B were both finite, then A would have a greatest element
a, and B would have a least element b, and so there would be an element
between A and B, namely (a+ b)/2.

Suppose that we have successfully constructed an ηα-set. Let us first
verify that it is indeed ℵα universal.

Theorem 20. An ηα-set is ℵα-universal.

Proof. Suppose S is an ηα-set, and A is a totally ordered set with |A| ≤ ℵα.
We need to show that A � S.

To do this, we will construct an order preserving injection f : A → S
using transfinite induction. We begin by assigning A a well-order. We can
then use this well-order to list the elements of A:

A = {a0, a1, a2, . . . , a|A|}

We assign f(a0) to any element in S, and now suppose that f has been
defined in such a way that it preserves the order of the first β elements of A.
We would like to define f(aβ+1) so that f is still order preserving.

With this goal in mind, we construct two subsets of A given by

A+
β+1 = {aν | ν ≤ β and aν > aβ+1},

A−β+1 = {aν | ν ≤ β and aν < aβ+1}.
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We know that |A−β+1| ≤ ℵα and that |A+
β+1| ≤ ℵα, and also that

f(A−β+1) < f(A+
β+1). It then follows that there is an element s ∈ S with the

property that
f(A−β+1) < s < f(A+

β+1).

Thus we can make the assignment f(aβ+1) = s which maintains the order
preserving nature of the mapping. Clearly every element in S is assigned
only once, so f is injective, and thus the function f embeds A into S.

We have seen that ηα-sets are ℵα-universal. It clearly follows that a
minimal ηα-set will also be minimally ℵα-universal.

Corollary 21. A minimal ηα-set is minimally ℵα-universal.

Now we consider the uniqueness of minimal ηα-sets.

Theorem 22. If A and B are both minimal ηα-sets, then A ' B.

Proof. Let aν and bµ be well-orders of A and B respectively. We will construct
an order preserving bijection f : A↔ B using a transfinite back-and-forth
argument.

Suppose that some of the elements of A and B have been assigned images
under f in such a way that the order of these elements is preserved under the
mapping. We choose the first element aβ ∈ A that has not yet been assigned
under f , and construct two sets:

A+
β = {aν | aν has an imange under f and aµ > aβ}

A−β = {aν | aν has an imange under f and aµ < aβ}.

Notice that A−β and A+
β have cardinality less than ℵα because they are both

subsets of A. Also observe that f(A−β ) < f(A+
β ) in the set B. Now, because

B is an ηα-set, we can choose b ∈ B such that f(A−β ) < b < f(A+
β ). We

make the assignment f(aν) = b which continues to preserve the orders of A
and B.

Now we repeat this process for the first element bβ ∈ B that has not
been assigned an image, and so on. The mapping f will continue to be order
preserving, and it will be injective because each assignment uses elements that
have not already been paired. Finally, f is surjective because each element
is guaranteed to be paired after some (transfinite) number of iterations.

Therefore A ' B, and thus minimal ηα-sets are unique.
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To summarize, we know that ηα-sets are ℵα-universal, and that minimal
ηα-sets are unique.

Another reasonable question we might ask is are minimal ℵα-universal
sets unique? The answer is no. For example, both Q, and Q+ ∪ {0}, the set
of non-negative rational numbers are minimally ℵ0-universal, however the
two sets are clearly not order-isomorphic because one has a least element
and the other does not.

4.2 Constructing a minimal ηα-set

Now we turn our attention to the construction of minimal ηα-sets. We will
see that such a set can be constructed whenever ℵα is regular, and a relaxed
statement of the GCH holds.

Consider the set E = {−1, 0, 1} with the standard ordering. Now let Qα
be the collection of all functions f : ℵα → E with the property that for some
µ < ℵα, we have f(ν) = 0 for all µ ≤ ν < ℵα. That is, Qα is the set of all
functions from ℵα to E that are eventually always zero.

We can also view the elements of Qα as tuples of length ℵα. Each entry
of each tuple can take on one of the three values in E, and each tuple must
eventually become all zeros.

Suppose that f, g ∈ Qα, and that the first element ℵα for which f and g
disagree is is ν. Then we will say that f < g if and only if f(ν) < g(ν).

Theorem 23. Suppose ℵα is a regular cardinal. Then the set Qα is an
ηα-set.

Proof. Suppose A and B with A < B are neighboring subsets in Qα. Further,
suppose that cf(A) < ℵα. Then we need to show that B has a coinitial subset
of order type ℵα. Later, we will argue that the definition of Qα symmetric,
and thus all of the arguments we make to construct coinitial subsets in B
can also be flipped to construct cofinal subsets in A.

We consider three cases: cf(A) = 0, cf(A) = 1, and cf(a) = κ for some
regular infinite ordinal κ. First suppose that A = ∅. Then, for each β < ℵα,
we define hβ as

hβ(ν) =

{
−1 if ν < β,

0 if ν ≥ β.

Clearly the set H = {hβ}β∈ℵα is well-ordered, and has cardinality ℵα. We
know that ℵα is regular, so the cofinality of B is ℵα, as we had hoped. All
that remains is to show that H is coinitial in B.
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Suppose f ∈ B is some function, and let ν be the first ordinal for which
f(ν) 6= −1 (we know such a ν exists because f must eventually be always
zero). Then hν < f , as required.

Now suppose that the set A has a greatest element g (i.e. cf(A) = 1).
Let µ be the ordinal for which g(ν) = 0 for all µ ≤ ν ≤ ℵα. Notice that the
first µ entries of each element in B must be equal to g.

Then for each β < ℵα, we define a function

hβ(ν) =


g(ν) if ν < µ

−1 if κ ≤ ν < µ+ β

0 if µ+ β ≤ ν.

That is, the function hβ is equivalent to g while g is nonzero, followed by β
copies of −1, and then finally all zeros. Once again, the set H = {hβ}β∈ℵα
has cardinality ℵα, so if we can conclude that H is coinitial in B, we will be
done.

Suppose f ∈ B is some function. Let γ be the first entry of f after µ
that is not equal to −1. Then hγ < f , as required.

Finally, suppose that cf(A) = κ < ℵα. It follows that A has a cofinal
subset {fδ}δ∈κ where fδ < fε if and only if δ < ε.

Our goal is to construct the supremum of the set A. If we can do this,
then the same family of functions that we used in the previous case will be a
cofinal in B.

To this end, we would like to define two strictly increasing sequences for
all ν < κ that are bounded by κ and ℵα respectively. We will denote the
first sequence as δν < κ, and the second sequence as βν < ℵα. Additionally,
we require that these sequences satisfy, for all ν < κ,

1. fδν (γ) = fε(γ) for all ε > δν and for all γ < βν and

2. fδν (βν) < fε(βν) for some ε > δ.

We construct these sequences using transfinite induction. Suppose we
have constructed such a pair of sequences for all ν < µ. We need to construct
δµ and βµ.

Let β = sup{βν}ν<µ, and let δ = sup{δν}ν<µ. We choose δµ so that
δ ≤ δµ < κ, and

fδµ(β) = max{fε(β) : δ ≤ ε < κ} ∈ E.

We also choose β ≤ βµ < ℵα such that

βµ = min{γ ≥ β : fδµ(γ) < fε(γ) for some δµ < ε < ℵα}.
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Now we must verify that δµ and βµ actually satisfy our two conditions.
However, this is easy because, by construction, βµ is the least ordinal for
which fδµ is different than a function that is greater than it, and thus both
conditions are satisfied.

Now we will actually find the supremum of the set A. Let θ = sup{βν :
ν < κ}. This means that θ is a limit ordinal, and, since ℵα is regular, we
have that θ < ℵα.

We define the function g : θ → E as follows: for each γ ∈ θ, choose a
ν < κ such that γ < βν , and let g(γ) = fδν (γ). Because of the construction
of our two sequences, this does not depend on which ν we choose.

We then define the same family of functions as in the previous case. In
particular, we have the functions hβ such that

hβ(ν) =


g(ν) if ν < θ

−1 if κ ≤ ν < θ + β

0 if θ + β ≤ ν.

Clearly this set has cardinality ℵα, so we need to show that it is coinitial in
B.

Notice that every element in B, when restricted to θ, must be greater
than g, and so for the same reason as the previous case, the family hβ will
be coinitial in B.

We have shown that, if cf(A) < ℵα, then we must have coin(B) ≥ ℵα.
Now we need to show that the reverse is also true. However, notice that
the function m : E → E given by m(e) = −e induces an order-reversing
bijection on Qα, and thus all of the work we have just done can just as easily
be applied to this new case.

Therefore, Qα is indeed an ηα-set.

We have just shown that Qα is an ηα-set, however, our goal in this section
was to construct a minimal ηα-set. We claim that, provided a slightly less
restrictive version of the GHC holds, Qα is the minimal ηα set.

Theorem 24. Suppose ℵα is a regular ordinal, and that for every ordinal
κ < ℵα, we have 2κ ≤ ℵα. Then the totally ordered set Qα is the minimal
ηα-set.

Proof. We have already seen that, provided that ℵα is a regular ordinal, Qα
is an ηα-set. All that remains is to verify that |Qα| = ℵα. Let Qα[ν] be the
set of functions in Qα which are always zero after ν. That is

Qα[ν] = {f ∈ Qα | f(µ) = 0 for all ν < µ}.
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Observe that |Qα[ν]| = 3ν ≤ ℵα by our hypothesis, and also observe that

Qα =
⋃
ν∈ℵα

Qα[ν].

It follows that Qα is the union of ℵα sets, each with cardinality less than
or equal to ℵα, and thus |Qα| = ℵα, as required.

An obvious corollary follows from the fact that ℵ1 is a regular ordinal.

Corollary 25. Suppose the continuum hypothesis holds. Then there is a
minimal η1-set.

We have shown that we can construct minimal ℵα-universal sets in some
circumstances. Now we consider the slightly broader question: can we always
construct a (not necessarily minimal) ℵα-universal set?

The answer is yes. To see why, notice that an ηβ-set is also an ηα-set
for all β ≤ α. This means that, as long as the GHC holds, we can always
construct an ηβ-set that is also an ηα-set, as we desired.

5 Conclusion

In this paper, we have considered some of the foundations of set theory. In
particular, we have focused on developing a sufficient amount of mathematical
machinery so that we could explore some interesting results about universally
ordered sets. We proved that minimal ℵα-universal sets exist provided ℵα
is regular, and the GCH holds. We also showed that minimal ηα-sets are
unique up to order-isomorphism, and that it is always possible to construct
an ℵα-universal set, as long as the GCH holds.

This is an extremely rich subfield of set theory, and there are many
directions in which this work could be taken in the future. For example,
the construction of ηα-sets is related to the surreal numbers, and alternative
construction of the real numbers. Additionally, there are still many interesting
questions remaining about minimal ℵα-universal sets; unlike minimal ηα-sets,
these sets are not unique, however, we might conjecture that all minimal ℵα-
universal sets share some common core structure. As always in mathematics,
more thought is needed.
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