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Abstract

This paper is an exploration into centroidal Voronoi tessellations, or
CVTs. A centroidal Voronoi tessellation is defined, and we specifically
focus on 2-point CVTs. We also explore creating visualizations of the
algorithms which generate CVTs, including the implementations of Mac-
Queen’s and Lloyd’s methods. These visualizations are written using p5.js,
hosted online at carrot.whitman.edu/CVT. We explore the algorithms
and prove a method to test point inclusion in a convex polygon using the
intersection of half planes. Finally, we explore characteristics and proper-
ties of 2-point CVTs in order to develop conjectures about their structure,
including examining the stability of these methods and variations of these
conjectures using alternative distance metrics.

1 Introduction

We will introduce and define the characteristics of a centroidal Voronoi Tessela-
tion, the primary focus of this exploratory paper. We aim to define these figures
in order to then create technological applications which generate visualizations
and help us conjecture upon their possible properties. We will specifically focus
on the 2-point CVTs of regular polygons and under two common algorithms for
their generation, then expand this to alternative distance metrics.

1.1 Centroidal Voronoi Tessellations

In order to look at centroidal Voronoi tessellations, or CVTs, we examine
Voronoi tessellations and define the restrictions under which they become cen-
troidal. Figure 1 shows an example of a 2-point VT and CVT on a regular
5-gon. The following definitions come from Du, Faber, and Gunzburger in [5].
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Figure 1: Example Tesselations

(a) Voronoi Tesselation (b) Centroidal Voronoi
Tesselation

Definition 1.1 (Voronoi Tessellations). Voronoi tessellations have an intuitive
formation, given the following description. Take a connected, closed set in R2,
called Ω, and take a finite set of points (called generators) in Ω. Around each
generator zi draw a “bubble” Vi (called the Voronoi region). Inside each Vi are
all the points closer to zi than, or as close to zi as, any of the other points in
the set. Points may be equidistant to two generators, therefore lying on the line
bordering two Voronoi regions. The union of all of these regions is the original
set.

Definition 1.2 (Centroidal Voronoi Tessellations). A centroidal Voronoi tes-
sellation (CVT) is a specific formation of a Voronoi tessellation. The additional
restriction is that the generator points are also the centroids of their associated
Voronoi region. That is, the balancing point of the region is at the generator.
We will continue to look at CVTs, with specific focus on CVTs of two generator
points (or 2-point CVTs) since they are much more regular looking, and have
many additional properties and features that Vornoi tessellations do not have.

1.2 p5∗js

p5.js is a JavaScript library which functions as a free implementation of Process-
ing using JavaScript packages and libraries. In this paper, p5.js is the primary
language used to create visualizations and sketches which generate and explore
CVT properties and algorithms. These libraries can be referenced at p5js.org.

p5.js has online tutorials and directories, found at p5js.org/tutorials/.
My p5.js sketches will be hosted on the website carrot.whitman.edu/CVT,

also using DropBox as a storage location for these files.

2 Generating CVTs with p5∗js

We will now use the definitions of CVTs to explore several algorithms which
generate CVTs and implement these algorithms into p5.js applications.
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2.1 Point Location Testing

In anticipation of creating a visualization for CVT generation, one issue that
will arise is determining if a randomly generated point is within the given n-gon
domain. To do this, we propose a location test for points that are intersections
of half planes. It is much quicker for a computer to generate a random point
within the circle inside of which the shape is inscribed. We then test if the given
point is within the n-gon’s domain by using an algorithm based on the following
theorem.

Theorem 2.1. Let A be a regular n-gon in the plane, with the vertices P0, P2,
. . .Pn−1, Pn, where P0 = Pn, labeled in a counter-clockwise direction. Let Z be
a point on the plane.

Let D and E be the displacement vectors from the vertex Pi defined as Di =

Pi+1−Pi =
−−→
PiP i+1 and Ei = Z−Pi =

−−→
PiZ. If Di×Ei · k̂ > 0 for all 0 ≤ i ≤ n,

then Z is contained within A.

Proof. Consider each edge of the n-gon as a line on the plane, defined by the
displacement vector Di, passing through the point Pi. Since the vertices increase
in a counterclockwise direction, we will define the set of points to the left of the
orientation direction (line) as being inside the half plane. By the right hand

rule, if a point is on the left side of the line, then Di × Ei · k̂ > 0.
As concluded by Blackwell in [1], convex polygons are intersections of half

planes. If a point is in a polygon, it follows that it is in the intersection of all
half planes. Therefore the point is to the left of all half planes.

Therefore if Di × Ei · k̂ > 0 for all 0 < i < n, then Z is contained within
A.

A visual example of this test can be seen at blackpawn.com/texts/pointinpoly/.
This version uses the full cross product, but we have simplified the code to focus
solely on the sign of the cross product.

2.2 MacQueen’s Algorithm

We now use Theorem 2.1 to begin building a visualization of CVTs in p5.js.
We use the vector package included in p5.js to determine if a randomized

point within a circle is contained within the inscribed n-gon. This sketch can be
seen at carrot.whitman.edu/CVT/SupportingFeatures/DotLocationTest/.
We describe Mac-Queen’s Algorithm for generating CVTs, as found in Du,
Faber, and Gunzburger, [5], and use this algorithm so create a p5.js sketch
which visualizes the algorithm’s process for generating CVTs.

Definition 2.2 (MacQueen’s Algorithm). Given a set Ω, a positive integer k,
and a probability density function ρ defined on Ω,

0. select an initial set of k points {zi}ki=1, e.g., by using a Monte Carlo
method or by user choice; set ji = 1 for i = 1, . . . , k;
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1. select a y ∈ Ω at random, according to the probability density function
ρ(y);

2. find the zi that is closest to y; denote the index of that zi by i∗;

3. set

zi∗ ←
ji∗zi∗ + y

ji∗ + 1
and ji∗ ← ji∗ + 1;

this new zi∗ , along with the unchanged zi, i 6= i∗, forms the new set of
points {zi}ki=1

4. if this new set of points meets some convergence criterion, terminate; oth-
erwise, go back to step 1.

MacQueen’s Algorithm in p5.js

We then use Mac-Queen’s algorithm and the dot location test sketch to gen-
erate CVTs in p5.js. This sketch can be found at carrot.whitman.edu/CVT/

MacQueen.

2.3 Lloyd’s Algorithm

An algorithm we hope will be more precise than MacQueen’s, is Lloyd’s. This
algorithm takes more work and is therefore less efficient, but we explore it’s
definition and visual representations in the hopes of creating a more accurate
p5.js CVT generator.

We describe Lloyd’s Algorithm for generating CVTs, as found in Du, Faber,
and Gunzburger, [5], and use this algorithm to create a p5.js sketch which
visualizes the algorithm’s process for generating CVTs.

Definition 2.3 (Lloyd’s Algorithm). Given a set Ω, a positive integer k, and
a probability density function ρ defined on Ω,

0. select an initial set of k points {zi}ki=1, e.g., by using a Monte Carlo
method or by user choice;

1. construct the Voronoi tessellation {Vi}ki=1 of Ω associated with the points
{zi}ki=1;

2. compute the mass centroids of the Voronoi regions {Vi}ki=1 found in step
1; these centroids are the new set of points {zi}ki=1.

3. if this new set of points meets some convergence criterion, terminate; oth-
erwise, go back to step 1.

Lloyd’s Algorithm in p5.js

We then use Lloyd’s algorithm to generate CVTs in p5.js. This sketch can be
found at carrot.whitman.edu/CVT/Lloyds. We now use this sketch to examine
properties of CVTs and possible improvements in generating accurate CVTs.
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2.4 Convergence of MacQueen’s and Lloyd’s Algorithms

We have already shown the psuedocode for MacQueen’s and Lloyd’s algorithms
that we have implemented into p5.js applications. Now, before we state any
further conjectures on the figures these applications generate, we must be sure
that these algorithms, and therefore the applications, converge to CVTs.

We refer to Du for some discussion on the recent development of a general
convergence theory for Lloyd’s algorithm [3], this paper specifically works to
conclude local convergence of Lloyd’s algorithm within R2 on a uniform density
plane. The only theoretical convergence proved is given for the one dimensional
case. Since a more rigorous theoretical proof of convergence has not been found,
we rely on the author’s empirical investigation into run time of the algorithms,
measuring movement of the generator points, in order to conclude that Lloyd’s
algorithm will converge. Because of this, the application shows that in simple
examples, we can see that the algorithm visually converges to known CVT
representations.

A similar approach is used to analyze the convergence of MacQueen’s algo-
rithm within finite local space. [3] These arguments are then summarized in
an analysis of the convergence run time of each algorithm in [2]. This paper
summarizes the findings that through numerical computation and optimization,
both algorithms converge to a figure, representative of a CVT, in at best linear
time, which increases as the number of generators increase. Thus, while not
efficient for large problems, these references show the proposed convergence of
these algorithms, thus we can continue to examine the application’s outputs as
CVTs and the possible properties they show.

3 Exploring Conjectures of 2-point CVTs

We will now use the application to conjecture upon possible properties and
characteristics of CVTs, specifically focusing on the 2-point CVT of regular
polygons. In the following section, we aim to provide examples and explain
the following properties of 2-point CVTs. These examples are intended to be
accompanied by the applications found at carrot.whitman.edu/CVT/Lloyds.

3.1 Stable CVTs for Lloyd’s Method

The following sections will specifically focus on defining and showing the stabil-
ity of the CVTs which the Lloyd’s application converges too.

We begin by examining n-gon of increasing sides to examine patterns of
convergence of the figures.

3.1.1 Regular 3-gon

In any regular n-gon, the 2-point CVTs are not unique. In the following figure,
we present a regular 3-gon and the known CVTs of the shape, as presented in
[4].
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Figure 2: Known CVTs of a regular 3-gon

(a) Known long boundary
CVT of a regular 3-gon

(b) Known short boundary
CVT of a regular 3-gon

From this figure, we observe two possible CVTs the application may produce,
up to rotational symmetry.

We now see if we can predict the CVT to which Lloyd’s algorithm will
converge.

Using the Lloyd’s Algorithm application, we will construct an equilateral
triangle, and test what happens after the program is run for a sufficient period
of time so that the generator points no longer visibly move. First, we will place
the two points side by side on one of the edges.

Figure 3: Exploration of Lloyd’s on a regular 3-gon

(a) Before application is
run

(b) After application is run

Next, we test when the points are placed side by side on of the vertexes.
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(c) Before application is
run

(d) After application is run

We now test when the points are places as close as possible to the the long
boundary CVT configuration.

(e) Before application is
run

(f) After application is run

In Figure 3, we see that no initial placement of the two points results in the
long boundary CVT configuration.

3.1.2 Regular 4-gon

We now construct parallel arguments using a square.

Figure 4: Known CVTs of a regular 4-gon

(a) Known Diagonal CVT
of a regular 4-gon

(b) Known Horizontal
CVT of a regular 4-gon
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From this figure, we observe two possible CVTs the application may produce,
up to rotational symmetry.

We now see if we can predict the CVT to which Lloyd’s algorithm will
converge.

Using the Lloyd’s Algorithm application, we will construct a four sided poly-
gon, or a regular 4-gon, and test what happens after the program is run for a
sufficient period of time so that the generator points no longer visibly move.
First, we will place the two points side by side on one of the edges.

Figure 5: Exploration of Lloyd’s on a regular 4-gon

(a) Before application is
run

(b) After application is run

Next, we test when the points are placed side by side on of the vertexes.

(c) Before application is
run

(d) After application is run

We now test when the points are places as close as possible to the diagonal
CVT configuration.
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(e) Before application is
run

(f) After application is run

In Figure 5, we see that no initial placement of the two points results in the
diagonal CVT configuration.

3.1.3 Regular 5-gon

We now construct parallel arguments using a pentagon, or regular 5-gon.
We know of at least two possible configurations of a 2-point CVT in a pen-

tagon, seen below:

Figure 6: Known CVTs of a regular 5-gon

(a) Known CVT of a
regular 5-gon across
opposite vertexes

(b) Known CVT of a
regular 5-gon across

opposite edges

First, we will place the two points side by side on one of the edges.
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Figure 7: Exploration of Lloyd’s on a regular 5-gon

(a) Before application is
run

(b) After application is run

Next, we test when the points are placed side by side on of the vertexes.

(c) Before application is
run

(d) After application is run

We now test when the points are places as close as possible to the diagonal
CVT configuration.

(e) Before application is
run

(f) After application is run

In Figure 7, we see that Lloyd’s algorithm coverges to only Figure 7(b) for
the regular 5-gon.
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3.1.4 Regular 6-gon

We now construct parallel arguments using a hexagon, or regular 6-gon.
We know of at least two possible configurations of a 2-point CVT in a

hexagon, seen below:

Figure 8: Known CVTs of a regular 6-gon

(a) Known CVT of a
regular 6-gon across
opposite vertexes

(b) Known CVT of a
regular 6-gon across

opposite edges

First, we will place the two points side by side on one of the edges.

Figure 9: Exploration of Lloyd’s on a regular 6-gon

(a) Before application is
run

(b) After application is run

Next, we test when the points are placed side by side on of the vertexes.
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(c) Before application is
run

(d) After application is run

We now test when the points are places as close as possible to the diagonal
CVT configuration.

(e) Before application is
run

(f) After application is run

In Figure 9, we see that Lloyd’s algorithm coverges to only Figure 9(b) for
the regular 6-gon.

3.1.5 Stable CVTs of Lloyd’s Algorithm

Based on exploration, in the context of Lloyd’s Method, there seem to exist
known CVT configurations that remain unrepresented by the applications we
have created. The figures we have found we label as stable CVTs, in the con-
text of Lloyd’s method, such that the figure seems to be stably found and
represented, alternative to the other known CVTs which are not found during
these algorithm’s convergence in this application. We thus conclude with the
following conjecture:

Definition 3.1 (Stable CVTs). Lloyd’s algorithm seems to prefer some config-
urations of CVTs over others, we will call these configurations stable CVTs in
the context of Lloyd’s algorithm.

3.2 Characterizing Lloyd’s Stable CVTs

We now examine the configuration of the generator points within these stable
CVTs in the context of Lloyd’s method.
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In a regular n-gon, if n is even, there exist two lines of symmetry in the figure,
one from edge to edge and one from vertex to vertex. In this case, the edge to
edge line of symmetry is shorter than the vertex to vertex line of symmetry. If
n is odd, there is only one line of symmetry, from edge to vertex, of consistent
length.

3.2.1 Lloyd’s Stable CVTs and Lines of Symmetry

In the following figures, for each n-gon examined above, we show the stable CVT
found above under exploration of the Lloyd’s method application, as well as the
known lines of symmetry in order to say something about the configuration of
the stable CVTs.

Figure 10: Stable CVT of a 3-gon

(a) Stable CVT under
Lloyd’s Method
Application

(b) Lines of Symmetry

Figure 11: Stable CVT of a 4-gon

(a) Stable CVT under
Lloyd’s Method
Application

(b) Lines of Symmetry
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Figure 12: Stable CVT of a 5-gon

(a) Stable CVT under
Lloyd’s Method
Application

(b) Lines of Symmetry

Figure 13: Stable CVT of a 6-gon

(a) Stable CVT under
Lloyd’s Method
Application

(b) Lines of Symmetry

3.2.2 Generator Points in Lloyd’s Stable CVTs

We now notice that in the 3 and 5 -gons, the generator points of these stable
CVTs lie on the single line of symmetry through Ω.

In the the 6-gon, the generator points lie on the longest line of symmetry
through Ω.

Finally, in the 6 -gon, the generator points of these stable CVTs lie on the
shortest line of symmetry through Ω.

Thus we conclude with the following conjecture:

Conjecture 3.2. Lloyd’s algorithm, in this application, converges to a specific
2-point CVT representation, the stable CVT. In a regular n-gon,

1. if n is odd, the generator points lie on the single line of symmetry, from
edge to vertex, through Ω.

2. if n is even and 4 does divide n, the generator points lie on the shortest
line of symmetry, from edge to edge, through Ω.
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3. if n is even and 4 does not divide n, the generator points lie on the longest
line of symmetry, from vertex to vertex, through Ω.

An alternative way of thinking about this would be,

Conjecture 3.3. In the stable 2-point CVT, for Lloyd’s algorithm on a regular
n-gon, the boundary between the Voronoi regions lies on the shortest line of
symmetry.

4 Exploring Alternative Distance Metrics

We have now explored Lloyd’s algorithm’s convergence on 2-point CVTs. We
will now introduce several new distance functions and examine how these for-
mulas impact Lloyd’s convergence and configurations.

4.1 Metrics

In mathematics, a metric or distance function is a function that defines a dis-
tance between each pair of elements of a set. In the above methods, as in most of
mathematics, we use the standard Euclidean metric distance function in order
to calculate which generator point a randomly generated point is closer to.

4.1.1 The Euclidean distance metric

First lets remember the equation for the Euclidean distance function and look
at an example of how it would calculate distance. If we want to find the distance
between (x1, x2) and (y1, y2), the equation we commonly remember is:

d(x, y) =
√

(y1 − x1)2 + (y2 − x2)2.

Using this equation, if we want to calculate the distance between x = (0, 0)
and y = (1, 2), we calculate the length of the diagonal line between the points.

d(x, y) =
√

(1− 0)2 + (2− 0)2 =
√

5.

While most mathematics assume the Euclidean metric, there exist many
other metrics which give interesting alternate results to algorithms, such as
MacQueen and Lloyd’s methods, that rely on a distance metric.

The discrete metric

One quick example of an alternative metric is the discrete metric, given by:

d(x, y) = 0 if x = y and d(x, y) = 1 otherwise.
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4.1.2 The Taxicab metric

We will now examine a less familiar metric, named the Manhattan distance,
or Taxicab Metric. We will first introduce the metric then examine what is
happening in this equation.

The Taxicab distance equation between (x1, x2) and (y1, y2) is:

d(x, y) = |y1 − x1|+ |y2 − x2|.

This number is equal to the length of all paths connecting x and y along
horizontal and vertical segments, without ever going back, like those described
by a taxicab moving in a lattice-like street pattern, or grid to its destination.

Using this equation, if we want to calculate the distance between x = (0, 0)
and y = (1, 2), we calculate the length of the horizontal and vertical line between
the points. Note that any combination of horizontal and vertical lines will work.

d(x, y) = |1− 0|+ |2− 0| = 3

We see here that
√

5 6= 3, therefore these two equations find different values
for distance. We will now introduce the taxicab distance equation to Lloyd’s
algorithm and explore the results.

Lloyd’s With the Taxicab Metric

To begin, we create a new application at carrot.whitman.edu/CVT/LloydsVariations/
TaxiCabLloyds/ which implements Lloyd’s algorithm using the Taxicab dis-
tance equation. We encourage continued exploration of this application, though
currently no recognizable patterns of convergence or stability seem emergent.
The following figure shows four different outcomes of the convergent figures of
running this application on a 2-point 5-gon.

Figure 14: Taxicab Metric in Lloyd’s Method on a 5-gon

This metric seems to reach multiple convergent configurations beyond those
found with a Euclidean metric. The noticeable jagged line between the gener-
ator points is characteristic of the metric and may explain the lack of uniform
convergence or stability.
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Thus, we conclude that alternative distance metrics do effect the results of
these conjectures and look to another metric to see if more interesting results
can be found.

4.1.3 The Infinity Metric

In the past two metrics, we have remained in the Lp spaces, function spaces
defined using a natural generalization of the p-norm for finite-dimensional vector
spaces. They are sometimes called Lebesgue spaces. In p = 1, we get the
Taxicab metric. In p = 2, we get the Euclidean metric. We now examine where
p approaches infinity.

If we want to find the distance between (x1, x2) and (y1, y2), the equation
is:

d(x, y) =
√

(y1 − x1)∞ + (y2 − x2)∞.

Lloyd’s With the Infinity Metric

This new metric is implemented at carrot.whitman.edu/CVT/LloydsVariations/
InfinityLloyds/.

We again encourage continued exploration of this application, though cur-
rently no recognizable patterns of convergence or stability seem emergent. The
following figure shows four different outcomes of the convergent figures of run-
ning this application on a 2-point 5-gon.

Figure 15: Infinity Metric in Lloyd’s Method on a 5-gon

We conclude that as p approaches infinity, the application converges to seem-
ingly similar configurations as under the Euclidean metric, with less precise and
more variant results, as well as less defined lines surrounding each of the Voronoi
regions. Though these metrics show alternate results on the convergence in these
applications, it seems variant and less patterned.

5 Conclusion

In this paper, we examine the geometry of centroidal Voronoi tessellations. We
show that while very little is known about centroidal Voronoi tessellations, using
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p5.js as a platform to create visualizations provides us with additional tools to
examine and conjecture upon their properties. These tools help us to success-
fully examine the generating algorithms and find Definition 3.1 and Conjecture
3.3 which further examine new properties of 2-point centroidal Voronoi tessel-
lations.
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