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1 Introduction

This paper is a review of the median value of a function on an interval. Mo-
tivated by The Median Value Of A Continuous Function by Irl C. Bivens and
Benjamin G. Klein, we consider the median values of various continuous func-
tions, and focus in particular, we focus on minimization properties of the median
value. We attempt to build an intuitive connection between the median of a
set of discrete numbers and the median of a function on an interval. To help
the reader see the characteristics of the median value, we have created a num-
ber of interactive examples that demonstrate the minimization properties of the
median value and published these on the website GeoGebraTube. The reader
will find links to relevant examples embeded sequentially throughout the pa-
per, and is encouraged to interact with these examples at her or his own pace to
acheive a concrete view of the phenomena described. This will help the reader to
build profeciency in predicting the median of a function based on the geometric
properties of that function’s graph.

We go on to investigate discontinuous functions and consider how the me-
dian values of these functions differ from the median values of continuous func-
tions.Once we relax the condition of continuity, we introduce a new definition
for the median value of a function on an interval. This definition is motivated by
theorems and defintions from Bivens and Klein, highlighting the minimization
properties that are the focus of this paper and streamlining discussion of these
properties. Finally, we give some examples to which we can apply the logic of
the median value, including functions of more than one variable.

2 From Discrete Points to an Interval

2.1 The Average

The initial motivation for this subject is the simple process by which the concept
of the average can be applied to a continuous function. We begin by outlining
that process so that the reader may see analogous steps regarding the median
value. Start by considering a set of discrete numbers

U = {x1, x2, x3, ...., xn}.
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Then

ave(U) =
x1 + x2 + · · ·+ xn

n

is the the average of the values in U .This leads naturally to the following defi-
nition of the average value of a continuous function.

Definition 1. Suppose f(x) is continuous on [a, b]. Partition [a, b] into n equal
subintervals and call the midpoints of these subintervals x∗1, x

∗
2, . . . , x

∗
n. Let

avef (n) be the average value of the n function values f(x∗1), f(x∗2), . . . , f(x∗n).
Then the average value of f on [a, b] is

fave = lim
n→∞

ave
f

(n)

This definition is typically accompanied by the fact that

fave =
1

b− a

∫ b

a

f(x)dx,

which looks rather like the average of a set of discrete points, with the sum
replaced by an integral and the number of values averaged replaced by the
length of an interval. This demonstration helps convince a calculus student of
the sensible link between averages of points and averages of functions, and helps
her or him build an intuition for the average of a function by relating it to a
discrete average.

2.2 The Median

In discussing the average, the median value of a set is often forgotten. There
are many aspects of the median value that have analogs in the more common
discussion of the average. We fowllow this analogy while introducing the median
in order to help illustrate the median as an approachable and useful quantity.

Definition 2. Suppose the entries of the set U, x1, x2, x3, ...., xn are in increas-
ing order. Then the median value of U is

med(U) =

{
x(n+1)/2, n is odd

1
2 (xn/2 + x1+n/2), n is even

In practice, this value is located by arranging the entries of U in increasing
order, then taking the middle entry on the list. The middle two are averaged
if there is an even number of entries. Note that only the middle entry, or
middle two entries, of U determine the value of med(U). This is what makes
the median a so-called robust statistic: any of the smallest entries of U could
be made arbitrarily small without affecting the median, and any of the largest
entries of U could be made arbitrarily large without affecting the median. That
is, outliers of U have little effect on its median value.

Another consequence of this definition is that at most half of the entries of
U are greater than med(U) and at most half are less than med(U). From this
insight a useful minimization theorem follows.
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Theorem 1. Suppose U is a list of real numbers, x1, x2, x3, ...., xn. Then for
any real number t,

n∑
k=1

|xk −med(U)| ≤
n∑
k=1

|xk − t|.

[1]
We explain this theorem with an appeal to the reader’s intuition. Let t be a

real number and suppose that more than half the entries of U are greater than
t. Then t 6= med(A), and increasing t will decrease |xk− t| for more than half of
the n terms of

∑n
k=1 |xk− t|, decreasing the sum. Next, suppose that more than

half the entries of U are less than t. Then t 6= med(A). Now decreasing t will
decrease |xk − t| for more than half of the n terms of

∑n
k=1 |xk − t|, decreasing

the sum. In this way we can further decrease
∑n
k=1 |xk− t| as long as more than

half the entries of A are less than or greater than t. Because at most half of the
entries of U are greater than med(A) and at most half are less than med(U),
if t = med(A), then the sum |xk − t| is at a minimum. This argument is more
convinving with a visual demonstration. At this point we introduce the first of
our examples published on the website GeoGebraTube.

Example 1. The reader may use this demonstration in order to better visualize
this sum. The example consists of a set of seven points, with the x coordinates
of these points representing the points x1, x2, x3, ...., x7 in R. The orange point
on the x axis represents the number t, and the horizontal, black lines show the
quantities |xk − t|, the distances from each point to t. The reader may drag
the orange point to manipulate the value of t and note how the distances to the
points in the set and the sum of these distances change in response.

In a similar procces to that which we have applied to the average, we now
define the median of a continuous function using a limit of discrete medians.

Definition 3. Suppose f(x) is continuous on [a, b]. Partition [a, b] into n
equal subintervals and call the midpoints of these subintervals x∗1, x

∗
2, . . . , x

∗
n. Let

medf (n) be the median value of the n function values f(x∗1), f(x∗2), . . . , f(x∗n).
Then the median value of f on [a, b] is

fmed = lim
n→∞

medf (n)

[1] For the average, we made the transition from the quantity

ave(U) =
x1 + x2 + · · ·+ xn

n

to

fave =
1

b− a

∫ b

a

f(x)dx. (1)

In an analagous shift, we turn the sum over the entries of U,
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n∑
k=1

|xk − t|, (2)

into an integral over the domain [a, b],

A(t) =

∫ b

a

|f(x)− t|dx.

These quantities do not explicitly define the median as Equations 2 and 1
define the average. But, we now know that 1 implictly gives the median of U by
way of minimization, and we see that A(t) is a quantity similar to

∑n
k=1 |xk−t|,

with the entries of U replaced by the function values of f , and the integral giving
a continuous sum over [a, b]. We can therefore expect that f(x) < fmed on at
most half the interval [a, b], and f(x) > fmed on at most half the interval [a, b].

We use the familiar sine function as an example to demonstrate this property.
This page in Geogebra shows the area function for f(x)=sin(x) on the interval
[0, 2π]. The slider in the upper left allows the reader to manipulate the value
of t, and the resulting value A(t) is shown so that she or he may note how
this manipulation affects the total area. The length of the interval between the
points C and C ′, on which f(x) ≥ t, also is shown as “LengthAbove.” Similarly,
the combined length of the intervals on either side, on which f(x) ≤ t, is shown
as “LengthBelow.” The reader should note that the minimum value of A(t)
coincides with equality between LengthAbove and LengthBelow.

2.3 Graphs with Symmmetry

One simple result of equally dividing the sets of function values “above” and
“below” t is that, for any f monotonic on [a, b], fmed = f(a+b

2 ). In fact, it

is straightforward to see that fmed = f(a+b
2 ) if f has one of various types of

symmetry:

1. f lies beneath the line y = f(a+b
2 ) for x ≤ a+b

2 and above y = f(a+b
2 ) for

x ≥ a+b
2

2. f lies above the line y = f(a+b
2 ) for x ≤ a+b

2 and beneath y = f(a+b
2 ) for

x ≥ a+b
2

3. The graph of f has rotational symmetry of order 2 about the point
(a+b

2 , f(a+b
2 ))

As described for discrete sets, it is significant that the median value only
depends directly on the function value at one point, a+b

2 . This is why we can
make these generalizations about some median values by noting the general
behavior of the function on either side of the center of the interval [a, b]. In
particular, if f(x) > fmed at any point of [a, b], then it does not alter the
median to increase arbitrarily the function value at that point.
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3 Using Measure

To specify the notion of “half the interval,” we will introduce some basic concepts
of measure theory. In particular, if the set U is an interval or a collection of
intervals, then the Lebesgue measure, which we will simply call the “measure,”
of U is the sum of the lengths of the intervals in U . The measure of a single
point is 0. We will let m[U ] denote the measure of U .

Now, for f defined on [a, b], define the sets

Above(t) = f−1((t,∞)) = x ∈ (a, b)|f(x) > t

Below(t) = f−1((−∞, t)) = x ∈ (a, b)|f(x) < t.

In the example of the sine function, Above(t) is the two intervals identified
by the orange lines . When we discuss the set of x values for which f(x) ≥ t,
we are discussing the set Above(t).

With Theorem 2, Bivens and Klein use the concept of measure to provide
insight and a useful criterion for a median value.

Theorem 2. Suppose f is continuous on [a, b]. A real number tm is a median
of f on [a, b] if and only if

m[Below(tm)] ≤ b− a
2

and m[Above(tm)] ≤ b− a
2

.

Note that m[Below(tm)] < b−a
2 or m[Above(tm)] < b−a

2 only if f(x) = fmed
on a set of positive measure. In Theorem 1, if xk ≥ t for more than n

2 entries,
increasing t lowers the sum

∑n
k=1 |xk − t| by shrinking more terms than it

expands. This is analagous to the case where f(x) > t on more than half of
the interval [a, b], which is the same as saying m[Above(t)] > a+b

2 . Thus we
argue by way of extension from the discrete sum

∑n
k=1 |xk− t| to A(t), that the

median value of a function should minimize A(t) for that function by implying
the inequalities of Theorem 2. Bivens and Klein confirm this conjecture with
their central theorem regarding the continuous median.

Theorem 3. The median value fmed exists for any continuous function f on a
bounded interval. Furthermore, if f is absolutely integrable on the interval, then
t = tm = fmed is the unique parameter value that minimizes the area function
A(t).

This absolute value function shows that, if t 6= fmed, moving t closer to

fmed decreases the integral A(t) =
∫ b
a
|f(x) − t|dx by subtracting more area

than it adds. The horizontal, red line is y = t, the blue section of the x axis is
the set Below(t), and the orange section of the x axis is the set Above(t). The
dark shaded regions directly above and below y = t represent the area removed
from A(t) by increasing or decreasing t by a small increment, respectively. Note
that, until Above(t) and Below(t) each represent half the interval [a, b], we can
continue to decrease A(t), so A(t) is not at a minimum.
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0
x

y

d

c

a+b
2

a b

Figure 1: Step function

Bivens and Klein give a proof of Theorem 3. Rather than investigating this
proof, we will move our discussion forward with more examples.

4 Functions With Discontinuities

We now seek to further understand the median by examining what happens
when we weaken the hypotheses of Theorem 3. We begin with a simple example,
graphed in Figure 1, where we have abandoned the condition of continuity.

Example 2.

f =

{
c if a ≤ x ≤ a+b

2

d if a+b
2 < x ≤ b

f is not continuous and Definition 3 therefore does not apply. However,
for the sake of investigation, we can still apply the process described, say that
fmed = c+d

2 , and recognize that if we discuss the median of a discontinuous
function, we are applying the process of Definition 3 without satisfying all of its
hypotheses. We find by this process that many discontinuous functions still have
sensible median values. Where we find a difference compared to continuous
functions is in the uniqueness result of Theorem 3. The median value of a
discontinuous function still minimizes A(t), but that median value may not be
the unique minimizer of A(t).

In this representation, it is visually apparent that, as long as 2 ≤ t ≤ 4,
altering the value of t adds the same amount of shaded area to A(t) that it
subtracts. We use the derivative of A(t) to show that this is the case for any
similar function, with generic constants c and d given as function values instead
of 2 and 4. this in a simple proof involving the derivative of f .
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y = t

Figure 2: Continuous graph

Proof.

A(t) =

∫ b

a

|f(x)− t|dx

A′(t) = −
∫ b

a

|f(x)− t|
f(x)− t

dx

A′(t) = −
∫ a+b

2

a

t− c
c− t

dx−
∫ b

a+b
2

d− t
d− t

dx

= (
a+ b

2
− a)− (b− a+ b

2
)

= 0

A(t) = A(tm) for any c ≤ t ≤ d, so every t value in that range is a minimizer,
and tm is not unique. We can see, consistent with Theorem 3, that this is not
possible for a continuous function. As in Figure 2, connecting the two present
steps with a vertical line is the only way to create a continuous graph with a
constant area for c ≤ t ≤ d. This is impossible, of course, because then f is not
well defined on [a, b].

There are many different types of discontinuity to consider in relation to the
median of a fuction.

1. For monotonic f with a single jump discontinuity, if the discontinuity is
not at a+b

2 then the median of f exists and is the unique minimizer of A(t).
There is an interval of t values for which A(t) is constant, but that interval
does not include the minimizer fmed so that minimizer is still unique.
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2. If f has a removable discontinuity, the medain of f is unchanged from the
case where the discontinuity is removed to make f continuous.

3. If the function has an asymptote at one of the end points, then the median
exists and it is still easy to apply Definition 3.

4. If the function has an asymptote or is otherwise undefined at c ∈ (a, b),
then the ease with which we apply the limit definition depends on the
value of c. The process of taking limn→∞medf (n) involves the value of
the function at the midpoints of every regular partition, and therefore at
every rational number in the interval [a, b]. So, if c is rational, then at
some point the limit process will run into an undefined value.

5 More Discontinuities

We now investigate three functions that each have something to show regarding
their median values.

Example 3. Consider the graph of f(x) = 1√
x

on the interval [−2, 2]. The

reader can note the various symmetries about the origin and the two coordinate
axes, and conclude that fmed = 0. Manipulating the value of t in Geogebra
confirms that t = 0 does in fact minimize A(t). But, any value in the range√

2
2 ≤ t ≤

√
2

2 returns the same value A(0), so the median of f is not the
unique minimizer of A(t) and we see once again a discontinuity that sacrifices
the uniqueness result of Theorem 3.

We use Example 3 as a starting point to consider what aspect of a discon-
tinuous function may preclude uniqueness for the minimizer of A(t). With a
visual approach, we see that the t values that minimize A(t) for each of these
two functions are the gaps that contain no function values. Thus, we close the
“gap” in the graphs of these functions in this example where the two branches
of f(x) = 1√

x
are shifted up and down, respectively. The branches intersect the

x axis at x = −2 and x = 2. The graph still has the same symmetries that the
un-shifted function 1√

x
did, so we find that the median value is still tm = 0.

Though the function is still discontinuous, we have eliminated the gap between
the function values, and it appears that the sets Above(t) and Below(t) will
change if we change t. This is borne out in GeoGebra: tm = 0 minimizes A(t)
and is now the unique minimizing value.

Motivated by this shift, we can gain some insight by altering the step function
of our first example. Consider this piecewise linear function, where we turn the
horizontal steps into linear segments with negative slope. We have changed
relatively little from the step function; in particular, the median is still tm = 3
and the jump discontinuity between the two branches is still glaringly present.
Yet, as in the case where we shifted the branches of 1

sqrtx , we see that this
minimizer is now unique. We clearly see that continuity is not necessary for a
median value to be a unique minimizer of A(t), so what aspect of a function
does confer uniqueness?
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6 Conditions for Uniqueness

We have worked thus far with Definition 3, provided by Bivens and Klein,
defining the median by a limiting process. Yet, there is little about this limiting
process that we find compelling for its own sake. Our discussion focuses mainly
on the minimizing property of the median value with respect to the area function

A(t) =
∫ b
a
|f(x) − t|dx. We therefore frame our remaining discussion by using

this minimizing characteristic to define the median value of a function.

Definition 4. Suppose f is absolutely integrable on [a, b]. A real number is a
median value of f on [a, b] if it is a minimizing value of

A(t) =

∫ b

a

|f(x)− t|dx.

This is little more that a semantic issue: we will now say that a function has
a unique median rather than say that a function’s median is a unique minimizer
of A(t). The limit definition provided an intuitive bridge to the median of
a function from the discrete median, but we will proceed using Definition 4
in order to streamline our descriptions and highlight the characteristic of the
median value that we are most interested in. For continuous functions, the two
definitions are equivalent. We know this because Theorem 3 states that a median
according to Definition 3 minimizes A(t) and therefore satisfies Definition 4.
Additionally, a median according to Definition 3 is the unique minimizer of
A(t), so if a value is a median of a continuous function according to Definition
4, it must be the median identified by Definition 3.

We can now frame our guiding question as: Under what conditions does a
function on [a, b] have a unique median value? Harkening back to the examples
of the inverse square root function, the shifted inverse square root function, the
step function, and the piecewise linear function, we note that the median values
of these functions gain the characteristic of uniqueness when we close the empty
space in the graph, making f a function onto an interval. This suggests the
conjecture that the median of f : [a, b] → R is unique if the range f([a, b]) is
an interval. This condition is restrictive enough that we certainly expect it is
sufficient for a unique median, but a one may quickly outline the counterexample
of Figure 3 to demonstrate that it certainly is not necessary.

Figure 3 reiterates that, if a discontinuity exists away from the median value,
it does not affect uniqueness of that median. So, given that our previous hy-
pothsis was stronger than necessary but that an onto map seems to be helpful
in guaranteeing uniqueness, we suggest a theorem that localizes the condition
of the previous conjecture.

Theorem 4. Suppose f is absolutely integrable on [a, b]. If f maps onto an open
interval that contains a median value tm of f, then the median tm is unique.

The counter example of Figure 4 shows that this condition is not necessary
for uniqueness.
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Figure 3: f not onto, with a unique median
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Figure 4: Removable discontinuity
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We are eventually unable to prove the result for an arbitrary, absolutely
integrable function. There is a class of functions, however, defined previous to
our work, that satisfies exactly the condition that we hoped for. This class of
functions is said to satisfy Luzin’s Condition (N).

Definition 5 (Luzin’s Condition (N)). A function f : G→ R satisfies Luzin’s
Condition (N) if

m[B] > 0 whenever B ⊆ G and m[f(B)] > 0

So, our theorem now imposes slightly more strict hypotheses.

Theorem 5. Suppose f is absolutely integrable on [a, b] and satisfies Luzin’s
Condition (N). If f maps onto an open interval that contains a median value
tm of f, then the median tm is unique.

[2]
We begin with a new definition and a lemma.

Definition 6. convex A function f : R → R is convex on an interval [a, b] if
the line segment connecting any two points on the graph of f lies entirely on or
above the graph of f .

Bivens and Klein show that A(t) is a convex function, a fact that we use in
this lemma.

Lemma 1. Suppose that tm is a median value of f . If there exists another
median t′m of f , then every point in the open interval with endpoints tm and t′m
is also a median value of f .

Proof. Suppose that tm < t′m and let t∗ ∈ (tm, t
′
m).

Because tm and t′m both minimize A(t), A(tm) = A(t′m). We know that A(t)
is convex, so because tm < t∗ < t′m,

A(t∗) ≤ A(tm) and A(t∗) ≤ A(t′m).

Because tm and t′m both minimize A(t),

A(t∗) ≥ A(tm) and A(t∗) ≥ A(t′m)

as well, so

A(tm) = A(t∗) = A(t′m)

and t∗ is a median of f .

We now return to prove Theorem 5.
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Proof. Suppose that f maps onto an open interval that contains a median value
tm of f, and there exists another median t′ > tm. The proof for t′ < tm is
similar.

Let I be the open interval in the range of f that contains tm. Then, for some
endpoint d,

(tm, d) = (tm, t
′) ∩ I,

so f maps onto (tm, d) and every point in (tm, d) is a median of f.
Let Above(tm) \Above(z) = Ω.
Then for all x such that f(x) ∈ (tm, d), x ∈ Above(tm) and x /∈ Above(d).

Therefore, because m[(tm, d)] = d− tm > 0, Lusin’s Condition (N) implies that

m[Ω] > 0.

Now let z ∈ (tm, d).
Then

A(z)−A(tm) =

∫
Ω

|z − t|dx > 0,

so z is not a median of f.

7 An Example and an Extension

7.1 Decaying Oscilations

Example 4. An instructive example is f(x) = x sin( 1
x ) on the interval [0, 1

π ], as
shown in Figure 5. Becausethis function is continuous, Definition 3 guarantees
a unique minimizer of A(t). This process is computationally tedious, however,
and offers little intuitive insight. The other method available is to use Theorem
2, which does not give the median value for a function explicitly but gives a
condition that we can use in an approximating process.

We might guess, based on its oscilation around the “center” y = 0, that
t = 0 is the median of this function. We can use Theorem 2 to disprove this
conjecture and show that fmed < 0.

Proof. sin(nπ) = 0, so f( 1
nπ ) = 0. This means that Below(t) is the union of

every interval

(
1

2iπ
,

1

2iπ + 1
), i ≥ 0,

and

m[Below(t)] =

∞∑
i=0

(
1

2iπ + 1
− 1

2iπ
)

=

∞∑
i=0

1

(4i2 + 2i)π
.
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Figure 5: f(x) = x sin( 1
x )

This is a simple convergent series; the sum must be finite and less than 1
π

because each of the intervals is within [0, 1
π ]. Evaluating the sum we find that

m[Below(t)] =

∞∑
i=0

1

(4i2 + 2i)π

=
ln(2)

π
≈ 0.221

>
1

2π
≈ 0.1592.

So, t = 0 cannot be a median value of f, and becausem[Below(t)] ≥ m[Below(0)]
for t > 0, we know that fmed < 0.

Just as we calculated m[Below(0)] using the roots of f, we can calculate
m[Below(t)] for a given value of t by solving for the intersections where x sin( 1

x ) =
t for t 6= 0. We have written a program that finds these intersections, takes the
difference of adjacent intersections, and then takes the sum of these differences,
thereby computing the length of the intervals in Below(t). If m[Below(t)] >
1

2π ≈ 0.1592, we know that t is too high and must lower it to approach fmed.
Conversly, if m[Above(t)] < 1

2π , we know that t is too low and we must raise
it. By repeating this process, we find that m[Below(−0.4587)] = 0.15915 so,
accurate to four decimal places, fmed = −0.4587.
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7.2 Three Dimensions

We can extend the logic of Theorem 3 and Theorem 2 to realize that there is
a close analogy to the two dimensional median in three dimensions. we now
consider the median values of a function of two variables.

Example 5. Let S be the surface of the hemisphere of radius 1, with its base
on the xy plane, centered at the origin.

We define the volume function

V (t) =

∫
Ω

|f − t|dA

as an analog to the area function A(t). In this case, f(x, y) =
√

1− x2 − y2

and the region Ω is the circle of radius 1 in the xy plane centered at the origin.
V (t) gives the volume in between the surface S and the horizontal plane z = t,
above the region Ω. For t ∈ [0, 1), the intersection of S and z = t is a ring of
radius equal to or less than 1. The portion of the xy plane inside this ring is the
set Above(t), and the annulus between this ring and the ring of radius 1 is the

set Below(t). We argue that, if m[Above(t)] > m[Ω]
2 , then increasing t removes

from V (t) a volume of equal height and greater area compared to the volume

that it adds. Similarly, if m[Below(t)] > m[Ω]
2 , then decreasing t removes from

V (t) a volume of equal height and greater area compared to the volume that it
adds. Therefore, as in the two dimensional case, we can continue decreasing
V (t) until

m[Above(t)] ≤ m[Ω]

2
and m[Below(t)] ≤ m[Ω]

2
.

At this t value, V (t) is at a minimum. We call this value the median of f .
In this diagram, the black circle on the xy plane is Above(t), and the annulus

surrounding that circle is Below(t). We also display the ratio Above(t)
Below(t) , which

equals frac12 for t = fmed. Letting r be the radius of the inner circle, we find

that m[Above(t)] = m[Below(t)] when πr2 = π
2 , or r =

√
2

2 . The reader can
confirm this by observing the ratio of the two areas in relation to the quantity
V (t).

8 Conclusion

The aim of this paper has been to illustrate a strategy of spatial reasoning that
illuminates various concepts of the median value. The reasoning that shows
the discrete or continuous medians’ minimizing properties offers insight into
diverse situations once the reader constructs an analogy to familiar quantities, as
illustrated by our concept of a three dimenisional median. The initial motivation
for this paper was the definition of the median value for continuous functions,
and the objective of broadening that definition. Similarly, though we have
imposed conditions on the functions and sets discussed here, one may investigate
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the consequences of abandoning some hypotheses. A similar line of reasoning
can offer insight into functions, sets, and other mathematical objects beyond
our discussion. The reader may consider what the median may represent in four
dimensions or more, or in physical situations. We hope these ideas convince the
reader that the median is not just a number to be studied in grade school, but
a broad concept with satisfying and unexpected applications.
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