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Introduction: Motivating the Study of Chaos

In popular culture, the term “chaos” is most often a generic stand-in for “disorder.” It calls to mind
countless headlines and over-the-top action movies—at the time of writing, searching for “chaos” on
Google produces articles about recent Nascar wrecks, drama among the Kardashians, and “Captain
American: Civil War.”
These popular renderings of chaos as mere disorder fail to capture the central premise of the
mathematical study of chaos: that chaos is not disorder, but rather order in apparent disorder.
Before cracking into any rigorous definitions, let us take a näıve look at an example of this sort of
disorderly order.

A Small Adjustment with Big Implications

Imagine that we are scientists tracking the size of a single population of rabbits over time. Further-
more, suppose that, unbeknownst to us, the size of that population perfectly follows the logistic
growth model described by the function f(x) = 2x(1 − x), where x denotes the population (in
millions) of rabbits at the beginning of a given year and f(x) denotes the population by the end of
that year.
Since the end of each year is the beginning of the next we see that we are dealing with a recursive
process: for any integer n, if we let xn denote the population at the end of the nth year, then we
see that xn = f(xn−1).
Suppose, then, that x0 = 0.01, where x0 denotes the initial population. We find that x1 = f(x0) =
2(0.01)(0.99) = 0.0198 and that x2 = f(x1) = 2(0.0198)(.9802) = 0.03881592. Repeating this
process, we produce the following table and graph which relate n and xn for the first few values of
n:

n xn
0 0.01000000
1 0.01980000
2 0.03881592
3 0.07461848
4 0.13810113
5 0.23805842
6 0.36277322
7 0.46233762
8 0.49716309
9 0.49998390
10 0.49999999
11 0.50000000
12 0.50000000 Figure 1: A sequence plot of {xn} under f .

Looking at this raw data we see that the population grows quickly and seems to level off at 0.5
(it is actually just approaching 0.5, but our calculators round off the tiny differences past a certain
point). Intuitively, this is how we would expect a population to grow: exploding initially, then
reaching a stable value as the scarcity of resources forces members of the population to compete
with each other. In our above formulation we might redundantly call this “orderly” order. Since
this behavior fits our intuition we take the data at face-value.
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Now suppose that the size of the population instead follows the function g(x) = 4x(1 − x), and
suppose again that x0 = .01. Applying g a few times, we see:

n xn
0 0.01000000
1 0.03960000
2 0.15212736
3 0.51593851
4 0.99898386
5 0.00406043
6 0.01617577
7 0.06365646
8 0.23841726
9 0.72629788
10 0.79515708
11 0.65152919
12 0.90815562 Figure 2: A sequence plot of {xn} under g.

Seeing this data, we will likely assume that some catastrophe occurred during the fifth year or
that the population’s growth is entirely random.
When we slightly change our input value, we find that g has another bizarre characteristic. Let
x0 = .01 as above and let y0 = .0099. The following image shows the sequence plots of {xn} and
{yn} up to n = 25, with the former plotted in red and the latter in blue:

Figure 3: Overlaid sequence plots of {xn} and {yn} under g, where x0 = .01 and y0 = .0099.

While the plots of {xn} and {yn} cleave to each other at first, past n = 14 their behavior seems to
completely diverge.
As readers, we know that a simple rule is guiding the growth of this population, yet our data seems
to defy any predictable patterns. How do we account for this behavior?
Our experience tracking the behavior of {xn} and {yn} under g echoes meteorologist Edward
Lorenz’s experience in analyzing his primitive weather simulations in the early 1960s. Though he
based his model on a handful of equations, he found that even the slightest changes in his initial
values led to remarkably different outcomes. He initially assumed that something was wrong with
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his computer or with his code, yet found that everything was in working order. As in our own
experiment, the models themselves produced the seemingly random behavior. It was with this dis-
covery of such disorderly order that Lorenz first sparked interest in what eventually became Chaos
Theory. In observing the behavior of our seemingly bizarre logistic map, we too are beginning our
journey into chaos in much the same way. (For a more complete and dramatic account of Lorenz’s
story and the origins of Chaos theory, see Gleick [4].)

Our Goals

In this paper we will characterize the differences between non-chaotic and chaotic dynamics. The
first section will introduce dynamical systems in general, providing vocabulary and highlighting why
f in our näıve example is so predictable. The second section will then provide a general definition of
chaos and give an example of a chaotic dynamical system. The third and fourth sections will then
explore a powerful method for proving that dynamical systems are chaotic: topological conjugacy.
We will then close by using this method to prove that many logistic maps, like g, are chaotic.
As I am aiming this paper at a fairly general audience, I have included a lengthy appendix introduc-
ing metric spaces and topology, as a basic understanding of both is essential to some of the deeper
results that I cover. If at any point you encounter an unfamiliar term or question an assumption
in a proof, check the appendix for details.
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1 Dynamical Systems

Before we discuss any particulars, we need to establish a broad definition of the sorts of systems
we will be talking about.

Definition 1.0.1. A dynamical system consists of a set of possible states along with a rule that
determines the present state as a function of past states.

It is important to note at this point that the dynamical systems which we will be exploring have
a few restrictions. First, they are deterministic rather than stochastic. Simply put, this means that
our rule will always return the same output for a given input, meaning that it is in no way random.
Second, they are discrete, as opposed to continuous, dynamical systems.
In our first example the set of states was the set of values the population of rabbits could take on
and the rule which determined the present state as a function of past states was f . We used the
output from one application of our rule as the input value for the next application of our rule. We
call each re-application of our rule an iteration. As is clear from our example, with each iteration
we are composing our rule with itself. To streamline our notation we write the second iterate of f ,
namely f(f(x)), as f2(x), the third iterate of f , namely f(f(f(x))), as f3(x), and the nth iterate
of f as fn(x).

1.1 Orbits

Definition 1.1.1. Given a map f and a point x in the domain of f , we call the set of points
{x, f(x), f2(x), . . .} the forward orbit of x under f and denote it O+(x). As x is the starting
point of the orbit, we call it the initial value or seed of the orbit.

Returning to our examples, we see that our first table provides the forward orbit of .01 under f
and that our second table provides the forward orbit of .01 under g.
While all of this vocabulary is helpful, a visual representation of orbits helps solidify the concept.
We call these diagrams cobweb plots and construct them as follows:
Let x0 be the seed of our orbit. In our plot we graph both our function f(x) and the line g(x) = x.
With these guidelines, we first trace a line, in red, from (x0, 0) to (x0, f(x0)), then from (x0, f(x0))
to (f(x0), f(x0)) (this is where plotting g(x) = x is useful). From there we can trace a line to
(f(x0), f2(x0)), then to (f2(x0), f2(x0)), and so on. With these plots, we can find fn(x) for any n
and, perhaps more importantly, see how the orbit of x got to fn(x).
Figure 4 provides an easy-to-follow, albeit somewhat bland, example of a cobweb plot.

With a basic understanding of cobweb plots, we can start to visual the behavior of f(x) =
2x(1− x) and g(x) = 4x(1− x) for larger values of n.

Figure 5 and Figure 6 show us that the orbit of x0 = .01 under f continues to approach .5.
Figures 7, 8, 9, and 10 reveal that the orbit of x0 = .01 under g seems to travel all over the interval
[0, 1].
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Figure 4: The cobweb plot of x0 = .75 under the map f(x) = x2 up to 5 iterations.

Figure 5: The cobweb plot of x0 = .01 under
the map f(x) = 2x(1− x) up to 12 iterations.

Figure 6: The cobweb plot of x0 = .01 under
the map f(x) = 2x(1− x) up to 100 iterations.
We see that nothing unexpected happens with
the orbit of .01.
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Figure 7: The cobweb plot of x0 = .01 under
the map f(x) = 4x(1 − x) up to 5 iterations.
We see the sudden drop after the fifth iteration
as we did in our table.

Figure 8: The cobweb plot of x0 = .01 under
the map f(x) = 4x(1 − x) up to 25 iterations.
Clearly the orbit of .01 is covering a fair amount
of the interval [0, 1].

Figure 9: The cobweb plot of x0 = .01 under
the map f(x) = 4x(1− x) up to 100 iterations.
We see that the orbit of .01 continues to hit new
points.

Figure 10: The cobweb plot of x0 = .01 under
the map f(x) = 4x(1−x) up to 1000 iterations.
The orbits of .01 is still covering new ground.
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1.2 Types of Points in a Dynamical System

Now that we are familiar with what dynamical systems are, we might wonder whether we can
determine how the orbits of certain points will behave. The most predictable points in a dynamical
system are undoubtedly fixed points, followed closely by periodic points.

Definition 1.2.1. Given a point p in the domain of f , if f(p) = p we call p a fixed point of the
map f . We denote the set of fixed points of f by Fix(f).

Example 1.2.2. We can rather easily find the fixed points of f(x) = 2x(1 − x). We simply need
to solve the equation f(p) = p for p:

2p(1− p) = p (1)

2p− 2p2 = p (2)

p− 2p2 = 0 (3)

p(1− 2p) = 0 . (4)

Clearly Fix(f) = {0, 12}.

Example 1.2.3. We can find the fixed points of f(x) = 4x(1− x) in a similar manner. We see:

4p(1− p) = p (5)

4p− 4p2 = p (6)

3p− 4p2 = 0 (7)

p(3− 4p) = 0 , (8)

so that Fix(f) = {0, 34}.

Pulling together a few concepts from calculus and this definition, we have the following theorem
which provides conditions on f and its domain which guarantee that f has a fixed point.

Theorem 1.2.4. If f : [a, b]→ [a, b] is continuous, then f has at least one fixed point in [a, b].

Proof. Let g(x) = f(x)−x. As g is the difference of continuous functions, it is likewise continuous.
We note that a ≤ f(a) and that f(b) ≤ b as [a, b] is the range of f . If either f(a) = a or f(b) = b
then we are already done. Suppose then that a < f(a) and f(b) < b. Then g(a) > 0 and g(b) < 0,
so the Intermediate Value Theorem provides that there exists a point c between a and b such that
g(c) = 0. Therefore f(c) = c and we are done.

We can show that if f has one additional property, then f has a unique fixed point. Note that
in the following discussion, f ′ denotes the derivative of f .

Theorem 1.2.5. Let I be a closed interval. If f : I → I and |f ′(x)| < 1 for all x in I, then there
exists a unique fixed point for f in I.

Proof. As f is differentiable on I it is continuous on I. Therefore our previous theorem guarantees
that f has at least one fixed point on I. Suppose, then, that both x and y are fixed points and
x 6= y. By the Mean Value Theorem, there exists a point c between x and y such that

f ′(c) =
f(y)− f(x)

y − x
=
y − x
y − x

= 1

a clear contradiction of our assumption that |f ′(x)| < 1 for all x in I. Thus x = y.
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While fixed points have a number of unique qualities, they ultimately fall into the much larger
category of periodic points.

Definition 1.2.6. We say that a point x0 is periodic of period n if fn(x0) = x0 for some n > 0.
We call the orbit of x0 a periodic orbit or cycle in this case.
We denote the set of periodic points of period n under f by Pern(f) and set of all periodic points
under f by Per(f).

With this definition, we can see that Fix(f) = Per1(x).
It is important to note that the set of periodic points of period n might contain points with differ-
ent periods. For example, if x1 has period 6 and x2 has period 4, then both are members of Per12(f).

Example 1.2.7. Let f(x) = x2 − 1. We see that x = −1 is a periodic point of period 2 as
f2(−1) = f(f(−1)) = f(0) = −1.

Moreover, it is interesting to note that if x is periodic of period n under f , then for every
i ∈ {1, . . . , n− 1} f i(x) is likewise periodic of period n. We see that this is the case as

fn(f i(x)) = fn+i(x) = f i+n(x) = f i(x).

Therefore, as x = −1 is periodic of period 2 under f(x) = x2 − 1 and f(−1) = 0, we know that 0
is periodic of period 2 under f as well.
As you can imagine, the cobweb plot of the forward orbit of a fixed point is not too terribly exciting.
The cobweb plot of the forward orbit a periodic point, however, can prove a little more informative.
Figures 11 and 12 depict cycles of period 2 and 3 respectively.

Figure 11: The forward orbit of x = 0 under
f(x) = x2 − 1. As we can see, 0 is periodic of
period 2 under this map.

Figure 12: The forward orbit of x = 0 under
f(x) = − 3

2x
2 + 5

2x + 1. As we can see, 0 is
periodic of period 3 under this map.

Note that a general dynamical system, might not have any non-trivial periodic points at all.
Consider f : R→ R defined by f(x) = 2x. Clearly only x0 = 0 is a periodic point under f .
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A point that is not fixed or periodic itself may have points in its forward orbit that are either
fixed or periodic.

Definition 1.2.8. We say that a point x is eventually fixed if x is not fixed but there exists an
m > 0 such that f i+1(x) = f i(x) for all i ≥ m (that is, f i(x) is fixed for i ≥ m).

As we noted in the introduction, the orbit of x0 = .01 under f(x) = 2x(1 − x) seemed to level
out at .5, but was actually just approaching 0.5. As such, .01 is not eventually fixed under f .

Definition 1.2.9. We say that a point x is eventually periodic of period n if x is not periodic
but there exists an m > 0 such that fn+i(x) = f i(x) for all i ≥ m (that is, f i(x) is periodic for
i ≥ m).

Example 1.2.10. Let f(x) = x2 − 1 again. We see that x = 1 is an eventually periodic point of
period 2 as

f2(1) = f(f(1)) = f(0) = −1

and
f4(1) = f(f(f2(1))) = f(f(−1)) = f(0) = −1.

1.3 Limits of Orbits

While not all points in a dynamical system have orbits which eventually cycle through a finite set
of values, many do have orbits which approach certain points (again, .01 under f(x) = 2x(1− x)).
Just as we study the limit of a function f(x) as x approaches infinity, we may also study the limit
of the orbit of a particular point in our dynamical system as n approaches infinity.

Definition 1.3.1. Let p be periodic of period n. A point x is forward asymptotic to p if

lim
i→∞

f in(x) = p .

The stable set of p, denoted by W s(p), consists of all points forward asymptotic to p.

Note that in this paper we will primarily concern ourselves with points which are forward
asymptotic to fixed points.

Definition 1.3.2. Suppose that f is invertible. We say that x is backward asymptotic to p if

lim
i→−∞

f in(x) = p .

We call the set of backward asymptotic points to p the unstable set of p and denote it Wu(p).

Example 1.3.3. In Figure 6 we see that even though x0 = .01 is relatively close close 0, the
forward orbit of x0 climbs towards 0.5, suggesting that the stable set of f is the interval (0, 1].

1.4 Hyperbolicity

While we might understand how points can be forward asymptotic or backward asymptotic to a
periodic point p, we still need a way to tell whether p has points converging to it. Whether p has
this property has to do with whether p is hyperbolic.
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Definition 1.4.1. Let p be a periodic point of period n. We say p is hyperbolic if |(fn)′(p)| 6= 1.
We call (fn)′(p) the multiplier of p.

Example 1.4.2. Consider the function f(x) = x2. Clearly f has fixed points at x = 0 and x = 1.
As f ′(0) = 0 and f ′(1) = 2 clearly both fixed points are hyperbolic.

Example 1.4.3. As a counterexample, consider the function f(x) = x. Clearly every point x is a
fixed point. However, none these fixed points is hyperbolic as f ′(x) = 1 for all x.

With the concept of hyperbolicity established, we can develop a way of telling whether a pe-
riodic point p has points converging to it. For the following problems we are assuming that f is
differentiable and that its derivative is continuous.

Theorem 1.4.4. Let p be a hyperbolic fixed point. If |f ′(p)| < 1, then there is an open interval U
about p such that if x ∈ U , then

lim
n→∞

fn(x) = p .

Proof. We know that there exists a real number A such that |f ′(p)| < A < 1. We will show by
induction that as p is a fixed point and |f ′(p)| < A, |(fn)′(p)| < An for all n. For our base case we
see that the statement is obviously true for n = 1. Suppose it is true for n− 1. We see that

|(fn)′(p)| = |(f(fn−1))′(p)| = |f ′(fn−1(p))||(fn−1)′(p)| (9)

= |f ′(p)||(fn−1)′(p)| < AAn−1 = An (10)

as fn−1(p) = p since p is a fixed point under f . We know that the derivative of fn is continuous. Let
ε = An−|(fn)′(p)|. As (fn)′ is continuous at p there exists a δ > 0 such that |(fn)′(x)−(fn)′(p)| < ε
if x ∈ (p− δ, p+ δ). We then see that

|(fn)′(x)| = |(fn)′(x)− (fn)′(p) + (fn)′(p)| (11)

≤ |(fn)′(x)− (fn)′(p)|+ |(fn)′(p)| (12)

< An − |(fn)′(p)|+ |(fn)′(p)| = An (13)

if x ∈ (p− δ, p+ δ).
Let x ∈ (p− δ, p+ δ). By the Mean Value Theorem

|fn(x)− fn(p)|
|x− p|

< An

so that
|fn(x)− p| = |fn(x)− fn(p)| < An|x− p| < Anδ .

As δ is fixed by ε and |A| < 1, clearly limn→∞Anδ = 0. Thus

lim
n→∞

fn(x) = p .

A direct consequence of this is that the interval (p− δ, p+ δ) is a subset of the stable set of p.

Definition 1.4.5. If p is a hyperbolic periodic point of period n with |(fn)′(p)| < 1 we say that p
is an attracting periodic point or a sink.
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Example 1.4.6. Returning to f(x) = 2x(1−x), we note that f ′(x) = 2−4x. As such f ′(1/2) = 0.
Therefore 1

2 is a sink, which helps explain the behavior we saw in Figure 6.

Definition 1.4.7. If p is a fixed point with |f ′(p)| > 1 we call p a repelling fixed point or
source.

Theorem 1.4.8. Let f be a function which is infinitely differentiable where all of its derivatives
are continuous and let p be a hyperbolic fixed point with |f ′(p)| > 1. Then there is an open interval
U around p such that, if x ∈ U and x 6= p, then there exists an integer k such that fk(x) /∈ U .

The proof of this theorem is similar enough to our last proof that we will not bother with it
here.

Example 1.4.9. Returning to f(x) = 2x(1− x), we note that f ′(x) = 2− 4x. As such f ′(0) = 2.
Therefore 0 is a source, which again helps explain the behavior we saw in Figure 6.

As our analysis has suggested so far, the map f(x) = 2x(1−x) seems incredibly predictable. We
can generalize this behavior to large class of logistic maps. Recall that logistic maps are functions
of the form Fµ(x) = µx(1− x).

Theorem 1.4.10. Let 1 < µ < 3.

1. Fµ has a sink at pµ = µ−1
µ and a source at 0.

2. If 0 < x < 1, then
lim
n→∞

Fnµ (x) = pµ.

Unfortunately, this theorem is quite difficult to prove. Given that non-chaotic systems are not
our primary focus, we will leave it without proof here.

1.5 Dynamical Systems: A Wide Field of Study

Having now established a firm understanding of dynamical systems we can see what a wide variety
of forms they can take. As such, we cannot make too many general statements about the behavior
of dynamical systems. We did find, however, that any logistic map Fµ with 1 < µ < 3 behaves
quite predictably. As we delve into chaos and, ultimately, chaotic logistic maps, we will see how
diverse this seemingly mundane family of functions really is.
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2 Chaos

Note that the following discussion of chaos presumes a general knowledge of metric spaces and
topology. If you are unfamiliar with these concepts or would like a brief refresher, consult the
Appendix.
Chaotic dynamics are defined by a few key properties which we must explore in isolation before
pulling together a complete definition of chaos. Note that I have adapted the following definitions
from Devaney [3], generalizing his results in (R, d1) to any metric space (X, d).

2.1 Our Definition of Chaos

Definition 2.1.1. Let (X, d) be a metric space and let J ⊆ X.
f : J → J has sensitive dependence on initial conditions if there exists a δ > 0 such that,
for any x ∈ J and any open set N containing x, there exists a y ∈ N and an n ≥ 0 such that
d(fn(x), fn(y)) > δ.

Simply put, f has sensitive dependence if even the slightest change in initial conditions eventually
leads to a substantially different outcome. This is the very behavior which we saw with g(x) =
4x(1− x) and which first alarmed Lorenz (see Introduction). Moreover, this property is frequently
referred to as The Butterfly Effect. Among the properties of a chaotic dynamical system, this is
perhaps the most well-known. Some popular depictions of chaos even equate it solely with the
Butterfly Effect, ignoring the other two key properties of a chaotic dynamical system entirely.

Example 2.1.2. Consider the map f : R→ R defined by f(x) = 2x.
Let s ∈ R and let N be an open set containing s. Since N is open, we know that there exists a real
number ε > 0 such that (s− ε, s+ ε) = Bd1(s, ε) ⊆ N . Let y = s+ ε

2 . Clearly y ∈ (s− ε, s+ ε).
We know that there exists a positive integer M such that 2M ε > 1. We see that for any positive
integer n and any t ∈ R, fn(t) = 2nt. Therefore

|fM+1(s)− fM+1(y)| = |2M+1s− 2M+1y| = 2M+1|s− y| = 2M ε > 1 .

Therefore f has sensitive dependence on initial conditions.

Definition 2.1.3. Let (X, d) be a metric space and let J ⊆ X.
f : J → J is said to be topologically transitive if for any pair of open sets U, V ⊆ J there exists
a k >0 such that

fk(U) ∩ V 6= ∅ .

This is to say that if you take two open sets U and V in J and look far enough in the orbits of
all of the elements of U under f you will eventually find some element in V . In even more general
terms: wherever you look in J you will be able to find a point which has an orbit which travels all
over J . We saw this behavior in the orbit of .01 under g(x) = 4x(1− x) in Figures 8, 9, and 10.

Example 2.1.4. As a counterexample note that the map f : R → R defined by f(x) = 2x is
certainly not topologically transitive. Let V = (0, 1) and U = (1, 2). Clearly if x ∈ U , then
fk(x) > 1 for any k. As such, for every k we see that fk(U) ∩ V = ∅.

Our third property requires no new definition. It is simply that periodic points are dense under
f . If you are unfamiliar with the concept of density, see the Appendix. Essentially, this means that
wherever you look in J , you will find a periodic point under f .
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Example 2.1.5. We will once again use the map f : R → R defined by f(x) = 2x as a coun-
terexample. Clearly f does not have any periodic points other than 0 as fk+1(x) > fk(x) for every
k.

With all of the pieces in place we can finally formalize our definition of chaos:

Definition 2.1.6. Let (X, d) be a metric space and let V ⊆ X.
We say that f : V → V is chaotic on V if

1. f has sensitive dependence on initial conditions,

2. f is topologically transitive,

3. periodic points under f are dense in V .

2.2 A Straightforward Example of a Chaotic Dynamical System

With this definitions of chaos we can show that the following system is chaotic: Consider the
function f(θ) = 2θ defined on the unit circle, denoted S1, under the metric |x − y|. We note that
θ = θ + 2kπ for any integer k.
To see that f has sensitive dependence on initial conditions, let δ = 1 and consider two points
θ1, θ2 ∈ S1 where θ1 < θ2. We recognize that fn(θ) = 2nθ.
Therefore

|fn(θ2)− fn(θ1)| = |2nθ2 − 2nθ1| = 2n(θ2 − θ1) .

By the Archimedean property there exists a real number r such that 1 < r(θ2−θ1). As the sequence
{2n} is unbounded above, there exists a positive integer N such that 2N > r. Thus

|fN (θ2)− fN (θ1)| = 2N (θ2 − θ1) > r(θ2 − θ1) > 1 .

We will now show that f is topologically transitive on S1. We note that any open subset of S1

must contain an open interval, say (θa, θb). We see that the codomain of (θa, θb) under fn(θ) will
be (2nθa, 2

nθb). It is not hard to see, using the same argument we used in our discussion of the
sensitive dependence of f , that there exists an integer M such that 2Mθa − 2Mθb > 2π. Thus
eventually the orbits of elements from (θa, θb) will cover S1 and, by extension, any subset of S1. To
further elucidate this concept, I have included the following image. (θa, θb) in the argument is the
blue arc below, (f(θa), f(θb)) is the green arc, and (f2(θa), f2(θb)) is the yellow arc.
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(0, 0) (1, 0)
x

(0, 1)

y

The density of periodic points under f is perhaps the most difficult to prove.
We note that fn(θ) = 2nθ so θ is a periodic point of period n if and only if

2nθ = θ + 2kπ

for some integer n, that is, if and only if

θ =
2kπ

2n − 1
.

From here we only need to see that numbers of the form k
2n−1 where k and n are integers are dense

in the interval [0, 1].
Consider any open subset of [0, 1]. We know that it will contain some open interval (a, b). By the
Archimedean property there exists a positive integer m such that 1 < m(b − a). Moreover, since
{2n − 1} is unbounded above, there exists a positive integer p such that 2p − 1 > m. Therefore

1 < m(b− a) < (2p − 1)(b− a)

so that
1

2p − 1
< b− a

and

a <
1

2p − 1
+ a < b .

As
1

2p − 1
+ a =

1 + a(2p − 1)

2p − 1

and p and 1 + a(2p − 1) are both integers, we have found a number of the form k
2n−1 , where k and

n are integers, in a generic open subset of [0, 1]. Thus numbers of this form are dense in [0, 1] and,
by extension, numbers of the form 2kπ

2n−1 are dense in S1.
Therefore f is chaotic.
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3 Topological Conjugacy: A Powerful Tool

All told, directly using the definition of chaos to prove that the doubling map on the unit circle
is chaotic is not too difficult: The orbits of two distinct points diverge predictably, the images of
subsets of S1 clearly move around S1, and periodic points are relatively easy to find.
Unfortunately, there are many chaotic maps whose chaotic properties are not so immediately ap-
parent. In order to prove that such maps are chaotic, we show that they are topologically conjugate
to other maps which we know are chaotic.
First, however, we must unpack what it means for two maps to be topologically conjugate. To this
end, we define a homeomorphism.

Definition 3.0.1. Let f : I → J .
We say that f is a homeomorphism if f is one-to-one, onto, and continuous, and f−1 is also
continuous.

Example 3.0.2. The function f(x) =
√
x, where x ∈ R+ is a homeomorphism.

With that definition in place, we can define topological conjugacy:

Definition 3.0.3. Let f : A → A and g : B → B be two maps. We say that f and g are
topologically conjugate if there exists a homeomorphism h : A→ B such that h ◦ f = g ◦ h. We
call h a topological conjugacy.

As a visual reference, we have the following diagram:

A A

B B

f

g

h h

3.1 The Properties Shared by Topologically Conjugate Maps

It is not immediately apparent that two topologically conjugate maps, such as f : A → A and
g : B → B, have the same dynamics. Thus before we can use topological conjugacy to prove that a
dynamical system is chaotic, we need to explore the implications of topological conjugacy at some
length.

3.1.1 Fixed and Periodic Points in Topologically Conjugate Maps

We will starting by exploring the many relationships between the dynamics of x ∈ A under f and
the dynamics of h(x) ∈ B under g.
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Theorem 3.1.1. Suppose that f : A → A and g : B → B are topologically conjugate under the
homeomorphism h : A → B. Then a point p in A is a fixed point under f if and only if h(p) is a
fixed point under g.

Proof. We will start with the forward direction.
Let p ∈ A be a fixed point under f . Then f(p) = p. Therefore

h(p) = (h ◦ f)(p) = (g ◦ h)(p) ,

making h(p) a fixed point under g by definition.
Moving in the opposite direction, let p ∈ A and suppose that h(p) is a fixed point under g. Then
(g ◦ h)(p) = h(p). Therefore

p = (h−1 ◦ h)(p) = (h−1 ◦ g ◦ h)(p) = (h−1 ◦ h ◦ f)(p) = f(p) ,

making p a fixed point under f by definition.

We can use the same logic to find a similar correspondence between periodic points under f and
periodic points under g.

Theorem 3.1.2. Suppose that f : A → A and g : B → B are topologically conjugate under the
homeomorphism h : A → B. Then a point x in A is a periodic point of period n under f if and
only if h(x) is a periodic point of period n under g.

Proof. We will start with the forward direction.
Let x ∈ A be a periodic point of period n under f . Then fn(x) = x. We see that

h(x) = (h ◦ fn)(x) = (g ◦ h ◦ fn−1)(x) = (g2 ◦ h ◦ fn−2)(x) .

Continuing the process of substituting g ◦ h for h ◦ f , we find that

h(x) = (gn ◦ h)(x) .

Therefore h(x) is a periodic point of period n under g by definition.
Moving in the opposite direction, let x ∈ A and suppose that h(x) is a periodic point of period n
under g. Then (gn ◦ h)(x) = h(x). Therefore

x = (h−1 ◦ h)(x) = (h−1 ◦ gn ◦ h)(x)

= (h−1 ◦ gn−1 ◦ h ◦ f)(x)

= (h−1 ◦ gn−2 ◦ h ◦ f2)(x) .

Continuing the process of substituting h ◦ f for g ◦ h, we find that

x = (h−1 ◦ h ◦ fn)(x) = fn(x) .

Therefore x is a periodic point of period n under f by definition.

Therefore h gives a one-to-one correspondence between Pern(f) and Pern(g).
Recall that a point x is eventually fixed if x is not fixed but there exists a positive integer m > 0

such that f i+1(x) = f i(x) for all i ≥ m. Also recall that a point x is eventually periodic of period n
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if x is not periodic but there exists a positive integer m > 0 such that fn+i(x) = f i(x) for all i ≥ m.
It does not take too much imagination to adapt the argument used in the proof of the previous
theorem to show that a point x ∈ A is eventually fixed under f if and only if h(x) is eventually
fixed under g, and that x is eventually periodic under f if and only if h(x) is eventually periodic
under g.
Thus there are direct correspondences between the most predictable types of points in two topo-
logically conjugate maps.

3.1.2 Asymptotic Orbits in Topologically Conjugate Maps

As in our general discussion of dynamical systems, we might be curious about the end-behavior of
points under f and g.
Let p be periodic of period n. Recall that a point x is forward asymptotic to p if limi→∞ f in(x) = p.

Theorem 3.1.3. Let (A, d1) and (B, d2) be metric spaces and let H : A→ B be a homeomorphism.
Suppose that p is a period point of period n under f . Then a point x ∈ A is forward asymptotic to
p if and only if h(x) is forward asymptotic to h(p).

Proof. We will prove the forward direction here and leave the other direction without proof as it
requires essentially the same argument. Let ε > 0. We note that as h is continuous, there exists a
δ > 0 such that

d2(h(s), h(t)) < ε

if d1(s, t) < δ. As x is forward asymptotic to p, we know that there exists a positive integer M such
that

d1(f in(x), p) < δ

if i ≥M .
Therefore

d2((h ◦ f in)(x), h(p)) < ε

if i ≥M . Moreover, we note by the argument employed in the proof of Theorem 2 that (h◦f in)(x) =
(gin ◦ h)(x), so that

d2((gin ◦ h)(x), h(p)) < ε

if i ≥M . Therefore h(x) is forward asymptotic to h(p) under g by definition.

Provided f and g are invertible, we can apply this same argument to show an equivalence
between backward asymptotic orbits as well.

3.1.3 How a Topological Conjugacy Maps Sets

While we have discussed how a topological conjugacy acts on individual points, we have yet to
discuss how it acts on subsets of a generic metric space (X, d). We need to explore these concepts
before discussing topological conjugacy and chaos because both topological transitivity and density
are properties which describe how a map acts on subsets of its domain.

Theorem 3.1.4. Let (X, d1) and (Y, d2) be metric spaces and let h : X → Y be a continuous
function. If M ⊆ Y is an open set, then {x ∈ X : f(x) ∈M}, the preimage of M under f , is also
an open set.
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Proof. Let x0 ∈ {x ∈ X : f(x) ∈ M}. We know that f(x0) ∈ M . Since M is open we know that
f(x0) is an interior point of M . As such there exists a real number r > 0 such that Bd2(f(x0), r) ⊆
M .
Let 0 < ε ≤ r. Because f(x) is continuous at x0 we know that there exists a δ > 0 such that
f(x) ∈ Bd2(f(x0), ε) if x ∈ Bd1(x0, δ).
Let x ∈ Bd1(x0, δ). Then f(x) ∈ Bd2(f(x0), ε) ⊆M , meaning that x ∈ {x ∈ X : f(x) ∈M}.
Thus Bd1(x0, δ) ⊆ {x ∈ X : f(x) ∈M}, making x0 is an interior point of {x ∈ X : f(x) ∈M}.
Therefore {x ∈ X : f(x) ∈M} is an open set.

With this theorem about continuous maps established, we can discuss how homeomorphisms
map sets. Recall that both a homeomorphism and its inverse are continuous.

Theorem 3.1.5. Let (X, d1) and (Y, d2) be metric spaces, let E ⊆ X, and let h : X → Y be a
homeomorphism. Then E is an open subset of (X, d1) if and only if h(E) is an open subset of
(Y, d2).

Proof. Let E be an open subset of X. Since h−1 is a continuous map we know from our last theorem
that {y ∈ Y : h−1(y) ∈ E} = h(E) is open in Y .
Let E be a subset of X with the property that h(E) is an open subset of y. Then {x ∈ X : h(x) ∈
W} = (h−1 ◦ h)(E) = E is open in X.

We know that if E is open in X, then X \E is closed (see Appendix). Since a homeomorphism
maps open sets to open sets, we can conclude that a homeomorphism also maps closed sets to closed
sets.

3.2 Topological Conjugacy and Chaos

Having discussed how a topological conjugacy acts on sets we can show that if two maps f and g
are topologically conjugate, then f is chaotic if and only if g is chaotic.

Theorem 3.2.1. Let (X, d1) and (Y, d2) be metric spaces and let f : X → X and g : Y → Y be
two maps with a topological conjugacy h : X → Y between them. Then f is topologically transitive
if and only if g is topologically transitive.

Proof. Suppose that f is topologically transitive and let U and V be two open sets in Y . We know
that h−1(U) and h−1(V ) are both open sets in X. Since f is topologically transitive, we know that
there exists a positive integer k such that

(fk ◦ h−1)(U) ∩ h−1(V ) 6= ∅ .

We see that (h ◦ fk ◦ h−1)(U) = (gk ◦ h ◦ h−1)(U) = gk(U). Therefore

gk(U) ∩ V 6= ∅ .

Hence g is topologically transitive.
Suppose that g is topologically transitive and let U and V be two open sets in X. We know that
h(U) and h(v) are both open sets in Y . Since g is topologically transitive, we know that there
exists a positive integer j such that

(gj ◦ h)(U) ∩ h(V ) 6= ∅ .
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We see that (h−1 ◦ gj ◦ h)(U) = (f j ◦ h−1 ◦ h)(U) = f j(U). Therefore

f j(U) ∩ V 6= ∅ .

Hence f is topologically transitive.

Theorem 3.2.2. Let (X, d1) and (Y, d2) be metric spaces and let f : X → X and g : Y → Y be
two maps with a topological conjugacy h : X → Y between them. Then periodic points are dense in
X under f if and only if periodic points are dense in Y under g.

Proof. Suppose that periodic points are dense in X under f . Let U be an open set in Y . We then
know that h−1(U) is an open set in X. Since periodic points are dense in X under f we know that
there exists a periodic point p ∈ h−1(U) under f . We know that since p is a periodic point under
f , h(p) is a periodic point under g. Since h(p) is an element of U , we can see that every open set
in Y contains a periodic point under g.
Suppose that periodic points are dense in Y under g. Let U be an open set in X. We then know
that h(U) is an open set in Y . Since periodic points are dense in Y under g we know that there
exists a periodic point p ∈ h(U) under g. We know that since p is a periodic point under f , h−1(p)
is a periodic point under f . Since h−1(p) is an element of U , we can see that every open set in X
contains a periodic point under f .

Theorem 3.2.3. Let (X, d1) and (Y, d2) be metric spaces and let f : X → X and g : Y → Y be
two maps with a topological conjugacy h : X → Y between them. Then f has sensitive dependence
on initial conditions if and only if g has sensitive dependence on initial conditions.

Proof. Suppose that f has sensitive dependence on initial conditions and let ε > 0 be the real
number guaranteed to exist by that property. Let x ∈ Y and let N be a neighborhood of x. We
know that there exists some point y ∈ h−1(N) ⊆ X and some positive integer n such that

d1((fn ◦ h−1)(x), fn(y)) > ε .

Since h−1 is continuous we know that there exists some δ > 0 such that d1(h−1(s), h−1(t)) < ε if
d2(s, t) ≤ δ. Note that since ε is fixed, δ is as well.
Suppose that d2(gn(x), (gn ◦ h)(y)) ≤ δ. Then

d1((h−1 ◦ gn)(x), (h−1 ◦ gn ◦ h)(y)) = d1((fn ◦ h−1)(x), fn(y)) < ε ,

a contradiction. Therefore d2(gn(x), (gn ◦ h)(y)) > δ. Thus we have shown that given any point
x ∈ Y and any neighborhood N around it, we can find a point w ∈ N (the h(y) we found using the
sensitive dependence of f) and a positive integer n such that d2(gn(x), gn(w)) > δ. As such, g has
sensitive dependence on initial conditions.
Given that the proof of the converse is essentially the same (the only difference being that it relies
on the fact that h is continuous instead of the fact that h−1 is continuous) we will omit it here.

With all of these pieces in place we have our powerful tool for proving that sets are chaotic:

Theorem 3.2.4. Suppose that f and g are topologically conjugate. Then f is chaotic if and only
if g is chaotic.
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4 Proving a Dynamical System is Chaotic Using Topological
Conjugacy

As we noted at the beginning of our discussion of topological conjugacy, given two topologically
conjugate chaotic maps, f : A → A and g : N → B, it can often be far easier to prove that f is
chaotic than that g is chaotic. As such, we choose to prove directly that f is chaotic in order to show
that g is chaotic. In this section we will be doing exactly that, with the shift map, σ : Σ2 → Σ2,
playing the role of f in our scheme and any logistic map, Fµ = µx(1−x) where µ > 2+

√
5, playing

the role of g (we will cover F4, from the introduction, later as it is a special case).

4.1 The Shift Map

4.1.1 The Shift Map’s Domain: Sequence Space

Before we can discuss the shift map, we need to discuss the set on which it acts, the sequence space
on the symbols 0 and 1.

Definition 4.1.1. The sequence space on the symbols 0 and 1 is the set

Σ2 = {s = (s0s1s2...)|sj = 0 or 1} .

Elements of Σ2 are infinite strings of 0’s and 1’s, such as

(001101 . . .) or (101001 . . .) .

As our previous discussions have indicated, we need Σ2 to be a metric space in order to talk about
chaos and topological conjugacy. To this end, we develop the following definition of the distance
between elements in the sequence space.

Definition 4.1.2. We define the distance between two sequences s = (s0s1s2 . . .) and t = (t0t1t2 . . .)
to be

d(s, t) =

∞∑
i=0

|si − ti|
2i

.

Since |si−ti|2i ≤ 1
2i for every positive integer i and since

∑∞
i=0

1
2i , a geometric series, converges,

we know that
∑∞
i=0

|si−ti|
2i converges. As such d(s, t) ∈ R.

Example 4.1.3. We see that if r = (000000 . . .), s = (010101 . . .), and t = (111111 . . .), then

d(r, t) =

∞∑
i=0

1

2i
= 2

and

d(r, s) = d(s, t) =

∞∑
i=0

1

22i
=

4

3
.

It is not too difficult to verify that d(s, t) is a metric:
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Theorem 4.1.4. d(s, t) is a metric.

Proof. We will work through the definition of a metric systematically to show that d(s, t) is a
metric.

1. It is clear that |a− b| ≥ 0 for any points a, b ∈ {0, 1}. As such d(s, t) ≥ 0 for any s, t ∈ Σ2.

2. We note that s = t if and only if si = ti for each i, that si = ti if and only if |si − ti| = 0,

and that |si − ti| = 0 for each i if and only if d(s, t) =
∑∞
i=0

|si−ti|
2i = 0.

3. As |si − ti| = |ti − si| for each i, it is clear that d(s, t) = d(t, s).

4. Let r, s, t ∈ Σ2. We know that |ri − si| ≤ |ri − ti| + |ti − si| for each i. As such d(r, s) ≤
d(r, t) + d(t, s).

As may be clear from our discussions of chaos and topological conjugacy, we will often want to
find an upper bound for d(s, t). The following theorem helps us to find such an upper bound fairly
easily.

Theorem 4.1.5. Let s, t ∈ Σ2. If si = ti for all i ∈ {0, 1, . . . , n}, then d(s, t) ≤ 1
2n .

Conversely, if d(s, t) < 1
2n , then si = ti for all i ∈ {0, 1, . . . , n}.

Proof. Suppose si = ti for all i ∈ {0, 1, . . . , n}. We see

d(s, t) =

n∑
i=0

|si − ti|
2i

+

∞∑
i=n+1

|si − ti|
2i

≤
∞∑

i=n+1

|si − ti|
2i

=
1

2n+1

∞∑
i=0

|si − ti|
2i

=
1

2n
.

We will prove the converse by contrapositive. Suppose that sj 6= tj for some j ≤ n. Then

d(s, t) ≥ 1

2j
≥ 1

2n
.

Thus if d(s, t) < 1
2n , then si = ti for all i ∈ {0, 1, . . . , n}.

4.1.2 The Shift Map

With all of this background information established, we can finally talk about the shift map.

Definition 4.1.6. The shift map σ : Σ2 → Σ2 is defined by

σ(s0s1s2 . . .) = (s1s2s3 . . .) .

Intuitively, the shift map just “shifts” every entry in the sequence one entry to the left and cuts
off the first entry.
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4.1.3 The Shift Map is Chaotic

By design, it is relatively easy to see that the shift map is chaotic even though we hardly know
anything about it.

Theorem 4.1.7. The map σ : Σ2 → Σ2 is chaotic.

Proof. We will show that the set of periodic points under σ, Per(σ), is dense in Σ2 by showing that
any point s ∈ Σ2 is a limit point of Per(σ), and therefore Σ2 ⊆ Per(σ).
Let s = (s0s1s2 . . .) ∈ Σ2 and let ε > 0. We know that there exists a positive integer N such that
1
2N

< ε.
Let τn = (s0s1 . . . sns0s1 . . . sns0 . . .) for each n. Clearly each τn is periodic of period n.
From our previous theorem, since for a given n τn and s agree in their first n+ 1 entries, we know
that

d(s, τn) ≤ 1

2n
.

Thus we see that if m ≥ N , then

d(s, τm) ≤ 1

2m
≤ 1

2N
< ε .

As such {τn} converges to s.
Turning our focus towards sensitive dependence, we consider a sequence s in Σ2 and an open set N
containing it. We know that there exists some ε > 0 such that Bd(s, ε) ⊆ N . Moreover, we know
that there exists some integer M such that 1

2M
< ε. Let r ∈ Bd(s, 1

2M
) with rm 6= sm for some

m > M + 1 (our previous theorem provides that so long as ri = si for i ∈ {0, . . . ,M + 1}, we are
guaranteed that d(s, r) < 1

2M+1 <
1

2M
).

We note that σm(s) = (smsm+1 . . .) and σm(r) = (rmrm+1 . . .).
As sm 6= rm, we know that

d(σm(s), σm(r)) ≥ 1

2
.

Finally, we will show that σ is topologically transitive by finding an element s′ of Σ2 such that
given two open sets U and V in Σ2, σn(s′) ∈ U and σm(s′) ∈ V where m ≥ n.
Consider the sequence

s′ = (0 1|00 01 10 11|000 001 . . . | . . .) .

We see that s′ consists of all possible strings of 0’s and 1’s of length 1, followed by all strings of
length 2, and so on. Let U and V be open sets containing points u and v, respectively. Since U
and V are open, there exist real numbers εu > 0 and εv > 0 such that

Bd(u, εu) ⊆ U and Bd(v, εv) ⊆ V .

Moreover, we know that there exist positive integers Nu and Nv such that 1
2Nu

< εu and 1
2Nv

< εv.
Given how we constructed s′, we know that there exists an integer Mu such that σMu(s′) agrees
with u in its first Nu+1 entries. As such

d(σMu(s′),u) ≤ 1

2Nu
< εu,
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so that σMu(s′) ∈ Bd(u, εu) ⊆ U .
Likewise, we know that there exists integer Mv > Mu such that σMv (s′) agrees with v in its first
Nv+1 entries. As such

d(σMv (s′),v) ≤ 1

2Nv
< εv,

so that σMv (s′) ∈ Bd(v, εv) ⊆ V .
Therefore

σMv (s′) ∈ σMv−Mu(U) ∩ V .

As in our discussion of the doubling map on the unit circle, we see that chaotic properties come
to the shift map fairly easily. It is for this very reason that we use it to show that other maps are
chaotic.

4.2 Logistic Maps

Recall that logistic maps are functions of the form Fµ(x) = µx(1−x). In the following few sections,
we will show that if µ > 2 +

√
5, then Fµ defined on a subset of [0, 1] and σ are topologically

conjugate, and, by extension, Fµ is chaotic.
In order to see this we have to discuss the subset of [0, 1] in question.
We will be exploring the set of elements whose orbits under Fµ do not leave [0, 1]. To start, we
have the following theorem:

Theorem 4.2.1. Suppose µ > 1. If x < 0, then limn→∞ Fnµ (x) = −∞, and if x > 1, then
limn→∞ Fnµ (x) = −∞.

Proof. We see that if x < 0, then µ(1 − x) > 1, so that Fµ(x) = µx(1 − x) < x. Therefore the
sequence {Fnµ (x)} is strictly decreasing. Clearly the sequence does not converge to a point y, for if
it did then the sequence {Fn+1

µ (x)} would converge to Fµ(y) < y. Therefore {Fnµ (x)} diverges to
−∞.
If x > 1, then Fµ(x) < 0. The argument that we just used thus applies to Fµ(x) and {Fn+1

µ (x)}
diverges to −∞.

We find some interesting behavior when µ > 4. We will denote I = [0, 1] for convenience. We find
that F ′µ(x) = µ− 2µx, so that Fµ attains its maximum at 1

2 . We note that Fµ( 1
2 ) = µ 1

2 (1− 1
2 ) = µ

4
is that maximum. As such, the maximum value of Fµ on I is greater than 1 when µ > 4.
Since Fµ is continuous at 1

2 , we know that there exists some open interval A0 centered at 1
2 , such

that if x ∈ A0, then Fµ(x) > 1. This means that for any point x ∈ A0, the orbit of x leaves I after
a single iteration of Fµ and from there tends inexorably towards −∞.
Let A1 = {x ∈ I : Fµ(x) ∈ A0}. We see that if x ∈ A1, then F 2

µ(x) > 1, so that the orbit of x tends
towards −∞ from there. The following diagram depicts A0 and A1 for F5:
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(1, 0)
A1A0A1

(0, 1)

With this basic idea in place, we can define

An = {x ∈ I : Fnµ (x) ∈ A0}

for any positive integer n. We recognize that An consists of all points in I for which F iµ(x) ∈ I if
i ≤ n, but Fn+1

µ (x) /∈ I. Clearly
⋃∞
n=0An consists of every point in I which eventually escapes I

and tends towards −∞.
We will thus focus on the set I \

⋃∞
n=0An which we will denote Λ.

The set Λ has one key quality which helps us show that Fµ is topologically conjugate to the shift
map.

Definition 4.2.2. A set is totally disconnected if it contains no intervals.

Theorem 4.2.3. If µ > 2 +
√

5, then Λ is totally disconnected.

Proof. We need |F ′µ(x)| > 1 for all x ∈ I \ A0. We will not bother to prove it here, but Fµ has

this property if µ > 2 +
√

5. Nevertheless, as this is the case, we know that there exists some real
number r such that |F ′µ(x)| > r > 1 for all x ∈ Λ as Λ ⊂ I \A0. As we showed in our discussion of
hyperbolicity, this implies that |(Fnµ )′(x)| > rn. Now suppose that Λ contains some interval [x, y].
Then |(Fnµ )′(t)| > rn for all t ∈ [x, y]. We know that there exists a positive integer N such that

rN |x − y| > 1. By the Mean Value Theorem, we know that |FN (x) − FN (y)| ≥ rN |x − y| > 1,
which implies that at least one of FN (x) or FN (y) is not contained in I, contradicting the fact that
x and y are in Λ. Thus Λ does not contain any intervals.

To further understand the concept of a totally disconnected set, we look at perhaps the most
familiar totally disconnected set: the Cantor Middle Third set. The Cantor set is constructed as fol-
lows: Start with the interval [0, 1]; remove the open interval (1/3, 2/3), that being the middle third;
remove the middle thirds of two intervals that remain; repeat. The following diagram illustrates
how we construct the set:
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Note that we construct Λ in much the same way that we construct the Cantor set: by removing
open intervals from the middles of larger intervals.

4.3 Building our Topological Conjugacy: The Itinerary

With strong understandings of σ and Fµ we can now connect the two maps with a topological
conjugacy: the itinerary.

Definition 4.3.1. The itinerary of a point x ∈ Λ is a sequence S(x) = s0s1s2 . . . where sj = 0 if
F jµ(x) ∈ I0 and sj = 1 if Fµj(x) ∈ I1.

(1, 0)
I1A0I0

(0, 1)

We recall that points in Λ never escape I. As Λ ⊆ I0 ∪ I1 this means that we can follow the
orbit of any point x ∈ Λ as it moves between I0 and I1. As the name suggests, the itinerary could
thus be thought of as a way to record where the orbit of x ∈ Λ goes using a sequence S(x) ∈ Σ2.

4.4 S : Λ→ Σ2 is a Topological Conjugacy

Theorem 4.4.1. S : Λ→ Σ2 is a homeomorphism.

Proof. As the task of showing that a function is a homeomorphism entails many smaller arguments,
we will break this section up into more manageable pieces.

1. We will start by using a contradiction to prove that S is one-to-one.
Let x, y ∈ Λ, where x 6= y and S(x) = S(y). If this is the case, then for each integer n, Fnµ (x)

and Fnµ (y) are both in either I0 or I1. This means that both are on the same side of 1
2 . As

such Fµ is monotonic on the interval between Fnµ (x) and Fnµ (y).
Therefore, if z is between x and y, then Fµ(z) is between Fµ(x) and Fµ(y), F 2

µ(z) is between
F 2µ(x) and F 2µ(y), and so on. Thus the orbit of z remains in I for all n, making z an
element of Λ. Since z is a generic element of the interval between x and y, this implies that
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Λ contains the interval between x and y. This contradicts that Λ is totally disconnected.

2. We will now show that S is onto.
Let s = (s0s1s2 . . .). We want to find an point x ∈ Λ such that S(x) = s.
As one might expect, given a closed interval J ⊆ I we might want to talk about the preimage
of J and more generally about the set

F−nµ (J) = {x ∈ I : Fnµ (x) ∈ J},

for each integer n. We note that as J is a closed interval, its preimage F−1µ (J) must have
components in I0 and I1 which are themselves closed intervals as Fµ is symmetrical. For ease
of notation, we define

I(s0s1...sn) = {x ∈ I : x ∈ Is0 , Fµ(x) ∈ Is1 , . . . , Fnµ (x) ∈ Isn}
= Is0 ∩ F−1µ (Is1) ∩ . . . ∩ F−nµ (Isn) .

The following graph depicts the four possibilities for I(s0s1):

(1, 0)
I10I11I01I00

(0, 1)

We will use proof by induction to show that the I(s0s1s2...sn) form a nested sequence of
nonempty closed intervals. We note that

I(s0s1s2...sn) = Is0 ∩ F−1µ (I(s1s2...sn)) .

By our induction hypothesis, I(s1s2...sn) is nonempty and closed. As we showed above,
F−1µ (I(s1s2...sn)) consists of two closed intervals, one in each of I0 and I1. Thus Is0 ∩
F−1µ (I(s1s2...sn)) is a single closed interval, as Is0 is really one of I0 or I1. These intervals
are nested because

I(s0s1s2...sn) = I(s0s1s2...sn−1) ∩ F
−n
µ (I(s1s2...sn)) ⊂ I(s0s1s2...sn−1) .
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Thus we find that
⋂
n≥0 I(s0s1s2...sn) is nonempty.

From this we can conclude that if x ∈
⋂
n≥0 I(s0s1s2...sn) then x ∈ Is0 , Fµ(x) ∈ Is1 , and so on

for any integer n. As such, S(x) = (s0s1 . . .). Since s is a generic point in Σ2, this implies
that S is onto.
It is important to note here that since S is one to one,

⋂
n≥0 I(s0s1s2...sn) = {x}.

3. To show that S is continuous let x ∈ Λ, let S(x) = (s0s1s2 . . .), and let ε > 0. We know that
there exists a positive integer N such that 1

2N
< ε. Consider all possible sequences (t0t1 . . . tN )

and the associated intervals I(t0t1...tN ). We note that all of these intervals are disjoint and Λ
is a subset of their union. We find combinatorially that there are 2N+1 such intervals and
note that I(s0s1s2...sN ) is among them. Thus we may find a δ > 0 such that if |x− y| < δ and
y ∈ Λ, then y ∈ I(s0s1s2...sN ). As such, S(x) and S(y) agree in their first N + 1 terms, so that,
by our earlier theorem,

d(S(x), S(y)) ≤ 1

2N
< ε .

4. Finally, we want to show that S−1 is continuous.
Let ε > 0. Consider a sequence s = (s0s1 . . .). Since the I(s0s1...sn) form a nested sequence
of intervals that converges to {S−1(s)}, we know that there exists some integer N such that
I(s0s1...sN ) ⊂ (S−1(s)− ε, S−1(s) + ε).

Let r be a sequence where d(s, r) < 1
2N

. We know that r agrees with s in its first N +1 terms.
As such S−1(r) ∈ I(s0s1...sN ). Therefore |S−1(s)− S−1(r)| < ε.

Theorem 4.4.2. S ◦ Fµ = σ ◦ S.

Proof. Recall that
F−nµ (J) = {x ∈ I : Fnµ (x) ∈ J},

and that
Is0s1...sn = Is0 ∩ F−1µ (Is1) ∩ . . . ∩ F−nµ (Isn) .

Since S is one-to-one we know that
⋂
n≥0 Is0s1...sn consists of a single point in Λ which we will call

x.
Since

Is0s1...sn = Is0 ∩ F−1µ (Is1) ∩ . . . ∩ F−nµ (Isn)

and Fµ(Is0) = I, we see that

Fµ(Is0s1...sn) = Is1 ∩ F−1µ (Is2) ∩ . . . ∩ F−n+1
µ (Isn) = Is1s2...sn .

Thus

S ◦ Fµ(x) = S ◦ Fµ

( ∞⋂
n=0

Is0s1...sn

)

= S

( ∞⋂
n=1

Is1...sn

)
= s1s2s3 . . .

= σ ◦ S(x) .
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4.5 Chaotic Logistic Maps

Thus our big result falls out:

Theorem 4.5.1. A logisitic map Fµ with µ > 2 +
√

5 is chaotic.

Proof. The shift map σ is chaotic. Any logistic map Fµ with µ > 2 +
√

5 is topologically conjugate
with σ. As σ is chaotic, so too is Fµ.

4.6 F4 : A Special Case

Since we started by looking at the chaotic behavior of F4(x) = 4x(1 − x)(simply called g at the
time), it behooves us to prove that F4 is actually chaotic. Unfortunately, the itinerary does not
serve as a topological conjugacy between F4 and the shift map, as points do not escape I under F4

(it is for this very reason that I used F4 for the pictures in the first place). Instead, we must prove
this one from the ground up, albeit with a few mappings very similar to conjugacies. Given the
similarities of the following proof to several previous proofs, we will not dwell on the details for too
long.

Theorem 4.6.1. F4 is chaotic.

Proof. Recall that the function g(θ) = 2θ defined on the unit circle, denoted S1, is chaotic. Define
h1 : S1 → [−1, 1] by h1(θ) = cos(θ) and define q : [−1, 1]→ [−1, 1] by q(x) = 2x2 − 1. We see that

(h1 ◦ g)(θ) = cos(2θ)

= 2 cos(θ)2 − 1

= (q ◦ h1)(θ) .

Define h2 : [−1, 1]→ [0, 1] by h2(t) = 1
2 (1− t), we see that

(F4 ◦ h2)(t) = 4

(
1

2
(1− t)

)(
1−

(
1

2
(1− t)

))
= 4

(
1

2
(1− t)

)(
1

2
(1 + t)

)
= (1− t)(1 + t)

= 1− t2

=
1

2
(2− 2t2)

=
1

2
(1− (2t2 − 1))

= (h2 ◦ q)(t) .

This gives us:
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S1 S1

[−1, 1] [−1, 1]

[0, 1] [0, 1]

g

q

F4

h1 h1

h2 h2

We will start by showing that F4 is topologically transitive.
We note that as h1 and h2 are both surjective and continuous, (h2 ◦ h1) is also surjective and
continuous. As such, if U and V are two open intervals in [0, 1], we can find open arcs U ′ and V ′ in
S1 such that (h2 ◦ h1)(U ′) = U and (h2 ◦ h1)(V ′) = V . As g is topologically transitive there exists
a positive integer N such that gN (U ′) ∩ V ′ 6= ∅. Therefore we see that

FN4 (U) = (FN4 ◦ h2 ◦ h1)(U ′)

= (h2 ◦ qN ◦ h1)(U ′)

= (h2 ◦ h1 ◦ gN )(U ′) .

Thus FN4 (U) ∩ V = (h2 ◦ h1)(gN (U ′) ∩ V ′), so that FN4 (U) ∩ V 6= ∅.
To see that f has sensitive dependence on initial conditions, let x ∈ [0, 1] and let U be an open
set containing x. We know that the preimage of U under (h2 ◦ h1), let’s call it U ′, is an open set.
Recall from our proof that g is chaotic that since U ′ is an open set there exists a positive integer
M such that gM (U ′) covers S1. Therefore FM4 (U) = (h2 ◦h1 ◦ gM )(U ′) covers [0, 1]. Thus we know
that there certainly exists some point y ∈ U such that |FM4 (x)− FM4 (y)| ≥ 1

2 .
To show that periodic points are dense under F4, we will first show that (h2 ◦ h1) maps periodic
points to periodic points. Let p ∈ be a periodic point of period n under g. Then gn(x) = x. We
see that

(h2 ◦ h1)(p) = (h2 ◦ h1 ◦ gn)(p) = (Fn4 ◦ h2 ◦ h1)(p) .

Therefore (h2 ◦ h1)(p) is a periodic point of period n under F4 by definition.
Therefore if we pick an open interval U in [0, 1], we know that its preimage U ′, also an open set,
will contain some periodic point p. Thus U contains the periodic point (h2 ◦ h1)(p).
As such, periodic points are dense under F4.

Note that (h2 ◦ h1) : S1 → [0, 1] is not a topological conjugacy, as h1 is a two-to-one function at
most points. Nevertheless, the method we used to show that F4 is chaotic relies on the same basic
principles as our method of using a topological conjugacy.
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Conclusion: Seeing Order

Thus we have come full circle, showing why our two original functions F2 and F4 have such dras-
tically different behavior. Like Edward Lorenz, we started by looking at some alarming data and
tried to unravel why it was occurring. While we returned to the behavior of logistic maps a number
of times, along the way we also developed a vocabulary for describing discrete dynamical systems
in general, rigorously defined chaos, and constructed a powerful tool for proving that dynamical
systems are chaotic. In the end, we saw that chaotic systems have a very particular kind of order
underlying their seemingly disorderly behavior: their very nature makes any two sets of distinct
initial conditions lead to drastically different outcomes, and causes the orbits of points travel all
over their domains.
As an application-driven field, chaos theory invites us to seek new patterns to unravel. Weather
forecasting, for instance, has improved dramatically thanks to developments in chaos theory. Chaos
might be hiding where we never expect to find it; perhaps we just need to run a few simulations to
start our search.

Further Research

It is my hope that a motivated calculus student could read this paper, albeit with frequent visits to
the Appendix. Perhaps it will spark their interest for their own eventual senior project. I feel that
using the itinerary as a topological conjugacy for a wider variety of systems could be a particularly
ripe topic. Additionally, given how much work I put into generalizing this paper’s results to metric
spaces (unlike any of the sources I was drawing on), I would hope that future students could find
other chaotic maps defined on strange metric spaces.
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Appendix: Necessary Background for Chaos

This appendix is intended as a primer on some basic concepts about metric spaces and topology
which we require to discuss chaos. As it is intended for readers entirely unfamiliar with these ideas,
this appendix features many examples explained at length. Many of the following definitions have
been adapted from Gordon [5].

Metric Spaces

Before we can discuss whether a map over a space is chaotic we need to have a means of measuring
the distance between two elements in that space. To that end we have the concept of a metric
space:

Definition 4.6.2. (Gordon [5])
A metric space (X, d) consists of a set X and a function d : X ×X → R, called a metric, that
satisfies the following four properties.

1. d(x, y) ≥ 0 for all x, y ∈ X.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x, y ∈ X.

4. d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.

Example 4.6.3. Perhaps the most familiar metric space is (R, d1) where R denotes the set of real
numbers and d1(x, y) = |x − y|, where x and y are real numbers. Let us verify that d1(x, y) is a
metric by checking each property:

1. We know that |t| ≥ 0 for any real number t, so clearly d1(x, y) = |x− y| ≥ 0 for all x, y ∈ R.

2. We recall that |0| = 0, so that d1(x, x) = |x − x| = 0. Likewise, we recall that |t| > 0 when
t 6= 0, so that if x 6= y then d1(x, y) = |x− y| > 0.

3. We know that |x− y| = |y − x| for all x, y ∈ R.

4. We know that |a + b| ≤ |a| + |b| for all a, b ∈ R. As such, |x − y| ≤ |x − z| + |z − y| for all
x, y, z ∈ R.

Topology in a Metric Space

While thus far we have focused on how our maps act on individual points in a dynamical system,
we also need a firm understanding of how our maps act on sets of points. Before we can do this,
however, we need to develop a vocabulary for discussing different types of sets.

Definition 4.6.4. (Gordon [5])
Let (X, d) be a metric space.
Let v ∈ X and let r > 0. The open ball centered at v with radius r is defined by

Bd(v, r) = {x ∈ X : d(x, v) < r} .
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Example 4.6.5. Consider the familiar metric space (R, d1) where d1(x, y) = |x−y| for all x, y ∈ R.
We see that Bd1(0, 1) = (−1, 1).

Example 4.6.6. Consider the metric space (R2, d2) where d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 for
all points x = (x1, x2) and y = (y1, y2) in R2. We can see that Bd2((0, 0), 1) is the interior of the cir-
cle of radius 1 centered at the origin. In the following image we can see that d2((0, 0), (x1, x2)) < 1,
so that (x1, x2) ∈ Bd1((0, 0), 1).

(0, 0) (1, 0)
x

(0, 1)

y

(x1, x2)

Definition 4.6.7. (Gordon [5])
Let (X, d) be a metric space, let E ⊆ X, and let x ∈ X.

1. The point x is an interior point of E if there exists an r > 0 such that Bd(x, r) ⊆ E.

2. The point x is a limit point of E if for each r > 0, the set E ∩ Bd(x, r) contains a point of
E other than x.
An equivalent definition is that x is a limit point of E if there exists a sequence in E \ {x}
that converges to x.

3. The set E is open in (X, d) if each point of E is an interior point of E.

4. The set E is closed in (X, d) if E contains all of its limit points.

Example 4.6.8. Consider the metric space (R, d1). Let E = (0, 1). We see that .5 is an interior
point of E as Bd1(.5, .25) = (.5− .25, .5 + .25) ⊆ (0, 1).

Example 4.6.9. Consider the metric space (R, d1). Let G = { 1n : n ∈ Z+}. We will show that 0
is a limit point of G.
Let ε > 0. We note that there exists a positive integer N such that 1

N < ε. Therefore 1
N ∈ Bd1(0, ε).

Thus for every ε > 0, Bd1(0, ε) contains a point in E other than 0.
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Example 4.6.10. We will show that (a, b), where a, b ∈ R, is an open set in (R, d1).
Let x ∈ (a, b). Since a < x < b, we know that b− x > 0 and x− a > 0. Let r = min{b− x, x− a}.
We see that Bd1(x, r) = (x− r, x+ r) ⊆ (a, b).

Example 4.6.11. As a counterexample, we will show that (0, 1] is not an open as 1 is not an
interior point of (0, 1]
Let ε > 0. Clearly 1 + ε

2 ∈ Bd1(x, ε). We note, however, that 1 + ε
2 > 1, so that 1 + ε

2 /∈ (0, 1].

Example 4.6.12. We will show that [a, b], where a, b ∈ R, is a closed set in (R, d1).
Let x /∈ [a, b]. We want to show that x is not a limit point of [a, b].
Since x /∈ [a, b], either x < a or b < x. Suppose that x < a. Let ε = a−x and consider the open ball
Bd1(x, ε) = (x− ε, x+ ε). Let y ∈ Bd1(x, ε). We know that y < x+ ε = x+ (a− x) = a. Therefore
y /∈ [a, b]. As such, the open ball Bd1(x, ε) does not contain any point in [a, b], meaning that y is
clearly not a limit point of [a, b].
We can see rather easily that a similar argument applies if b < x, so we will not bother with that
case here.
Thus [a, b] contains all of its limit points, and is therefore closed.

Example 4.6.13. As a counterexample, we will show that the set G = { 1n : n ∈ Z+} is not closed.
As we showed above, 0 is a limit point of G. We see, however, that 0 /∈ G.

In order to test your comfort with these terms, attempt to prove the following helpful theorem.

Theorem 4.6.14. Any open ball is an open set.

As we will be discussing mappings of open and closed sets, it is helpful to know the relationship
between the two in a generic metric space.

Theorem 4.6.15. Let (X, d) be a metric space and let E ⊆ X.

1. The set E is open in (X, d) if and only if X \ E is closed in (X, d).

2. The set E is closed in (X, d) if and only if X \ E is open in (X, d).

Proof. We will start by showing that if E is open in (X, d), then X \ E is closed in (X, d).
Let x ∈ E. As x is necessarily an interior point of E we know that there exists some r > 0 such
that Bd(x, r) ⊆ E. This implies that Bd(x, r) ∩X \E = ∅. Therefore x is clearly not a limit point
of X \ E. Thus X \ E must contain all of its limit points and be closed.
Moving to showing that if X \ E is closed, then E is open, suppose that x is a point in E that is
not an interior point of E. This means that for every r > 0, Bd(x, r)∩X \E 6= ∅. Since x /∈ X \E,
this means that for every r > 0, Bd(x, r) contains a point in X \E other than x. Thus x is a limit
point of X \ E. As X \ E is closed, however, this means that x ∈ X \ E, a contradiction. Thus
every point in E is an interior point of E, making E open.
The proof of the second statement follows immediately from the first statement and the fact that
X \ (X \ E) = E.

Density

Definition 4.6.16. (Gordon [5])
Let (X, d) be a metric space and let E ⊆ X.
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1. The derived set of E, denoted E′, is the set of all limit points of E.

2. The closure of E, denoted E, is the set E ∪ E′.

Example 4.6.17. Consider the metric space (R, d1).
If E = (a, b), then E′ = [a, b] and E = [a, b].

Example 4.6.18. Consider the metric space (R, d1).
If G = { 1n : n ∈ Z+}, then G′ = {0} and G = { 1n : n ∈ Z+} ∪ {0}.

Definition 4.6.19. (Trench [6]) A set U is dense in a set S if U ⊆ S ⊆ U .

While this definition is certainly intuitive, there are easier ways of showing that a set U is dense
in a set S. To this end we have the following theorem:

Theorem 4.6.20. Let (X, d) be a metric space and let S ⊆ X.
If each open ball that intersects S contains a point in U , then U is dense in S.

Proof. Suppose that every open ball that intersects S contains a point in U . We want to show that
every point in S is either a point in U or a limit point of U .
Let s ∈ S. If s is a point in U , then we’re finished, so suppose that s is not a point in U . Consider
a sequence {εn}, where each εn > 0, that converges to 0. As every open which intersects S contains
a point in U , for each integer n there exists an xn ∈ U such that xn ∈ Bd(s, εn) ∩ S. Consider,
then, the sequence {xn}. Let ε > 0. Since {εn} converges to 0 there exists a positive integer N
such that εn < ε if n ≥ N . Therefore d(xn, s) < εn < ε if n ≥ N . As such, s is the limit point of
a sequence of points in U . Therefore every point in S is either a point in U or a limit point of U ,
that is U ⊆ S ⊆ U .

As an example, we have the following theorem and proof adapted from Trench [6].

Theorem 4.6.21 (Trench [6]). The rational numbers are dense in the reals.

Proof. Let a and b be two real numbers. We want to show that there exists a rational number
p/q ∈ (a, b).
By the Archimedean Property, we know that there exists a positive integer q such that q(b−a) > 1.
Let p be the smallest integer such that p > qa. Then p− 1 ≤ qa, so that

qa < p ≤ qa+ 1.

As q(b− a) > 1, clearly
qa < p < qa+ q(b− a) = qb.

Thus
a < p/q < b .
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Continuity

Finally, it is helpful to develop a vocabulary for describing how functions map points which are
close together to other points which are close together. To this end, we formulate a generic concept
of continuity in a metric space.

Definition 4.6.22. Let (X, d1) and (Y, d2) be metric spaces.

1. A function f : X → Y is continuous at x0 ∈ X if for each ε > 0 there exists a δ > 0 such
that f(x) ∈ Bd2(f(x0), ε) for all x ∈ Bd1(x0, δ).

2. A function f : X → Y is continuous on X if it is continuous at each point of X.

We can see fairly easily how this concept carries over to (R, d1). We may, however, want a more
interesting example. As such, we will show that the shift map σ : Σ2 → Σ2 (see Section 4.1.2) is
continuous.

Theorem 4.6.23. The shift map σ : Σ2 → Σ2 is continuous.

Proof. Let ε > 0 and s = (s0s1s2 . . .). We know that there exists a positive integer N such that
1
2N

< ε. Let δ = 1
2N+1 . If t = (t0t1t2 . . .) is a sequence in Σ2. such that d(s, t) < δ, then si = ti for

i ≤ N + 1. Therefore, the ith entries of σ(s) and σ(t) agree for i ≤ N , so that

d(σ(s), σ(t)) ≤ 1

2N
< ε.
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