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1 Abstract

A Graeco-Latin Square of order n is an n×n array of unique ordered pairs whose entries
are numbers between 1 and n such that every number appears in each row and column once
for each coordinate of the ordered pair [8]. In 1782, Euler predicts that Graeco-Latin Squares
of order n exist if and only if n ≥ 3 and n 6≡ 2 (mod 4). This prediction, known as Euler’s
conjecture, is eventually proved almost entirely wrong in the following 180 years. In this
paper we will explore the mathematics and history behind the conjecture.

2 Introduction

Leonhard Euler (1707-83), a Swiss mathematician, is well known for his contributions
to the field of mathematics as well as to physics. Most students who have taken a math
course at the calculus level or above have heard of him, and he is considered one of the
most prolific mathematicians to this day. He is perhaps most famous for producing Euler’s
Identity eiπ +1 = 0, which uses the constant e that is also referred to as Euler’s number [10].
Much less famous is Euler’s work with Graeco-Latin Squares, which are also known as Euler
Squares as Euler is the one who introduces them. Most research before Euler’s deals with
Latin Squares, which can be used to construct Graeco-Latin Squares if the Latin Squares
are orthogonal. We will save the details of this relationship for a later section.

In this paper we will first go over some of the properties of Latin Squares in Section 3.
Once we have built up sufficient background, we will begin our investigation of what sizes
of Graeco-Latin Squares exist in Section 4. After proving some preliminary results we will
introduce Euler’s Conjecture that a Graeco-Latin Square of order n exists if and only if
n ≥ 3 and n 6≡ 2 (mod 4). In Section 5 we will cover the history of how this conjecture
is gradually resolved over the course of almost 180 years thanks to the collective work of
several mathematicians.

3 Latin Squares and MOLS

A Latin Square is an n× n arrangement of integers 1 through n such that no number
occurs more than once in any row or column. An n× n Latin Square is also called a Latin
Square of order n [3]. A standard Sudoku puzzle is an example of a 9 × 9 Latin Square,
though a Sudoku puzzle has the additional restriction that the nine 3 × 3 subsquares also
contain the digits 1 through 9.

We start this section with a demonstration of how to use Latin Squares to reduce the
bias from extraneous variables in an experiment, as the focus is on the statistical analysis
rather than the Latin Square itself. Once we have worked through this application, we will
begin to discuss the more complicated properties of Latin Squares.

3.1 Growing Strawberries

Suppose a fertilizer company wants to compare five different varieties of strawberry fertil-
izer, labelled as fertilizer A,B,C,D, and E. They want to test the fertilizers using five different
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tracts of land (1,2,3,4 and 5) and they want to test the fertilizers over five growing seasons
(I,II,III,IV,and V). An easy way this experiment could be arranged is given by Table 3.1.
But as is often the case, the easiest way is not the best way. If the experiment is carried
out according to Table 3.1, the individual differences between the growing locations could
result in a huge bias in the outcome. There would be a similar problem if we assigned each
fertilizer to one growing season and used it in all growing locations during that season. The
presence of bias in the outcome is highly undesirable, so we need to take care in our assign-
ment of fertilizer. If we use a Latin Square arrangement for the five fertilizer varieties such
as the one in Table 3.2, the experiment is minimally affected by differences between growing
seasons and locations since each fertilizer is used during every growing season and is used at
all locations exactly once. [16]

Table 3.1: A poor assignment of fertilizers [16]

Table 3.2: A good assignment of fertilizers [16]

Let’s say the company decides to use the fertilizer schedule described in Table 3.2. Let
the numbers next to each letter represent the measured value of our variable of interest, say,
the number of berries produced (in thousands).

Before we begin analysis of the results, we need to normalize the results by subtracting
the average value from each entry so the average of the data is now 0. The result is the
matrix (n) depicted in Table 3.3. Our next task is to split (n) into four components (all
of which are 5 × 5 matrices) to isolate the effects of the different growing seasons, growing
locations, and fertilizer varieties. The first component is a matrix where each entry is the
row average in (n) of the row containing that entry. The second component has the column
average in (n) for each entry, and the third component has the average in (n) of each type
of fertilizer (or the average of all values with the same background color). To see what these
look like, refer to (a),(b),and (c) respectively from Figure 3.1[9].

The last component is the matrix made from subtracting the cooresponding entries of
(a),(b),and (c) from (n). The result is depicted as (d) in Figure 3.1. Through this process, we
have isolated the differences between the fertilizers and the errors that cannot be accounted
for by the growing season or location, represented by (c) and (d), respectively. In this
experiment we assume the null hypothesis, that is, we assume that the variety of fertilizer
has no impact on the number of berries produced. Under this hypothesis, the data in (c)
and (d) should follow a normal distribution. [9]
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Table 3.3: The normalized matrix (n) [9]

(a) (b) (c) (d)

Figure 3.1: The four components of the original normalized matrix (n), with the row and
column labels omitted. [9]

To analyze this data, we need the sample variances of (c) and (d), calculated by dividing
the sum of the squares of the entries by the number of degrees of freedom. The sample
variance of (c) is 82.5, while the sample variance of (d) is only 10.66. The ratio of two
sample variances of a normal distribution follow the Fn,k distribution, or the “Variance
Ratio” distribution, where n and k are the degrees of freedom of the two samples ((c) and
(d)). Under this distribution, we find that the probability of observing a sample variance
ratio greater than or equal to 82.5/10.66=7.74 is only 0.28%. This means that under our
null hypothesis, the probability of observing a ratio of the sample variances of (c) and (d)
at least as high as what we observed is 0.28% [9]. Therefore it is highly likely that the null
hypothesis is incorrect and that there is at least some difference in berry growth based on the
type of fertilizer. However, further analysis would be needed to determine the magnitude of
the differences between fertilizers; our work to this point has only shown that (it is extremely
likely that) some difference exists.

3.2 MOLS

Now that we’ve seen an application of Latin Squares, we will move on to the more
theoretical properties of Latin Squares, starting with orthogonality.

Definition 3.1. Consider an n × n Latin Square superimposed onto another n × n Latin
Square, creating an ordered pair for each entry of the new n × n matrix. The two original
Latin Squares are said to be mutually orthogonal Latin Squares (MOLS) if no ordered pair
of the superimposed matrix appears more than once. Three or more Latin Squares are all
mutually orthogonal if the superimposed matrix of any two Latin Squares in the set contains
all unique ordered pairs. Two or more MOLS can also be referred to as orthogonal mates.
[3]

For example, given the the two 3× 3 Latin Squares
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L1 =

 1 2 3
2 3 1
3 1 2

 and L2 =

 1 2 3
3 1 2
2 3 1

 ,

the superimposed matrix would be (1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

 .

We can see that every ordered pair occurs exactly once, making L1 and L2 MOLS of order
3.

3.3 Transversals

Another relevant concept that goes with MOLS and orthogonality is the transversal of a
Latin Square, defined below.

Definition 3.2. A transversal of a given n× n Latin Square is a set of n entries such that
each row and column has one entry and the set of entries contains the numbers 1 through n.
[16]

For example, for the Latin Square  1 2 3
2 3 1
3 1 2

 ,

the bolded set of entries form a transversal, as do the set of underlined entries, as do the set
of remaining entries. This brings us to an important theorem regarding transversals.

Theorem 3.1. A Latin Square of order n ≥ 2 has an orthogonal mate if and only if it
contains n disjoint transversals. [16]

Proof. We will only prove the backward direction, as the forward direction is essentially the
same proof in the reverse order. Assume an n× n Latin Square has n disjoint transversals.
Assign each transversal a number between 1 and n, then change every entry in that transver-
sal to that number [16]. For instance, if we apply this procedure to the earlier Latin Square
example, the result is  1 2 3

2 3 1
3 1 2

 −→

 1 2 3
3 1 2
2 3 1

 .

This result will always be a new Latin Square, as every row and column contains one entry
of each transversal (and hence every number from 1 to n). We will now prove that this new
Latin Square and the original Latin Square are orthogonal mates.

Let ti denote the set of positions of entries from the transversal whose entries were all
changed to i to create the new Latin Square. Next we superimpose the two Latin Squares to
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create ordered pairs letting the first coordinate refer to the entry in the new Latin Square and
the second to the original Latin Square. Consider the ordered pairs in ti: (i, 1), (i, 2), ..., (i, n)
(though not necessarily in that order). Note that each of these ordered pairs will differ from
one another by the second coordinate. By design they will be the only ordered pairs with
an i as the first coordinate, so they will also be different from all other ordered pairs in
the matrix. The same logic can be applied to all t1...tn, which means that all entries of
the superimposed matrix will be unique. Therefore the new and original Latin Squares are
orthogonal mates.

An additional perk we get out of this proof is a method for finding orthogonal mates.
For people like me who don’t want to create MOLS candidates and check that each of the
ordered pairs is unique, only to find a duplicate pair, it can be easier to find n disjoint
transversals and produce an orthogonal mate from there.

Another note worth mentioning is that Theorem 3.1 did not originally require that n ≥ 2.
I added this condition, as without it the case where n = 1 becomes ambiguous. This is
because there is only one Latin Square of order 1, the Latin Square (1), so there is no possible
orthogonal mate. However, the arrangement (1) is itself a transversal so according to the
theorem it has an orthogonal mate, itself (which is not allowed). This led me to question
why the multiple sources I read that used this theorem did not include this condition, so I
have decided to add the condition to Theorem 3.1, as well as to Definition 3.3, which also
uses transversals.

While we’re on the topic of trivial cases, we’ll look at the other trivial case, when n = 2.
Latin Squares of order 2 also don’t have an orthogonal mate, as there are only two,(

1 2
2 1

)
and

(
2 1
1 2

)
,

and they clearly aren’t mutually orthogonal. [3]
We can also refer to Latin Squares of order 1 or 2 as bachelor Latin Squares, defined

below. I’ve also included the definition of monogamous Latin Squares, as both definitions
pertain to MOLS.

Definition 3.3. A bachelor Latin Square is a Latin Square with no orthogonal mate. An
alternative definition is a Latin Square that cannot be partitioned into disjoint transversals
(for n ≥ 2) [18]. See Figure 3.2 for an example. [6]

1 0 2 3 4
0 2 1 4 3
2 3 4 0 1
3 4 0 1 2
4 1 3 2 0

Figure 3.2: A bachelor Latin Square of order 5 [19]

Definition 3.4. A monogamous Latin Square has an orthogonal mate but is never in a set
of three MOLS. [6]
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I was surprised that these Latin Squares are categorized based on their romantic relation-
ship tendencies, though I should have taken the term “orthogonal mates” as a hint to this
possible eventuality. Admittedly, this paper only uses the term “bachelor Latin Square,”
but I felt that monogamous Latin Squares should be introduced together with the bachelors
so I included it.

3.4 How Many Orthogonal Mates Can a Latin Square Have?

Now that we understand the basics of orthogonality and MOLS, we can begin to explore
the number of Latin Squares that can be mutually orthogonal, starting with the upper
bound.

Theorem 3.2. There can be at most n− 1 Latin Squares of size n in a set of MOLS. [3]

Proof. Consider an arbitrarily large set of n× n Latin Squares that are potentially MOLS.
Without loss of generality, assume the first row of each Latin Square is 1, 2, ..., n. This means
that the ordered pairs in the first row of the superimposed matrix of any two of the Latin
Squares has the form (x, x), where x = 1, 2, ..., n. Next, we’ll examine the first entry of the
second row. This entry can’t be a 1 as that would mean the matrix is not a Latin Square. In
addition, no two MOLS candidates can have the same value for this entry as that would make
another ordered pair of the form (x, x), so the two Latin Squares would not be orthogonal.
This means that each Latin Square in the set of MOLS must have a different element for
the first entry of the second row and that entry must not be 1, leaving n − 1 options and
therefore a maximum of n− 1 Latin Squares can be MOLS. [3]

After establishing this upper bound for the number of MOLS, the next course of action
is exploring the possibility of achieving this upper bound and what conditions might be
necessary. We will denote the maximum number of MOLS of size n as N(n). To clarify, a
set of n − 1 MOLS of size n does not exist for all n values, so N(n) ≤ n − 1 is the largest
number of MOLS of size n that exist. To start our exploration of N(n) we’ll look at prime
numbers.

Theorem 3.3. A set of n− 1 MOLS exists if n is a prime number. That is, N(n) = n− 1
if n is prime. [16]

Proof. We will prove this by constructing a set of p−1 MOLS of size p, where p is any prime
number. Instead of using the numbers 1 through p, we will use the numbers 0 through p− 1
as the element names. To follow along this process with an example, refer to Figure 3.3.
We’ll start by putting the numbers 0 through p − 1 in a row above a p × p grid such that
there is one number above each column. For simplicity, we will assume they are in the order
0, 1, ..., p− 1. Repeat this procedure for the rows, so there is an extra column to the left of
the grid containing the numbers 0, 1, ..., p− 1.

Next, let each entry bij of the p × p grid be equal to ax + y (mod p), where a = 1, x
equals the number on the ith row in the column left of the grid, and y equals the number in
the jth column of the row above the grid [16]. This will produce a Latin Square: for each
row, the entries are the y values 0, 1, 2, ..., p− 1 shifted by a constant ax (then calculated in
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mod p), so each entry is still unique. The column entries are the values 0, a, 2a, ..., (p− 1)a
all shifted by a constant y, so the entries are all distinct if and only if 0, a, 2a, ..., (p − 1)a
(mod p) are distinct. From the properties of modular arithmetic, we know that ab ≡ ac
(mod p) implies that either a ≡ 0 or b ≡ c (mod p). By design a 6≡ 0 (mod p) and for any
b, c ∈ {0, 1, ...., p − 1} and b 6= c, b 6≡ c (mod p). Therefore the 0, a, 2a, ..., (p − 1)a (mod
p) are distinct so the construction is a Latin Square. To construct the other p − 2 Latin
Squares, simply let a equal 2, 3, ..., p− 1.

0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

0 1 2 3 4
0 0 1 2 3 4
1 2 3 4 0 1
2 4 0 1 2 3
3 1 2 3 4 0
4 3 4 0 1 2

0 1 2 3 4
0 0 1 2 3 4
1 3 4 0 1 2
2 1 2 3 4 0
3 4 0 1 2 3
4 2 3 4 0 1

0 1 2 3 4
0 0 1 2 3 4
1 4 0 1 2 3
2 3 4 0 1 2
3 2 3 4 0 1
4 1 2 3 4 0

Figure 3.3: The four MOLS constructed for p = 5, where a = 1, a = 2, a = 3, and a = 4
respectively. We can easily check that these Latin Squares are mutually orthogonal, as the
set of elements that have the same entry for one Latin Square correspond to a transversal
for all of the other Latin Squares. For example, the entries in the underlined spaces are all
0 in the first Latin Square, while they contain all five elements in each of the other Latin
Squares.

Now we’ve reached the million dollar question: are these p − 1 Latin Squares MOLS?
Naturally we wouldn’t bother constructing them if that weren’t the case, but let’s prove
this to remove all doubt. We’ll start by supposing that (at least) two of the Latin Squares
are not orthogonal. That is, there are (at least) two ordered pairs in the superimposed
matrix, (aix1 + y1, ajx1 + y1) and (aix2 + y2, ajx2 + y2) that have the same value for some
ai, aj ∈ 1, 2, ..., p − 1 where ai 6= aj, and for some x1, x2, y1, y2 ∈ 0, 1, ..., p − 1. This means
that

aix1 + y1 = aix2 + y2 mod p,

ajx1 + y1 = ajx2 + y2 mod p.

Rearranging these inequalities, we get

ai(x1 − x2) = y2 − y1 mod p,

aj(x1 − x2) = y2 − y1 mod p.

Therefore,
ai(x1 − x2) = aj(x1 − x2) mod p.

From this equation we can see that either ai = aj (mod p) or x1−x2 = 0 (mod p). We know
the former of the two is not true, so x1 = x2 (mod p). Since x1 and x2 are less than p (and
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non-negative), we can conclude that x1 = x2. Plugging this back into one of our original
equalities, we have that

aix1 + y1 = aix1 + y2 mod p,

so y1 = y2 (mod p). Once again, both y1 and y2 are non-negative and less than p so we
may conclude y1 = y2. Therefore for two ordered pairs to be the same in any superimposed
matrix of the Latin Squares we constructed, those two ordered pairs must be the same entry
of the matrix. This means that none of the superimposed matrices will have a duplicate
ordered pair, so the set of p− 1 Latin Squares are MOLS.

In addition to prime numbers, it turns out that any power of a prime will achieve the upper
bound of n−1 MOLS of order n. The proof of this found in [3] bears a strong resemblance to
the proof of Theorem 3.3 except that instead of integers, x and y are elements of the Galois
Field GF (pα) (when n is the prime power pα). Because the introduction of fields makes the
proof more complicated and less intuitive, will state the theorem without proof. [3]

Theorem 3.4. There exists a set of n− 1 MOLS of order n if n ≥ 3 and n is a power of a
prime. [3]

With this we draw our analysis of the upper bounds of N(n) to a close as we transition
to our investigation of the lower bounds of N(n).

3.5 How MOLS Beget Larger MOLS

In this section we will introduce a theorem that will be useful especially for Latin Squares
not of a prime power order. We will start by defining an important Latin Square construction
method that uses smaller Latin Squares.

Definition 3.5. The Kronecker Product of two Latin Squares A and B of order m and n
respectively is defined as the mn×mn array

(a11, B) (a12, B) ... (a1m, B)
(a21, B) (a22, B) ... (a2m, B)

..
.

..
.

..
.

(am1, B) (a2m, B) ... (amm, B)

 ,

where (aij, B) =


(aij, b11) (aij, b12) ... (aij, bn1)
(aij, b21) (aij, b22) ... (aij, bn2)

..
.

..
.

..
.

(aij, bn1) (aij, bn2) ... (aij, bnn)

 [16].

To build some intuition for this operation, let’s work through an example. For instance
the Kronecker Product of

A =

(
1 0
0 1

)
B =

 0 1 2
2 0 1
1 2 0


9



is equal to


(1, 0) (1, 1) (1, 2) (0, 0) (0, 1) (0, 2)
(1, 2) (1, 0) (1, 1) (0, 2) (0, 0) (0, 1)
(1, 1) (1, 2) (1, 0) (0, 1) (0, 2) (0, 0)
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
(0, 2) (0, 0) (0, 1) (1, 2) (1, 0) (1, 1)
(0, 1) (0, 2) (0, 0) (1, 1) (1, 2) (1, 0)

 −→


1 2 3 4 5 6
3 1 2 6 4 5
2 3 1 5 6 4
4 5 6 1 2 3
6 4 5 3 1 2
5 6 4 2 3 1

 [16].

To translate the Latin Square produced from the Kronecker Product to a more conventional
notation for Latin Squares, we start by noting that there will be 6 different ordered pairs
in the Latin Square. We can assign each ordered pair a number label, and rename each
entry to yield the final Latin Square in standard form. For instance, the ordered pair (1,0)
is translated to 1 and (0,0) is translated to 4.

One very useful property of the Kronecker Product is that it preserves orthogonality, as
illustrated in the following theorem.

Theorem 3.5. If there is a set of r MOLS of order m and a set of r MOLS of order n, then
there is a set of r MOLS of order mn. That is,

N(mn) ≥ min{N(m), N(n)}.[3]

Proof. Let A1, A2, ..., Ar be a set of MOLS of order m and B1, B2, ..., Br be a set of MOLS of
order n. Consider the set C1, C2, ..., Cr of Kronecker Products such that Cl is the Kronecker
Product of Al and Bl. Suppose that Ce is not orthogonal to Cf . Then at least one ordered
pair of the superimposed matrix occurs twice: for some i, j, k, l, p, q, s, and t,(

a
(e)
ij , b

(e)
kl

)
=
(
a(e)pq , b

(e)
st

)
and

(
a
(f)
ij , b

(f)
kl

)
=
(
a(f)pq , b

(f)
st

)
,

where a
(e)
ij denotes the entry in the ith row and jth column of Ae and so on. This means

that
a
(e)
ij = a(e)pq , b

(e)
kl = b

(e)
st

and
a
(f)
ij = a(f)pq , b

(f)
kl = b

(f)
st .

Because Ae and Af are MOLS, the first and third equality imply that i = p and j = q.
Similarly because Be and Bf are MOLS, the second and fourth equality imply that k = s
and l = t. This is a contradiction to the original claim that Ce and Cf are not orthogonal.
[3]

Using this theorem, we can produce a lower bound for N(n) for any n value based on
the prime factorization of n.
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Theorem 3.6. Suppose the prime factorization of n is pa11 p
a2
2 ...p

ak
k , where the pi are distinct

primes and the ai are positive integers. Then N(n) ≥ r, where r = min{pa11 , pa22 , ..., p
ak
k }− 1.

We will denote the lower bound of N(n) calculated through this method as

n(n) = min{pa11 , pa22 , ..., p
ak
k } − 1.[3]

Proof. We know from Theorem 3.5 that there exists a set of pa11 −1 MOLS of order pa11 , a set of
pa22 −1 MOLS of order pa22 ... and pakk −1 MOLS of order pakk . Since r ≤ pa11 −1, pa22 −1, ..., pakk −1,
we may simply select r MOLS of each size pa11 , p

a2
2 , ..., p

ak
k and use the Kronecker Product to

create r MOLS of order pa11 p
a2
2 ...p

ak
k = n. [3]

Now we have finally built up enough background for the main part of this paper, the
investigation of Graeco-Latin Squares and Euler’s Conjecture.

4 Euler’s Conjecture

To discuss Euler’s Conjecture, we first need to understand the idea of a Graeco-Latin
Square, so we’ll go over the definition and give a brief introduction.

4.1 Graeco-Latin Squares

Definition 4.1. A Graeco-Latin Square of order n is an n × n array of ordered pairs such
that each entry of the ordered pair is one of n different symbols, each symbol appears in each
row and column once for each coordinate of the ordered pair, and each ordered pair is unique.
[8]

The name Graeco-Latin Square comes from the original notation used by Euler, as the
first term of the ordered pair is traditionally a Latin letter while the second entry is a Greek
letter. However this notation is inconvenient so he soon abandons it and switches to using
integers and exponents, where the first entry of the ordered pair is the base while the second
is the exponent [8]. I am a fan of using integer ordered pairs so we will use that notation in
this paper.

You might have noticed that the definition of a Graeco-Latin Square resembles the defi-
nition of MOLS. This is because we can construct a Graeco-Latin Square by superimposing
two MOLS, as the definition of orthogonality implies that each ordered pair in the resulting
matrix will be unique and hence the superimposed matrix is a Graeco-Latin Square. This
means that proving the existence of two MOLS of order n (i.e. that N(n) ≥ 2) is equivalent
to proving the existence of a Graeco-Latin Square of order n. For example, if we superimpose
the two MOLS  1 2 3

2 3 1
3 1 2

 and

 1 2 3
3 1 2
2 3 1

 ,

they yield the array
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 (1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

 ,

which is a Graeco-Latin Square of order three.

4.2 The Conjecture

Almost all research regarding Graeco-Latin Squares aims to answer one question: what
sizes of Graeco-Latin Squares exist? The one who sparks the interest in this subject is Euler,
who first starts working with Graeco-Latin Squares in the 1780s. Soon after, he publishes a
one hundred page paper introducing his conjecture, outlined below.

Conjecture 4.1. There is a Graeco-Latin Square of order n if and only if n ≥ 3 and n 6≡ 2
(mod 4). [8]

Euler is unable to prove his conjecture, but his paper discusses extensively why it is highly
likely that the conjecture is true. In fact he is able to prove the forward direction of the
conjecture, that there is a Graeco-Latin Square of order n if n 6≡ 2 (mod 4), as we will prove
shortly. However, the backwards direction of the conjecture (that there is no Graeco-Latin
Square of order n if n ≡ 2 (mod 4)) is left unresolved for almost 180 years and turns out to
be almost entirely incorrect. Before we get into that, we’ll prove the forward direction, as it
conveniently builds off of what we proved in the MOLS section of this paper. [8]

Theorem 4.1. There is a Graeco-Latin Square of order n if n ≥ 3 and n 6≡ 2 (mod 4). [3]

Proof. We can see from Theorem 3.6 that if n(n) ≥ 2, then N(n) ≥ 2, so there would indeed
exist a Graeco-Latin Square of order n. The single case where paii − 1 < 2 for any pi and
ai is when pi = 2 and ai = 1. Therefore for any n ≥ 3 value that doesn’t contain 21 in its
prime factorization, i.e. if n 6≡ 2 (mod 4), n(n) ≥ 2. [3]

4.3 The search for the 6× 6 Graeco-Latin Square

One challenge that first leads Euler to make his conjecture is the famous 36 officer prob-
lem: given 6 regiments that each contain 6 officers who each have a different rank, is it
possible to arrange the officers in a 6 × 6 grid such that each rank and regiment occurs
exactly once in each row and column? Finding the solution to this question is equivalent to
finding a Graeco-Latin Square of order 6 [8]. Euler is unable to find such a solution, and
much of his paper is dedicated to outlining his argument that the non-existence of a 6 × 6
Graeco-Latin Square (and all other n such that n ≡ 2 (mod 4)-sized Graeco-Latin Squares)
is at least plausible. [8]

It’s worth mentioning that Euler doesn’t write a one hundred page paper without at least
some results. He proves that several styles of 6×6 Latin Squares can not have an orthogonal
mate, and many of the methods used to obtain these results are applicable to Latin Squares
of other orders as well. For instance, he proves that a Single-Step Latin Square, as defined
below, can only have an orthogonal mate if n is odd.
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Definition 4.2. A Single-Step Latin Square is a Latin Square of order n whose first row
is the sequence 1, 2, ..., n and second row is the first row shifted one position to the left, the
third row is the first row shifted two to the left, and so on. The general form of a Single-Step
Latin Square is


1 2 3 ... n− 1 n
2 3 ... n− 1 n 1
3 ... n− 1 n 1 2

..
.

..
.

..
.

..
.

..
.

..
.

n 1 2 ... n− 2 n− 1

 .[8]

Admittedly this technically only proves that one specific 6×6 Latin Square is a bachelor.
But permuting the symbols of a Latin Square does not affect its orthogonality properties, so
we can say that we have effectively proved that 6! = 720 specific Latin Squares are bachelors
[16]. Euler uses several other “clever transformations” to let one Latin Square represent
many Latin Squares and then prove that the representative Latin Square is a bachelor.
Unfortunately, even with this strategy, Euler is only able to cover a fraction of the Latin
Squares of size 6.

4.4 Tarry’s Proof

In the year 1900, Gaston Tarry is the first to confirm the nonexistence of a Graeco-Latin
Square of order 6, the smallest n such that n ≥ 3 and n ≡ 2 (mod 4). Because 6 is relatively
small, Tarry is able to use a comparatively brute force method that considers specific cases,
whereas the proofs regarding larger n ≡ 2 (mod 4) cases such as 10, 14, 18 etc. will need to
find other methods due to the exponential increase in the number of cases.

I say that Tarry’s proof is brute force, but his proof is far more than simply pairing
up Latin Squares and testing if they are orthogonal; in fact this method would be essen-
tially impossible (especially without the aid of computers) due to the sheer volume of Latin
Squares of order 6. According to the On-Line Encyclopedia of Integer Sequences, there are
812,851,200 unique Latin Squares of order 6, and superimposing every pair would result in
over 3× 1017 separate cases to check for orthogonality. [1]

Tarry first makes the number of cases a bit more manageable by only considering reduced
Latin Squares, or Latin Squares of order n whose entries of the first row and column are
the sequence 1, 2, ..., n [17]. Refer to Figure 4.1 for an example. Any Latin Square can be
transformed into its reduced form by some permutation of its rows and columns. These
operations do not affect the existence of an orthogonal mate, so Latin Squares that have the
same reduced form should have all have orthogonal mates or all be bachelors [16]. There are
only 9408 unique reduced Latin Squares, so each of these reduced Latin Squares represents
86,400 Latin Squares, as opposed to representing just 720 Latin Squares by permuting the
symbols. [8]

Other papers that cover Tarry’s proof usually stop here without going into more detail,
so I read Tarry’s original paper to get more details about the process. The paper is about
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
1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 3 6 5 2 1
5 6 2 1 3 4
6 4 5 2 1 3


Figure 4.1: A reduced Latin Square of order 6 [17]

30 pages long and is entirely in French, so I have only included the information that I am
fairly confident that I interpreted correctly.

The first third of the proof defines 17 different families of Latin Squares, the second third
proves that every reduced Latin Squares of order 6 is in one of these families, and the last
third proves that any reduced Latin Squares in the 17 families cannot be mutually orthogonal
[17]. We will go over the first third in some detail, but we will only give a brief summary of
the remainder of the paper.

Determining which family a Latin Square belongs to can done in a few basic steps,
starting with converting the Latin Square into a symbol matrix. The symbols in this
matrix, denoted as α, β, γ, and δ, represent four different permutations of six elements such
that no element is mapped to its original location. These permutations can be interpreted
as the relationship between any two rows or any two columns of a Latin Square of order 6
[17]. We know from permutation group theory that for a permutation group of order 6 can
only contain cycles of size 2, 3, 4, or 6. Looking at the four permutations in Figure 4.2, we
can see that these are the only possible cycle combinations. The location of the cycle and
the actual permutation within a cycle do not have to match the ones in Figure 4.2, rather,
the important part is the size and quantity of cycles. For example, the permutations(

A B C D E F
B A E C F D

)
and

(
A B C D E F
B F D C A E

)
would be considered β permutations because they each have a cycle of size 4 and a cycle of
size 2.

α(
A B C D E F
B A D C F E

) β(
A B C D E F
B A D E F C

)
γ(

A B C D E F
B C A E F D

) δ(
A B C D E F
B C D E F A

)
Figure 4.2: The four symbols and their corresponding permutations. Vertical lines have been
added to separate the different cycles. [17]

To convert a Latin Square of order 6 into its corresponding 6× 6 symbol matrix, simply
let the entry of the ith row and jth column be the permutation relationship between row
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i and row j. Refer to Figure 4.3 to see the symbol matrix of our example reduced Latin
Square from Figure 4.1. Notice that the symbol matrix is symmetrical along the diagonal
and the diagonal entries are blank, as the permutation between row i and row i does not
match any symbol’s permutation as all entries are mapped to themselves. Since the diagonal
entries are empty, we can condense the symbol matrix into a 6 × 5 matrix without losing
any information (also demonstrated in Figure 4.3). [17]

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 3 6 5 2 1
5 6 2 1 3 4
6 4 5 2 1 3

 −→

− α β δ δ β
α − δ γ γ δ
β δ − δ δ γ
δ γ δ − γ δ
δ γ δ γ − δ
β δ γ δ δ −

 −→


α β δ δ β
α δ γ γ δ
β δ δ δ γ
δ γ δ γ δ
δ γ δ γ δ
β δ γ δ δ


Figure 4.3: Step 1, Calculating the symbol matrix and condensing it. [17]

Once we’ve found the condensed symbol matrix, the second step is quite simple. In this
step we reorder the entries of the matrix by putting the entries of each row into alphabetical
order (α first, β second, γ third, and δ last) and then permuting the rows so the first column
is in alphabetical order [17]. Refer to Figure 4.4 for an example.

α β δ δ β
α δ γ γ δ
β δ δ δ γ
δ γ δ γ δ
δ γ δ γ δ
β δ γ δ δ

 −→


α β β δ δ
α γ γ δ δ
β γ δ δ δ
β γ δ δ δ
γ γ δ δ δ
γ γ δ δ δ


Figure 4.4: Step 2, alphabetizing the entries. [17]

The third step is to repeat steps one and two, except this time we will let the entries of
the symbol matrix correspond to the permutation relation between columns instead of rows.
Tarry provides a list of sixteen alphabetized symbol matrices, each identified by a number
between 1 and 16, and he claims that the alphabetized row and column symbol matrices of
any reduced Latin Square will be in this set [17]. He then provides a set of sixteen pairs of
numbers between 1 and 16, each paired together by a curly brace underneath. These are
crests, and as with the symbol matrices, each one is identified by a number between 1 and
16, and every reduced Latin Square can be matched with a crest.

To see how crests work, let’s look at our example in Figure 4.5. The left and right
matrices in the figure are the row and column symbol matrices, respectively, of our original
reduced Latin Square example. If we were to look at Tarry’s list of symbol matrices (which
is not included in this paper), we would see that the row symbol matrix is matrix number 10
and the column symbol matrix is number 14. Combining these, we have the crest 10 + 14︸ ︷︷ ︸,
which is crest number 10 in the list of crests provided in Figure 4.6. [17]
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
α β β δ δ
α γ γ δ δ
β γ δ δ δ
β γ δ δ δ
γ γ δ δ δ
γ γ δ δ δ

+


β β γ δ δ
β β γ δ δ
β β γ δ δ
β β γ δ δ
β δ δ δ δ
β δ δ δ δ


︸ ︷︷ ︸

= 10 + 14︸ ︷︷ ︸

Figure 4.5: Matching the symbol matrices to a crest.

1
1 + 1︸ ︷︷ ︸ 2

2 + 2︸ ︷︷ ︸ 3
3 + 11︸ ︷︷ ︸ 4

4 + 5︸ ︷︷ ︸ 5
5 + 5︸ ︷︷ ︸ 6

6 + 12︸ ︷︷ ︸ 7
7 + 7︸ ︷︷ ︸ 8

8 + 8︸ ︷︷ ︸
9

9 + 13︸ ︷︷ ︸ 10
10 + 14︸ ︷︷ ︸ 11

11 + 11︸ ︷︷ ︸ 12
12 + 12︸ ︷︷ ︸ 13

13 + 13︸ ︷︷ ︸ 14
14 + 14︸ ︷︷ ︸ 5

15 + 15︸ ︷︷ ︸ 16
16 + 16︸ ︷︷ ︸

Figure 4.6: The list of crests. The bolded number above each crest is the number label of
that crest. When the entries in the crest are distinct, either entry can be the row symbol
matrix number as long as the other is the column symbol matrix number. [17]

From here Tarry shows that reduced Latin Squares that belong to the same crest are of
the same family and labels that family with the number of the crest. This is often done by
introducing several families and then paring down the number of families that are actually
distinct. For instance, Tarry identifies the families 16, 16a, and 16b, and then proves they
are all actually the same family, so they are combined under the name “family 16.” The one
exception is crest 7, which can only be narrowed down to two families, labelled 7 and 7a.
Therefore all Latin Squares are one of 16+1=17 families. [17]

Once Tarry establishes that there are only 17 families, he defines the terms magic net-
works, magic groups, and magic numbers which do not exist outside of his paper. He uses
these to analyze the families; he proves that none of the families have a magic network and
therefore there is no Graeco-Latin Square of order 6 [17].

Soon after Tarry’s proof is published, more concise proofs of the 36 officer problem are
published, but they are eventually proved to be incorrect [8]. According to Kalei Titcomb’s
paper, it is almost one hundred years after Tarry’s proof is published that the first valid
concise proof is published [7]. Written by mathematician D. R. Stinson in 1984, the paper is
a four-page, non-computer proof of the 36 officer problem that uses transversal designs [15].

5 Disproof of Euler’s Conjecture

1959, almost sixty years after Tarry’s proof is published, is the momentous year that
Euler’s Conjecture is finally resolved by a series of results found over the course of about six
months. The spark that sets off this chain of new discoveries is the first counterexample of
Euler’s Conjecture: a Graeco-Latin Square of order 22, constructed by mathematicians R. C.
Bose and S. S. Shrikhande [4]. Inspired by Bose and Shrikhande’s findings, mathematician
E. T. Parker then constructs a a Graeco-Latin Square of order 10, which is the smallest
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n ≡ 2 (mod 4) value larger than 6 [13]. After Parker publishes his paper, he, Bose, and
Shrikhande join forces to prove the existence of a Graeco-Latin Square of all other orders
where n ≡ 2 (mod 4) [5].

In this section we will go over material from the three papers that contain these important
results in chronological order. For each paper, we’ll start with background information
followed by a discussion of the main proof. But before that, we’ll take a brief look at
group-based Latin Squares and their role in the search for Graeco-Latin Squares.

5.1 Group-Based Latin Squares

One of the reasons for the lull in progress after Tarry’s publication is the nature of the
constructions of (orthogonal) Latin Squares that have been used until this point, for instance
the construction in the proof of Theorem 3.3 and the construction of Latin Squares using
the Kronecker Product. In 1942, Henry Mann makes the important observation that all of
these constructions are group-based [8]. To better understand what a group-based Latin
Square is, consider a reduced Latin Square like the one in Figure 5.1.

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4


−→ (1)(2)(3)(4)(5)
−→ (12345)
−→ (13524)
−→ (14253)
−→ (15432)

Figure 5.1: A reduced Latin Square of order 5 and the corresponding row permutations [8]

We want to find a permutation for each row, and the first row’s permutation is always
(1)(2)(3)(4)(5) since the first row is 12345 (because it’s a reduced Latin Square). Next, to get
the permutation for row i, permute row i−1 by the permutation for row i−1. For example,
to get the third row permutation for Figure 5.1, we calculate (23451)(12345) = (13524).
Also, note that the row five calculation is (51234)(15432)=(1)(2)(3)(4)(5), yielding the first
row’s permutation. Finally we look at the five permutations, and if they are a group then
the Latin Square is group-based. [8]

The fact that the known constructions are group-based is significant because of the fact
that Mann proves that the equality N(n) = min{pαi

i } − 1 holds (given n has the prime
factorization pa11 , p

a2
2 , ..., p

al
l ) for all group-based Latin Squares. This means that any Latin

Squares of order n where n ≡ 2 (mod 4) that are produced by these constructions would
have N(n) = 1. Therefore to confirm or disprove Euler’s conjecture, we would need to prove
that all MOLS are group-based, or find new MOLS construction methods. Mann later proves
that there are indeed MOLS that aren’t group based, so the latter method is needed to make
further progress. This is a very important result and it takes another 17 years before the
another way to construct MOLS is found. [8]
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5.2 BIBDs and Pairwise designs

Written by Bose and Shrikhande, the first paper we will cover features the first coun-
terexample to Euler’s conjecture [4]. Before we go over the proof, we need to build up a
bit of background information about balanced incomplete block designs and pairwise
designs.

Definition 5.1. Given a set S of v elements (or “varieties”), a balanced incomplete block
design, or BIBD is a set of b subsets (or “blocks”) of S such that for some k < v and λ > 0,
each subset has k elements and any pair of elements of S appear in exactly λ subsets.[2]

The notation for a BIBD is a (b, v, r, k, λ)-configuration, where r is the number of blocks
that each variety appears in, and the rest of the parameters are as described in the definition.
For example, the BIBD

{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}

is an example of a (7,7,3,3,1)-configuration. [2]
Another example we will mention here is one of the most commonly-used BIBD story

problems: supposing fifteen girls walk to school every day for a week in groups of three, how
could one arrange their groups such that no pair of girls walk together twice? This is known
as Kirkman’s schoolgirl problem, and the solution is equivalent to finding a (35, 15, 7, 3, 1)-
configuration [2]. Another important property of this problem is that the solution is an
example of a resolvable BIBD, that is, a BIBD that can be partitioned into sets of blocks
such that each variety v occurs in each set exactly once. To see how this works, let each day
be one of these sets: each girl walks exactly once each day, so the design is resolvable.[4]

Next we will introduce a special version of a BIBD, where λ = 1 and k can take on more
than one value.

Definition 5.2. A pairwise balanced design of index unity and type (v; k1, k2, ..., km) is an
arrangement of v varieties into b blocks such that each block is of size ki for some 1 ≤ i ≤ m
and every pair of varieties occurs together in a block exactly once. Note that ki ≤ v for all
1 ≤ i ≤ m and that the ki are all distincy, though there can be multiple blocks of size ki. [4]

To give a couple of examples,

{1, 4}{2, 4}{3, 4}{1, 2, 3}

is a pairwise balanced design of index unity and type (4:2,3), and

{1, 4}{1, 5}{1, 6}{2, 4}{2, 5}{2, 6}{3, 4}{3, 5}{3, 6}{1, 2, 3}{4, 5, 6},

is a pairwise balanced design of index unity and type (6:2,3). In addition, any BIBD where
λ = 1 is a pairwise balanced design of index unity and type (v; k), so we will denote such
BIBDs as BIBD (v; k).[4]

Now that we understand the basics of these terms, we’ll look at a couple of theorems that
will set up the framework for the main proof. For the first theorem, we will simply state it
without proof as the proof is fairly complicated and lengthy.
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Theorem 5.1. If a pairwise balanced design of index unity and type (v; k1, k2, ..., km) exists,
then N(v) ≥ min{N(ki)} − 1, 1 ≤ i ≤ m. [4]

Changing the notation to cater to the cases when a pairwise balanced design of index is
a BIBD (v; k), we can adapt Theorem 5.1 so that it applies specifically to a BIBD (v; k):

Theorem 5.2. If there exists a BIBD (v, k), then N(v) ≥ N(k)− 1. [4]

The last bit of information we need to cover before the main proof is the existence of a
set of BIBDs with specific parameters.

Lemma 5.1. There exists a resolvable BIBD with the parameters

b = (8m+ 5)(12m+ 7), v = 24m+ 15, r = 12m+ 7, k = 3, and λ = 1

for any non-negative integer m. [4]

Proof. These parameters follow the basic format of Kirkman’s schoolgirl problem that was
introduced earlier. When m = 0, the parameters in Lemma 5.1 are identical to the schoolgirl
problem; for other m values, we can consider it to be equivalent to having 24m + 15 girls
walking every day for 12m+ 7 days. [4]

The schoolgirl problem is known to have a solution for any v = 6t + 3 (for a positive
integer t) number of schoolgirls, and since we are looking for cases when t ≡ 2 (mod 4), we
can say that t = 4m+ 2 (for a non-negative integer m). Therefore, we know that there is a
solution for v = 6(4m + 2) + 3 = 24m + 12 + 3 = 24m + 15. This proves the existence of a
solution for all m, and every solution is resolvable by the design of the schoolgirl problem:
the blocks can be partitioned into 12m + 7 subsets that are the 8m + 5 groups that are on
the same day for each of the 12m+ 7 days, as each girl walks in exactly one group each day.
[4]

Also, there is some special case when 12m + 7 is a prime power. Bose and Shrikhande
use Galois fields to address this, but due to the length and complexity of that section of the
proof, we will not include it in this paper. [4]

5.3 The 22× 22 Case

Now that we’ve built up a sufficient framework, we’ll begin the main proof of this report:
the proof that there exist infinitely many Graeco-Latin Square of order n where n ≡ 2 (mod
4).

Theorem 5.3. There exist at least two MOLS of order v = 36m + 22 where m is any
non-negative integer. [4]

Proof. Consider a resolvable BIBD with the parameter values from Lemma 5.1 (for any m
value). We can introduce 12m+ 7 new varieties α1, α2, ..., α12m+7 into the design by adding
αi to each of the 8m+5 blocks in the ith day and one entirely new block {α1, α2, ..., α12m+7}.
Because the original BIBD is resolvable, the result is a pairwise balanced design of index
unity and type (v; k1, k2), where v = 36m+ 22, k1 = 4, and k2 = 12m+ 7. [4]
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With this information we can use Theorem 5.1 to find a lower bound for N(v = 36m+22).
First, we’ll calculate N(k1) and N(k2). Since k1 = 4 which is a prime power, we know
N(k1) = 4− 1 = 3.

Finding N(k2) is a bit more tricky since 12m + 7 has multiple values. First, recall that
for any k with a prime factorization pa11 , p

a2
2 , ..., p

al
l ,

N(k) ≥ min{paii } − 1, 1 ≤ i ≤ l.

Looking at the quantity 12m + 7, it cannot be divisible by 2, 3, or 4 for any value of m, so
any paii in the prime factorization must be ≥ 5. Therefore N(12m + 7) ≥ 5 − 1 = 4. This
implies N(36m+ 22) ≥ min{3, 4} − 1 = 2. [4]

This proof is quite significant since Euler’s Conjecture had gone unconfirmed for the
better part of 200 years. But the end of the proof marks only the halfway point in Bose
and Shrikhande’s paper. They go on to prove that there are n ≡ 2 (mod 4) cases where the
number of MOLS of order n is much higher than two. They also prove there are Graeco-Latin
Squares of order n for about two thirds of the n values of the form 4t + 2 that are between
22 and 150 [4]. This information will be important in our discussion of the third and final
paper, so we will hold off from further explanation until then.

5.4 Orthogonal Arrays

Shortly after Bose and Shrikhande’s paper is published, Parker writes a proof of the
existence of a 10× 10 Graeco-Latin Square (as well as infinitely many other sizes of Graeco-
Latin Square that are equivalent to 2 (mod 4)). Even though the proof covers material
similar to that in Bose and Shrikhande’s paper, Parker’s proof is also significant as it uses a
very different method to construct MOLS and it covers the case when n = 10, the smallest
n where n > 6 and n ≡ 2 (mod 4). [13]

The key term we’ll need to understand Parker’s proof is orthogonal arrays, so we’ll start
with a brief introduction of the topic. I thought that Klyve and Stemkoski’s paper [8]
provided the best detailed explanation of orthogonal arrays, so I’ve modeled my explanation
after the information in [8].

Definition 5.3. An orthogonal array of order n is a k × n2 matrix (for some k ≤ N(n))
with entries that are in the set {1, 2, ..., n} such that any two rows have all n2 ordered pairs
containing {1, 2, ..., n} if the ith entry of each row is treated as an ordered pair for each i in
{1,2,...,n}. [8]

You might have noticed that parts of this definition resemble the definition of MOLS . It’s
not a coincidence, as it turns out that finding an orthogonal array of order n is equivalent to
finding k−2 MOLS of order n. To see how this works, we’ll use the example from Figure 5.2.
We’ll let the first row represent the row number, the second represent the column number,
the third the entries of the first Latin Square, and the fourth the entries of the second Latin
Square. For example, consider the fourth column of the orthogonal array, (2,1,2,3). This
means when producing the two MOLS from the array, we would let the entries in the second
row and first column of the two Latin Squares be 2 and 3 respectively. Repeating this
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procedure for all nine columns of the orthogonal array will yield the two MOLS shown in
Figure 5.2. Another property of orthogonal arrays worth mentioning is that we could have
picked any two rows to represent the Latin Square coordinates (making the remaining two
rows represent the entries) and the Latin Squares produced would still be orthogonal [8].
For orthogonal arrays where k > 4, the MOLS would be constructed as before with the first
four rows, then the fifth row would represent the entries of the 3rd Latin Square, the sixth
row the 4th Latin Square, and so on.

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2
1 2 3 3 1 2 2 3 1


←
− −→ 1 2 3

2 3 1
3 1 2

 and

 1 2 3
3 1 2
2 3 1


Figure 5.2: Two MOLS of order 3 derived from an orthogonal array where k = 4 [8]

5.5 The 10× 10 Case

In Parker’s proof of the existance of a 10×10 Graeco-Latin Square, he doesn’t use the term
orthogonal array but instead uses “a set of n2 quadruples (a1i, a2i, a3i, a4i), i = 1, 2, ..., n2”
[13]. This setup has the same properties of an orthogonal array of order n with k = 4 when
the quadruples are lined up such that each is a column of a n2 × 4 matrix.

Parker produces a construction of an orthogonal array (with k = 4) that proves the
theorem below. Unfortunately, the construction and the explanation is somewhat complex
and uses Galois fields, so I will state the theorem without proof.

Theorem 5.4. There exists a Graeco-Latin Square of order n when n = (3q − 1)/2, q is a
prime power, and q ≡ 3 (mod 4). [13]

As an additional note, Parker’s construction in the proof does not work for the case q = 3,
but when q = 3, n = 4 and we know N(4) = 4− 1 = 3 > 2 since 4 is a prime power. So the
theorem still holds for all prime powers q [13].

Parker uses this theorem not only to construct a 10×10 Graeco-Latin Square but also to
guarantee infinitely many Graeco-Latin Squares of order m such that m ≡ 2 (mod 4). There
might be some overlap, but in general the Graeco-Latin Square sizes found by Parker are
separate from the ones previously found by Bose and Shrikhande in [4].

To construct two MOLS of order 10 (i.e. a 10×10 Graeco-Latin Square), Parker simply
uses the construction method in the proof of Theorem 5.4 for the case q = 7 to derive an
orthogonal array of order 10 [13]. From there we can produce two MOLS using the process
outlined earlier that was used for Figure 5.2. The construction produced in Parker’s paper
is shown in Figure 5.3.
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

0 4 1 7 2 9 8 3 6 5
8 1 5 2 7 3 9 4 0 6
9 8 2 6 3 7 4 5 1 0
5 9 8 3 0 4 7 6 2 1
7 6 9 8 4 1 5 0 3 2
6 7 0 9 8 5 2 1 4 3
3 0 7 1 9 8 6 2 5 4

1 2 3 4 5 6 0 7 8 9
2 3 4 5 6 0 1 8 9 7
4 5 6 0 1 2 3 9 7 8





0 7 8 6 9 3 5 4 1 2
6 1 7 8 0 9 4 5 2 3
5 0 2 7 8 1 9 6 3 4
9 6 1 3 7 8 2 0 4 5
3 9 0 2 4 7 8 1 5 6
8 4 9 1 3 5 7 2 6 0
7 8 5 9 2 4 6 3 0 1

4 5 6 0 1 2 3 7 8 9
1 2 3 4 5 6 0 9 7 8
2 3 4 5 6 0 1 8 9 7


Figure 5.3: Two MOLS of order 10. Because q = 7, a break is included after the 7th row
and column to make patterns in the Latin Squares more visible. Notice that the bottom
right 3× 3 entries form two (orthogonal) Latin Squares of order 3. [13]

As for the existence of infinitely many Graeco-Latin Squares of order m such that m ≡ 2
(mod 4), we only need Dirichlet’s theorem that states there exist infinitely many prime
powers q where q ≡ 7 (mod 8), and a bit of modular arithmetic. If q is a prime power and
q ≡ 7 (mod 8) (and therefore q ≡ 3 (mod 4)), then there exist at least two MOLS of order
n = (3q−1)/2. Rewriting q as 8l+7 for some integer l, we get that n = 12l+10 = 4(3l+2)+2,
so n ≡ 2 (mod 4). Therefore there are infinitely many Graeco-Latin Squares of order m such
that m ≡ 2 (mod 4) [13]. As I mentioned before, this is not new, but it’s another way to
prove it.

In addition to the Graeco-Latin Squares of order n = (3q − 1)/2 that we just found, we
also know that there are Graeco-Latin Squares of any odd multiples of n when n = (3q−1)/2
(and q ≡ 3 (mod 4) and q is a prime power). This is because there exist at least two MOLS
of any odd order a, and from Theorem 3.5 we know N(an) ≥ min{N(a), N(n)} ≥ 2. [13]

With this we conclude the discussion of Parker’s paper and are one step closer to the
answer to Euler’s conjecture.

5.6 Outline of the Remaining Material

Once Parker publishes his paper, he, Bose, and Shrikhande decide to team up to resolve
Euler’s Conjecture once and for all. In the end, Euler’s Conjecture is only correct in the
forwards direction; there is a Graeco-Latin Square of every order n where n ≥ 3 and n 6≡ 2
(mod 4), but other than the case where n=6, there is also a Greco-Latin Square of every
order n where n ≥ 3 and n ≡ 2 (mod 4). [5]

The third paper is about 40 pages long, so as before I will simplify a lot of material and
sometimes take some theorems/results as given and not prove them. Keeping that in mind,
I’ve done my best to make a manageably short but representative coverage of the proof that
Graeco-Latin Squares exist for v 6= 6.

There are three main stages for the proof from the paper: proving N(v) ≥ 2 when
6 < v < 158, then for when 158 ≤ v ≤ 726, and finally proving N(v) ≥ 2 when v > 726.
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The interval cutoffs may seem arbitrary, but there have been many previous instances where
the specific numbers or formulas seem random, such as the parameters in Lemma 5.1 and
formula for n in Theorem 5.4. But just as with these numbers, I imagine the cutoffs are
carefully chosen to suit the formulas the authors use in their proofs.

5.7 For v Values below 158

As a preliminary note, so I don’t need to write it out every time, we’ll assume from now
on that mentioning Graeco-Latin Squares of order v, we’re only concerned with the values
where v ≡ 2 (mod 4). This means the statements v < 158 and v ≤ 154 are equivalent, as we
already know that N(v) ≥ 2 for v = 155, 156, and 157 as they are 6≡ 2 (mod 4) and so we
are no longer concerned with those v values.

The first phase of this proof focuses on v values where v ≤ 154. I mentioned earlier
that Bose and Shrikhande show in their first paper that N(v) ≥ 2 for about two-thirds of
the v values ≤ 150. Each N(v) has been calculated using one of the many other theorems
that appear in [4] but are not used for the main proof. In general these theorems follow
the general format of Theorem 5.6 that is included in a later section of this paper. Several
more variations of these theorems are derived and used in Bose et al.’s second paper to show
through case-by-case calculation that N(v) ≥ 2 for the rest of the v values for v ≤ 154 [5].
I can only imagine the amount of time and effort the authors have put into deriving these
theorems and figuring out which one to use for each v value. I would venture to guess that
this is one of the reasons that the case by case calculation ends at v = 154, as it becomes
necessary to use more broad-sweeping methods if the authors hope to actually address all v
values larger than 6. Just writing out and proving the theorems that are applied to individual
cases accounts for about half of each paper, so we will be taking those results as a given,
allowing us to focus on the second and third stages of the proof. So thanks to the patience
and toil of Bose et al., we are able to claim that N(v) ≥ 2 for all 6 < v ≤ 154. [5]

5.8 Group Divisble Designs

In the next section we’ll prove that N(v) ≥ 2 for 158 ≤ v ≤ 726. But before that we need
to go over a few new terms. Fortunately we’ve already gone over the terminology for pairwise
balanced designs of index unity, so we’re already halfway there. To start, we’ll introduce
another cousin of BIBDs known as group divisible designs. Consider an arrangement of v
varieties into b blocks that each contains k distinct varieties. The design is a group divisible
design, denoted as GD(v; k,m;λ1, λ2), if the varieties can be partitioned into l groups of
size m such that any two varieties in the same group appear together in exactly λ1 blocks
while any two varieties in different groups appear in λ2 blocks [5]. For example, consider a
set of four varieties {1,2,3,4} partitioned into two groups of two, {1,2} and {3,4}. Then the
arrangement

{1, 2}, {3, 4}

is a GD(4,2,2,1,0) and the arrangement

{1, 3}, {1, 4}, {2, 3}, {2, 4}
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is a GD(4,2,2,0,1).
Group divisible designs can be categorized as one of three different classes, Regular (R),

Semi-regular (SR), and Singular (S). For this proof we’re only interested in Semi-regular
group divisible designs, so we’ll skip the definition for the other two.

Definition 5.4. A group divisible design is Semi-regular if (rk−λ2v) = 0 and (r−λ1) > 0,
where r is the number of blocks in which each variety appears. [5]

We are particularly interested in the GD designs where λ1 = 0 and λ2 = 1, and we
will denote such designs as GD(v; k,m; 0, 1) and as SRGD(v; k,m; 0, 1) if the design is Semi-
regular.

The λ1 = 0 and λ2 = 1 case is helpful to us because we can augment the design to create
a pairwise balanced design of index unity. To do this, start with a GD(v; k,m; 0, 1) design
and add l new blocks that correspond to the l groups from that partition beforehand. The
result is a pairwise balanced design of index unity and type (v; k,m) [5]. Carrying out this
procedure on our second example from earlier, we get

{1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2}, {3, 4},

a pairwise balanced design of index unity and type (4,2,2), which is the same as having type
(4,2).

To demonstrate the utility of this construction, we need to define equiblock components
and clear sets of equiblock components.

Definition 5.5. Given a pairwise balanced design of index unity (D) and type (v; k1, k2, ..., km),
the subdesign (Di) is the collection of blocks of size ki for all i = 1, 2, ...,m. This collection
is referred to as the ith equiblock component of (D) [4].

Definition 5.6. Given a pairwise balanced design of index unity and type (v; k1, k2, ..., kt),
the set of equiblock components (D1), (D2),...,(Ds), s < t, is a clear set if all blocks contained
in the (Di) are disjoint. [5]

Looking at our construction before, the l blocks of size m we added are the only blocks
of that size so they make up an equiblock component. They are also disjoint by design, so
that equiblock component is by itself a clear set [5].

Next we’ll look at a theorem we will need to prove the theorem that comes after it. The
proof of this theorem is pretty long and complicated so I won’t include it here.

Theorem 5.5. Suppose there exists a pairwise balanced design of index unity and type
(v; k1, k2, ..., kt) with a clear set of equiblock components (D1), (D2),...,(Ds). Then

N(v) ≥ min{N(k1) + 1, N(k2) + 1, ..., N(ks) + 1, N(ks+1), N(ks+2), ..., N(kt)}. [5]

For example, when we apply this to a pairwise balanced design of index unity that is an
augmented GD(v; k,m; 0, 1) (using the procedure from earlier), we find that

N(v) ≥ min{N(m) + 1, N(k)} − 1.

Now we have the materials we need to state and prove the theorem below!
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Theorem 5.6. If there exists a resolvable GD(v; k,m; 0, 1) with each variety occurring in r
blocks and 1 < x < r, then

N(v + x) ≥ min{N(k), N(k + 1), N(m) + 1, N(x) + 1} − 1. [5]

Proof. By the definition of resolvable designs, we can partition the blocks of GD(v; k,m; 0, 1)
into r sets such that each variety occurs exactly once in each set. We’ll arbitrarily number
these sets with the numbers between 1 and r. Next we’ll perform the same augmentation
that we did before, adding the l sets of size m, so GD(v; k,m; 0, 1) is a pairwise balanced
design of index unity and type (v; k,m). Now we introduce x new varieties {θ1, θ2, ..., θx} to
the design by adding θi to each block in the ith set (from the r sets we numbered earlier)
for 1 ≤ i ≤ x and add a new block {θ1, θ2, ..., θx}. This action produces a pairwise balanced
design of index unity and type (v+ x; k1, k1 + 1,m, x). In addition, we know that the blocks
of size m and size x together form a clear equiblock set. Lastly we apply Theorem 5.5 to
this design to derive the lower bound for N(v + x). [5]

Now we’re only one theorem away from the part where we prove N(v) ≥ 2 for the rest of
the v values! This next theorem is the combination of Theorem 5.6 and Lemma 5.2, which
is stated below (without proof since that would be opening up another huge can of worms).

Lemma 5.2. There exists a resolvable SRGD(km; k,m; 0, 1) if k ≥ N(m) + 1. Note that for
this design, m = r. [5]

Theorem 5.7. If k ≥ N(m) + 1 and 1 < x < m, then

N(km+ x) ≥ min{N(k), N(k + 1), 1 +N(m), 1 +N(x)} − 1. [5]

As we can see, this theorem only relies on the properties of k and m, while group divisible
designs and pairwise designs of index unity are no longer needed to calculate N(v) (this isn’t
the first theorem like this, but the previous ones aren’t as powerful as you’re about to find
out).

5.9 For v values below 730 and above 154

As the section title suggests, the next v values we look at are 154 < v < 730. To do this,
we’ve partitioned the v values (still only the ones that are ≡ 2 (mod 4)) into nine sets of
closed intervals Ii = [ai, bi] listed in the second column of Table 5.1. Note that any v in Ii
can be written as

v = 4mi + xi, 10 ≤ xi ≤ ci,

using the mi and ci values from Table 5.1, as ai = 4mi + 10 and bi = 4mi + ci. [5]
Using the prime factorization of each mi, we know that N(mi) ≥ n(mi) ≥ 3. And since

10 ≤ xi ≤ ci ≤ 154, we know that N(xi) ≥ 2 for all xi. Now we can apply Theorem 5.7 for
k = 4, as the conditions k ≥ N(mi) + 1 and 1 ≤ xi ≤ ci < mi are met. Therefore
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i Ii = [ai, bi] mi ci
1 [158,182] 37 34
2 [186,218] 44 42
3 [222,262] 53 50
4 [266,310] 64 54
5 [314,374] 76 70
6 [378,454] 92 86
7 [458,550] 112 102
8 [554,662] 136 118
9 [666,726] 164 70

Table 5.1: Values for Ii, mi, and ci [5]

N(v) = N(4mi + xi) ≥ {min{N(k), N(k + 1), N(m) + 1, N(x) + 1} − 1

≥ min{3, 4, 4, 3} − 1

≥ 2

for all v that are in an interval Ii, which means N(v) ≥ 2 for all 6 < v ≤ 726. [5]

5.10 For v larger than 726

Now we’re onto the final stretch! To prove N(v) ≥ 2 for the remaining v values, we take a
similar approach as the previous section, rewriting v as a function of variables and applying
Theorem 5.7. However, this time we are able to deal with all of the v values at once instead
of dividing them into intervals, as we will show below.

Theorem 5.8. There exists a Graeco-Latin Square of all orders v > 726. [5]

Proof. We’ll start by noting that for every v ≡ 2 (mod 4) and v ≥ 730, the value v− 10 can
be expressed as

v − 10 = 144g + 4u, g ≥ 5, 0 ≤ u ≤ 35,

which simplifies to
v = 4(36g) + 4u+ 10. [5]

Looking at the prime factorization of 36g = pα1
1 p

α2
2 · · · p

αy
y , we can see that the smallest

pαi
i is at least 4, so N(36g) ≥ n(36g) ≥ 3. Once again we will let k = 4, and we will let
m = 36g and x = 4u+ 10. This makes k = 4 ≤ 1 +N(m) ≤ 4, 10 ≤ x ≤ 150, and m ≥ 180.
This means that 1 < x < m and N(x) ≥ 2. Therefore under Theorem 5.7, N(v) ≥ 2 for all
v > 6 . [5]

Now that we have covered all positive integer v values in this paper, we can combine all
of the results to conclude that N(v) ≥ 2 for any positive integer v 6= 1, 2, 6.
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6 Sunset

Congratulations, we’ve made it to the end! It’s been a long journey to get here, but
we’ve finally proved (skipping a few details) that there is a Graeco-Latin Square of every
order v 6= 1, 2, 6. Thanks for sticking with us to the end.

We have found Euler’s Conjecture to be almost entirely incorrect despite Euler’s fame for
his numerous contributions to the field of mathematics. However, famous mathematicians
or scientists being wrong is nothing new. In the mid 1600s Pierre de Fermat incorrectly
conjectures that all numbers of the form 22n + 1 (with n being a positive integer) are prime.
In fact, it is Euler who proves this to be incorrect by finding a contradiction when n = 5!
[14]

Even though it is not correct, Euler’s Conjecture has value in that it inspires many
mathematicians after him to continue his research. In a way we can consider Euler’s initial
conjecture and the journey to its resolution all part of the discovery process that is sometimes
necessary to achieve significant results.

But where do we go from here now that Euler’s Conjecture is resolved? There is still much
about Latin Squares and Graeco-Latin Squares that we have yet to discover. In particular,
we’ve shown that N(v) ≥ 2 for v 6= 1, 2, 6, but what about actually calculating N(v)?
Is there a way for us to know when we’ve hit the maximum number of MOLS of order v
(besides for prime powers) and not just improved the lower bound? Is there a formula for
N(v)? Seeing as it took 200 years for Euler’s Conjecture to be resolved and the last parts
of the proof only came out a few decades ago, it might be quite a while before we see some
of the answers to these questions. Then again, maybe the solutions will come more readily
with the constantly improving technology at our fingertips. I guess we’ll just have to wait
and see.
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