
Error-Correcting Codes Over Galois Rings

by

Gregory Reid Holdman

A thesis submitted in partial fulfillment of the requirements
for graduation with Honors in Mathematics.

Whitman College
2016

Certificate of Approval

This is to certify that the accompanying thesis by Gregory Reid Holdman
has been accepted in partial fulfillment of the requirements for

graduation with Honors in Mathematics.

Patrick Keef, Ph.D.

Whitman College
May 11, 2016

ii

Contents

Abstract iv

List of Figures v

1 Introduction 1

2 Review of Algebra 3

3 Coding Theory 6
3.1 Defining Codes . 6
3.2 Introducing Linear Codes . 8
3.3 Parity Check Matrix . 10
3.4 Quantifying the Quality of a Code . 12
3.5 Syndrome Decoding . 15
3.6 Perfect Codes . 18
3.7 Cyclic Codes . 22

4 Galois Rings 29
4.1 Defining Galois Rings and Examples . 29
4.2 Important Properties of Galois Rings . 30
4.3 Properties of Polynomials Over Galois Rings 34
4.4 Lemmas for the Classification of Galois Rings 37
4.5 Classification of Galois Rings . 42

5 Codes Over Galois Rings 46
5.1 Modules . 47
5.2 Linear Codes Over Galois Rings . 47

6 Conclusion 51

Acknowledgements 53

References 54

Index 55

iii

Abstract

The theory of error-correcting codes has historically been most useful in the context of
linear codes. Such codes may be viewed as vector spaces over Galois fields carrying with
them many familiar and well-studied properties. A generalization of Galois fields is the
concept of Galois rings. It is therefore natural to consider codes over Galois rings to study
which properties such codes maintain in the move to a more general setting. This thesis
will present two separate expositions on coding theory and Galois rings. After this, the
intersection of these topics will be considered: codes over Galois rings.

iv

List of Figures

1 A model for how a code can make it easier to transmit messages over noisy
channels. 2

2 Visualization of a code. The vertices at the centers of circles are codewords
while offset vertices are vectors in the larger space. By adding dimensions to
the space, we were able to add vectors as a buffer between codewords. . . . 14

3 An example of a code with its cosets and their syndromes. Coset leaders are
in the left column of vectors. 17

v

1 Introduction

Coding theory began with an issue with which many of us are all too familiar: losing our

work on the computer. In 1947, while working at Bell Laboratories, Richard W. Hamming

had sporadic access to a computer [1]. While running a program, the computer had the in-

convenient quirk of skipping to the next program upon the detection of an error. Many years

after pioneering the development of error-correcting codes, Hamming recalled its inception:

Two weekends in a row I came in and found that all my stuff had been dumped
and nothing was done...And so I said, ‘Damn it, if the machine can detect an
error, why can’t it locate the position of the error and correct it?’ [1]

As a problem-solver, Hamming decided to put an end to this by developing coding theory.

His idea was to add digits to the binary numbers in such a way that would add redundancy

to the message. That way, if a message read by the computer had an error or two, it would

still be possible to know what the intended message was.

When communicating, information is inevitably lost in the process of transmission.

People in conversation on a busy street find it hard to hear each other. They may raise

their voices to ensure their words are heard correctly. Or perhaps a painting may degrade

over time. Curators make attempts to preserve the colors. It may be impossible to get

rid of these losses entirely and so we perform actions that can at least guard against them.

Coding theory is a mathematical discipline with the same goal in mind, but applied to

strings of symbols.

A model for an application of coding theory is shown in Figure 1. Device 1 has a binary

message to send to device 2. An encoder alters that message in some way to guard against

loss of information. During transmission, it experiences some noise that flips one of the

digits. The decoder on the other end is still able to determine what the original message

was. Codes such as this one are designed in a rigorous way that guarantees that a single

error in transmission can be corrected.

Coding theory uses mathematics to add redundancy in a manner much more efficient

than naive approaches. Such a naive approach would be to send a message multiple times.

For example, suppose one wishes to send the message “HAMMING.” Suppose also that

1

Figure 1: A model for how a code can make it easier to transmit messages over noisy
channels.

during transmission of this message that one of the letters is transmitted incorrectly. Per-

haps the message is received as “HUMMING.” One may add redundancy by sending a

message many times. It is unlikely that A will be the letter that is transmitted incorrectly

every time, let alone that it will switch to U again. Maybe the second time we receive

the message “RAMMING.” The last five letters were the same both times, so those are

probably correct. The first two were different each time, but it is much less likely that both

of them transmitted incorrectly at the same time. From this, we can be fairly certain that

the message is “RUMMING” or “HAMMING.” A few more transmissions will make this

more clear.

This method of adding redundancy is costly and ineffective. It requires that we use many

times more computer power and memory to have a good chance of sending our message

correctly. The genius of Hamming and others was to develop methods that made it much

more likely to transmit a readable message while using less than twice the energy and

information it would take to send the message alone. These savings are huge compared to

the naive approach.

Historically, codes have been defined using a certain type of number system called a

field . More specifically, codes use finite fields, also called Galois fields. This has been

2

wildly successful because of the close relationship between fields and with the well-studied

concept of a vector space. Every electronically transmitting device you own uses a code

which is defined using a Galois field. In particular, the most common Galois field in use

is Z2 which is the binary field consistsing of 0 and 1. Recent work has shown that it is

possible to extend codes to more general types of number systems called rings. A field is a

special type of ring, and a direct generalization of finite fields are Galois rings. These types

of rings have proven useful of late in defining codes over rings.

In this thesis, we will first present separate expositions on coding theory and Galois

rings. Section 3 will cover the theory of error-correcting codes focusing on concepts that

have been shown to generalize to Galois rings. Section 4 will build the theory of Galois rings

leading up to the Classification of Galois Rings. Neither of these sections requires knowledge

of the other, so they may be read in either order. After presenting these concepts, we will

then cover the connections between these two topics.

2 Review of Algebra

Throughout this thesis, we will assume that the reader is familiar with undergraduate

abstract algebra. This includes the definition of a group, normal subgroup, ring, ideal, and

field among other related concepts and results. We will not distinguish between left and

right ideals because all rings considered will be commutative. Despite this assumption of

the reader’s knowledge, this section will include some of the more relevant results both to

remind the reader and refer back to later. Proofs from this section can be found in any

standard undergraduate textbook on algebra such as Gallian’s [3].

Lets first recall ideas related to maximal ideals. If R is a ring with ideal M , then M is

called maximal if for any other ideal I of R such that M ⊆ I ⊆ R we have I = M or I = R.

The following result will feature prominently in this thesis:

Theorem 1. If R is a ring and M is an ideal of R then M is maximal if and only if R/M

is a field.

A ring need not have a multiplicative identity, called a unity , but if it does, the ring

is called a unitary ring . A unitary ring has units which are elements with multiplicative

3

inverses. We point out here the important and often used fact that if a unitary ring R has

an ideal I that contains a unit u, then necessarily I = R. This is easily shown from the

definition of an ideal. We know (u−1)u = 1 ∈ I. Since 1 ∈ I, then for all r ∈ R we have

r1 = r ∈ I proving R ⊆ I and hence I = R.

Throughout this thesis, the ideal generated by a ∈ R will be denoted (a) = {ra|r ∈ R}.

Note that this is in contrast to 〈a〉 = {k · a|k ∈ Z} which denotes the subgroup generated

by a. Suppose R is a unitary ring. We will use the notation n to denote the element of R

that is given by n summands of the element 1. That is, n = n · 1 = 1 + 1 + ... + 1 with n

terms. This will be important when we speak of the ideal generated by an element p where

p is prime, denoted (p).

An important theorem that the reader ought to remember is the First Isomorphism

Theorem for Rings. We include it here for reference.

Theorem 2. Let φ be a ring homomorphism from the ring R to the ring R̄. Then the

mapping from R/ kerφ to φ(R), given by a + kerφ 7→ φ(a), is an isomorphism. That is,

R/ kerφ ∼= φ(R).

Note that there is an analogous theorem for groups.

A definition with which the reader may not be familiar is that of a local ring .

Definition 1. If a ring has a unique maximal ideal, then it is called a local ring [4].

If a R is a local ring with maximal ideal M , then R/M is a field called the residue field

of R. Galois rings are a specific type of local ring which we will cover later.

The characteristic of a ring is simply the smallest number of times any element of a ring

added to itself will return 0. The characteristic of a ring with unity is the additive order of

its unity. This is easily motivated by noting that for any element a ∈ R, if n is the additive

order of 1, then n · a = a(n · 1) = a(0) = 0. Finite fields, also known as Galois fields, are

rings with unity, and in particular they have the following property.

Theorem 3. The characteristic of a Galois field is a prime p.

On top of that, a Galois field always has prime power order pk, where p is its characteristic

and k ≥ 1. It turns out that we can classify the Galois fields up to isomorphism.

4

Theorem 4. For each prime p and each positive integer k, there is, up to isomorphism, a

unique finite field of order pk denoted GF (pk).

Sometimes for brevity we will simply use GF (q) to refer to the finite field of order q. The

reader should always remember that q must be a power of a prime.

Perhaps we wish to have a field of order pk with which we could perform operations. We

can construct these fields as quotients of polynomial rings. We first look at the polynomial

ring Zp[x]. For f(x) ∈ Zp[x], the ideal (f(x)) is maximal if and only if f(x) is irreducible

over Zp [3]. If f(x) is irreducible over Zp and of degree k, then Zp[x]/(f(x)) is a field of

order pk.

A fact that will be used briefly in the Classification of Galois Rings is as follows.

Proposition 1. Suppose α ∈ GF (pk). Let u(x) ∈ Zp[x] be the minimal polynomial of α

over Zp. Then u(x) does not have repeated roots.

Proof. Recall that for any polynomial over any field, u(x) has repeated roots if and only if

it shares a root with its derivative u′(x). We will therefore show that this is the case.

Suppose by contradiction that u(x) were to share the root α with its derivative. Let

u(x) = u0 +u1x+ ...+u`x
`. Then u′(x) has smaller degree, yet α is still a root, so we must

have u′(x) be equivalently zero. Since u(x) ∈ Zp[x], it must be the case that

u(x) = u0 + upx
p + u2px

2p + ...+ ujpx
jp,

where jp ≤ `. It is easy to check that the derivative is identically zero. Now we know α is

a root, so

0 = u(α) = u0 +up(α)p +u2p(α)2p + ...+ujp(α)jp = u0 +up(α
p) +u2p(α

p)2 + ...+ujp(α
p)j .

That is, αp is the root of v(x) = u0 + upx + u2px
2 + ... + ujpx

j . However, αp is the image

of α under the Frobenius automorphism φ(a) = ap. Since automorphisms preserve degrees,

we find a contradicion because α and αp should have the same degree over Zp.

5

As was stated previously, a more detailed and rigorous proof of any statements from

this section can be found in Gallian’s text [3] or any other undergraduate text on abstract

algebra.

3 Coding Theory

3.1 Defining Codes

Any method of written communication uses sequences of symbols to convey a message. In

English, we have 26 letters to choose from. Computers communicate with binary represen-

tations of numbers. But English and binary numbers are very different in their structure.

We can not always “add” two English words to get a new one. The development of codes

is an attempt to rigorize when certain mathematical structure is applicable to these strings

of symbols and what the consequences are.

Codes can be defined to be very general in their structure. Suppose that when writing

a codeword, we can choose from nonempty finite set of symbols A. Then A is called an

alphabet . A word over the alphabet A is simply a finite sequence of elements from A. Let

A∗ be the set of all words over A. Then we can define the notion of a code:

Definition 2. Let A be an alphabet and let C be a subset of A∗. Then C is a code over

A [4].

To be even more specific, a q-ary code is a code whose alphabet has cardinality q. The word

q-ary is simply a generalization of the words binary and terniary. We may even stipulate

that all words be of the same length n, in which case we have a code of length n. To gain

some intuition for the definition of a code and to highlight its subleties, we include some

examples.

Example 1. Let E be the standard English alphabet of 26 letters. Then the written English

language is a 26-ary code over E . The set of words {for, you, and, the, dog} is a code of

length 3 over E . Note that this sentence does not use every letter in the English language

but rather the subset {f,o,r,y,u,a,n,d,t,h,e,g}⊂ E making it a 12-ary code.

6

Example 2. Let G be the standard German alphabet. German uses the same letters as

English and more, namely ß. Written symbolically, E (G. The written English and German

languages are both codes over G but German is not a code over E .

Example 3. Let Z2 = {0, 1} be an alphabet. Then the set of all strings of four 0s and 1s

is a binary code of length 4 over Z2.

A little thought reveals that codes are not unique. That is, we could make a code that

is “the same” in many different ways.

Example 4. If tomorrow every English speaker in the world agreed that the letter A should

be used in place of the letter B and vice versa, then the English lbngubge would still aehbve

exbctly the sbme wby, though it mby ae difficult to get used to.

Example 5. We could exchange the position of the symbols. Suppose we had the code

{0000, 0001, 1000, 1001}.

If we exchange the last two symbols in each codeword, that is, permute the coordinates,

then we obtain

{0000, 0010, 1000, 1010}.

It is not hard to convince oneself that these are essentially the same thing. It simply does

not matter when we write each digit. It turns out that codes with symbols exchanged or

coordinates swapped have the same properties, and so we can define the notion of code

equivalence.

Definition 3. Two codes are equivalent if we can obtain one from the other by

1. any permutation of the letters of the alphabet in any fixed coordinate,

2. any permutation on the coordinate positions.

It is not hard to show that this is an equivalence relation and that we get equivalence classes

of codes. In practical applications, we simply use the class representative that best fits the

task at hand.

7

As examples 1 and 2 demonstrate, the definition of a code is general enough that its

symbols need not have a mathematical structure of their own. For example, there is no

binary operation that “combines” the letters A and B to get another letter, and thus no

operation that combines any two words to produce another word. This gives us the freedom

to add different types of structure, which can add to the power of coding theory. Taking

example 3, we do indeed have some sort of structure imposed on the symbols: addition

modulo 2. We will see that we are able to combine these codewords as vectors and find

useful results. In this thesis we will cover some of the more important ways of adding

structure to codes. We will view them as vector spaces which requires the use of Galois

fields. We will also touch on recent work that looks at codes over Galois rings, which gives

a different type of structure.

3.2 Introducing Linear Codes

In this section, we discuss the most developed and most commonly utilized codes: linear

codes over Galois fields.

Definition 4. Let V = GF (q)(n) be the vector space of dimension n over GF (q). Then a

linear code C is a subspace of V . The code C has some dimension k ≤ n and the dimension

n of V is also referred to as the length of C [2].

In the context of linear codes, there may be some confusion on the use of the words

“codeword” and “vector”. A “vector” is simply any element of the larger space V while a

“codeword” is an element of the subspace, or code, C.

Example 6. View the code in example 3 as a vector space where each digit is a component

of a vector (e.g. we may add 0001 and 1001 as (0, 0, 0, 1) + (1, 0, 0, 0) = (1, 0, 0, 1)). Then

we have a linear code over Z2. We could also take the subspace C = {(0, 0, 0, 0), (0, 0, 0, 1),

(1, 0, 0, 0), (1, 0, 0, 1)}. This would also be a linear code.

What is particularly useful about linear codes is that, being a vector space, they have a

basis. Suppose we only had the basis elements (0, 0, 0, 1) and (1, 0, 0, 0) of C from example 6.

Then we know that (1, 0, 0, 1) is also a codeword in C because of closure under addition. In

8

general, if we store all basis elements of a linear code, then we can find all other codewords

simply by taking linear combinations of the basis vectors. As this shows, if we have a

k-dimensional binary code, then instead of storing all possible 2k codewords, we need only

store the k basis elements. This provides massive savings on storage space for large k.

A linear code C of dimension k is always a subspace of a vector space V of dimension

n. The number n may also be called the length of a linear code. An (n, k) code is a linear

code of length n and dimension k. It is important to note that in the future, saying a code

is (n, k) will imply that it is linear.

Listing the basis vectors of a linear code is so useful that the list has its own name. In

fact, it is both a list and a matrix:

Definition 5. [2] Let C be an (n, k) code with basis vectors a1, a2,...,ak. The generator

matrix is the k × n matrix

G =


a1

a2
...

ak

 .

Lets develop an example by Pless [2] to follow along with this definition. The Hamming

(7, 4) code is a binary linear code whose generator matrix can be given by

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 . (1)

Note that according to the definition of code equivalence, we could permute the columns

or exchange 0 and 1 in any of the columns. As written, we have a particularly nice form

where G = (I, A), I is the identity matrix and A a 4× 3 matrix. In general an (n, k) code

whose generator matrix has the form (I, A) where I is the k× k identity matrix and A is a

k×n−k matrix is said to be in reduced echelon form [2]. Given any linear code, it is always

possible to find an equivalent code that is in reduced echelon form. For the remainder of

the thesis, we will generally only consider the reduced echelon form of a code.

In an (n, k) code, any k columns of the generator matrix which are linearly independent

9

are called the information set and their coordinates are the information positions. The rest

of the coordinate positions are the redundancy positions[2]. Using this terminology, putting

an (n, k) code in reduced echelon form is simply putting all of its information positions in

the first k positions and reducing to the identity matrix.

Having the generator matrix of a code allows us to encode the messages. In the case of the

Hamming (7, 4) code, we have a 4-dimensional code suggesting we should be able to encode

any 4-digit message. This is even more apparent when looking at the generator matrix.

The four left positions are simply a single 1 in each possible position. We can add these

basis vectors to get other codewords, so if we wished to encode, say, 1001, we could add the

first column and fourth column to find the encoded message 1000011 + 0001111 = 1001100.

Notice that our original message is in the first four digits. We now have an encoded message

that we could send. Later, we will look at how to obtain the original message in a process

known as decoding.

Compared to nonlinear codes, linear codes make it particularly easy to encode messages.

In the case of nonlinear codes, we would need to search a list for the codeword with our

message in the information set. Any practical code is rather large in size, exponentially

larger than the codes considered here, and so nonlinear codes are limited by the efficiency

of search algorithms. We will see that linear codes have a similar advantage over nonlinear

codes in decoding as well.

3.3 Parity Check Matrix

Consider a vector space V . Just as we are familiar with from geometry, the inner product

of two codewords v = (v1, v2, ..., vn) and w = (w1, w2, ..., wn) in V is given by

v ·w =

n∑
i=1

viwi.

The two vectors are orthogonal or perpendicular if v ·w = 0. Note that in the case that the

code is binary, the inner product simply counts the number of positions in which v and w

both have a 1. A useful fact is the following:

Proposition 2. The inner product is linear in both of its arguments.

10

Proof. Well-known from courses on calculus or linear algebra.

Now we can move on to defining the dual code.

Definition 6. Let C be an (n, k) code that is a subspace of V . The dual code of C is the

set

C⊥ = {x ∈ V |x · y = 0 for all y ∈ C}.

Since the inner product is linear, the dual code is linear as well. That is, if v,w ∈ C⊥ and

x ∈ C, then (αv+βw) ·x = α(v ·x)+β(w ·x) = α(0)+β(0) = 0, so any linear combination

of v and w is also in C⊥. If the dimension of the code C is k, then the dual code has

dimension n− k [2].

It turns out that the dual code of the dual code is the code itself, or in symbols,

(C⊥)⊥ = C. Since C⊥ has dimension n− k and is linear, its dual code will have dimension

n − (n − k) = k. In addition, it is self-evident that C ⊆ (C⊥)⊥ because every vector in C

is orthogonal to every vector in C⊥. But C also has dimension k so it must be equal to

(C⊥)⊥.

Since the dual code is linear, we can determine a generator matrix. The generator

matrix of the dual of a code will play a special role in decoding, so it has its own name.

Definition 7. Let C be an (n, k) code and let C⊥ be the dual code. A generator matrix

H of C⊥ is a (n− k)× n matrix called a parity check matrix [2].

In the case of the Hamming (7, 4) code, a parity check matrix is

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

One may easily check that every row vector in H is orthogonal to every row vector in G as

defined in Equation 1.

Another reason for writing a code in reduced echelon form is that it is much easier to

calculate a parity check matrix. We have the following theorem:

11

Theorem 5. [2] If an (n, k) code C has a generator matrix G = (I, A) in reduced echelon

form, then a parity check matrix of C is H = (−At, I) where At is the transpose of A and

I is the (n− k)× (n− k) identity matrix.

Proof. We will calculate the inner product of the rows ofG andH. Each of these calculations

is done simultaneously if we simply consider the matrix product GHt.

GHt =
(
I, A

)(−A
I

)
= −A+A = 0

3.4 Quantifying the Quality of a Code

The goal of coding theory is to correct as many errors as possible, and so the most obvious

measure of a code’s quality is the number of errors it can correct. Practical considerations

may force one to look at other features such as how many codewords a computer would

need to store or how much computational power it takes to encode or decode. For now, we

will only consider the number of errors that the code can correct.

First, we should define what “distance” is in a code. Let C be a code which is a subspace

of V . For any such V , the Hamming distance dH between two vectors is the number of

coordinates which have different entries.

Definition 8. The Hamming distance between v,w ∈ V is dh(v,w) = |{i|vi 6= wi, 1 ≤ i ≤

n}|.

Example 7. If u = (1, 0) and v = (0, 0) are in the space Z(2)
2 , we have dH(u, v) = 1.

The title of “distance” is accurate in that dH is a metric on the space of the code. Recall

that a metric on a set X is a function d : X × X → R+ ∪ {0} that satisfies the following

properties:

1. d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x) for all x, y ∈ X,

3. d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.

12

Proposition 3. The Hamming distance is a metric

Proof. The domain and codomain satisfy the form of a metric since N is a subset of R. We

now prove the three properties:

1. The function dH is a function to the non-negative integers, so the image is always

greater than or equal to 0. In addition, dH(v,w) = 0 if and only if |{i : 1 ≤ i ≤

m, vi 6= wi}| = 0 if and only if vi = wi for all i if and only if v = w.

2. We have that dH(v,w) = |{i : 1 ≤ i ≤ m, vi 6= wi}| = |{i : 1 ≤ i ≤ m,wi 6= vi}| =

dH(w,v).

3. Consider a third vector u ∈ C. We prove the triangle inequality by looking at a

coordinate at a time. Let D(v,w) denote the set {i : 1 ≤ i ≤ m, vi 6= wi} such

that dH(v,w) = |D(v,w)|. Consider coordinate i. The only way to have dH(v,w) >

dH(v,u) + dH(w,u) is if it is possible to have i ∈ D(v,w) but i 6∈ D(v,u)∪D(w,u).

Hence we will show that i ∈ D(v,w) implies i ∈ D(v,u) ∪ D(w,u). If i ∈ D(v,w)

then vi 6= wi. But the only way to have i 6∈ D(v,u)∪D(w,u) is if ui = vi and ui = wi

in which case vi = wi contradicting our assumption. Hence the triangle inequality is

proved.

The minimum distance of a code is the smallest nonzero distance between two code-

words. Including distances of zero is meaningless. A code is nonempty and so it has a

vector v for which dH(v,v) = 0. If we included distances of zero, then every code would

have minimum distance of zero. If an (n, k) code has minimum distance d, then it can be

called an (n, k, d) code. The weight of a vector is its distance from the zero vector and the

minimum weight of a code is the smallest weight of any nonzero codeword. Note that if we

have a code D with u,v ∈ D, then dH(u,v) = |{i|ui 6= vi}| = |{i|ui− vi 6= 0}| = wt(u−v).

Of course, u − v is not necessarily in the code, but if D is linear, it will be. This leads to

the following proposition:

Proposition 4. In a linear code C with minimum distance d and minimum weight w, we

have w = d.

13

Figure 2: Visualization of a code. The vertices at the centers of circles are codewords while
offset vertices are vectors in the larger space. By adding dimensions to the space, we were
able to add vectors as a buffer between codewords.

Proof. The minimum weight cannot be less than the minimum distance because C is linear,

meaning 0 is in the code. The minimum distance cannot be less than the minimum weight

because dH(u,v) = wt(u− v) for all u,v ∈ C. Hence d = w.

Consider Figure 2. This is a visualization of a code. We took all of our messages that

we wished to send and embedded them in a space with larger dimension so that we could fit

more vectors around them. Receiving any vector in a particular circle means we know that

the original codeword sent was the one at the center of that circle. This assumes only one

error occurred, which is not a bad assumption since if the probability of one error occurring

is p, then the probability of two errors occurring is p2. Note that to move from one codeword

to another requires 3 steps. That is, this figure represents a code of minimum distance 3.

Note also that moving more than one vertex away from the center of a circle puts us in

another. We enter the neighborhood of another codeword. Apparently a minimum distance

(or weight) of 3 gives the ability to correct 1 error. Lets make this idea more rigorous. We

have this theorem given by Pless in [2] to help us determine the number of errors a code

can correct.

Theorem 6. [2] If d is the minimum weight of a code C, then C can correct t = b(d− 1)/2c

or fewer errors.

Proof. This proof is given by Pless [2]. First, define a sphere about a vector u in the space

14

V to be Sr(u) = {v ∈ V |dH(u,v) ≤ r}. We will show that spheres of radius t are disjoint.

For a contradiction, suppose these spheres were not disjoint. Then there are code

words u and w such that St(u) ∩ St(w) 6= ∅. Let v ∈ St(u) ∩ St(w). Then dH(u,w) ≤

dH(u,v) + dH(v,w) ≤ 2t by the triangle inequality proved in Proposition 3. This implies

that dH(u,w) ≤ 2(d − 1)/2 = d − 1. So dH(u,w) < d. But dH(u,w) = wt(u − w) ≥ d

(this last statement follows because C is linear, so u− v ∈ C). This contradiction implies

that the two spheres are disjoint. Since they are disjoint, of all the words in the sphere the

code word at the center is the only code word in the sphere at all.

This theorem tells us how many errors a code can correct, but not how it corrects them.

This will be the subject of the next section on decoding.

Example 8. Lets determine how many errors the Hamming (7, 4) code can correct. To do

this, we will calculate the minimum weight of the Hamming (7, 4) code. From the generator

matrix in equation 1, we can see that the all basis vectors have weight 3 or greater. That

is, we know that some nonzero vectors of weight 3 exist, so d ≤ 3. Now simple calculation

shows that adding any two of the rows gives weight at least 3 because there will be two

nonzero coordinates among the first four and a nonzero coordinate among the last three.

Adding any three rows will certainly give a vector of weight at least 3 because there will be

three nonzero coordinates among the first four. Finally, adding all four rows gives that the

first four coordinates are nonzero. Since any nonzero vector in the code can be written as a

sum just described, we know there are no codwords of weight less than 3, so d = 3. Thus,

the Hamming (7, 4) code can correct t = b(3− 1)/2c = 1 error.

3.5 Syndrome Decoding

We now know how many errors a code can correct, now lets see how it corrects these. The

process described here is called syndrome decoding .

Let C be an (n, k) q-ary code and let V be the vector space of dimension n containing

C. Let H be the parity check matrix with rows h1,h2, ...,hn−k. We have the following

definition:

15

Definition 9. [2] The syndrome of a vector y ∈ V is

syn(y) =


y · h1

y · h2
...

y · hn−k

 .

A priori there are qn−k possible syndromes because syn(y) has n − k coordinate positions

with q possible values. We can think of the syndrome as just multiplying y by the parity

check matrix. Note that if y ∈ C, its syndrome will be the zero vector. This easily follows

from the definition of the parity check matrix. In addition, since the inner product is linear,

so is the syndrome (syn(αx + βy) = αsyn(x) + βsyn(y)).

Pless describes an elegant way of viewing linear codes [2]. Lets view C as a subgroup of

V under addition. Note that V is Abelian under addition, so C is a normal subgroup of V .

All our standard results about normal subgroups and their cosets apply [3]. This allows us

to prove the following theorem.

Theorem 7. [2] Two vectors in V have the same syndrome if and only if they are in the

same coset of C. Moreover, all possible qn−k syndromes exist.

Proof. We first show that for v ∈ V the syndrome is zero if and only if v ∈ C. The “if” is

easy because all vectors in C are orthogonal to the vectors in C⊥. To prove the “only if”

statement, lets prove the contrapositive: if v 6∈ C then syn(v) 6= 0. Let g1, ...,gk be a basis

for C. Assuming v 6∈ C, we know then v 6∈ (C⊥)⊥, therefore v is not orthogonal to every

vector in C⊥. It is therefore the case that syn(v) 6= 0.

Now to prove the statement of the theorem. Suppose v1,v2 ∈ e +C. Then v1 = e + x1

and v2 = e + x2 for x1,x2 ∈ C. But syn(v1) = syn(e) = syn(v2) proving the “if” direction.

Now suppose v1 and v2 have the same syndrome. Then 0 = syn(v1)− (v2) = syn(v1 − v2)

showing v1 − v2 ∈ C. This is only true if v1 and v2 are in the same coset of C.

The code C has dimension k and therefore has qk codewords. This follows from a simple

counting argument of linear combinations of the basis vectors. Every element v ∈ C can

be written in the form v1g1 + v2g2 + ... + vkgk where the gi are basis vectors. Since the

code is over a field of cardinality q, there are qk choices for the coefficients. Now since C is

a normal subgroup of V , which has cardinality qn, there are qn/qk = qn−k cosets of C each

16

Coset Vectors Syndrome

C (0, 0, 0, 0) (1, 0, 1, 0) (0, 1, 1, 1) (1, 1, 0, 1)

(
0
0

)
e1 + C (1, 0, 0, 0) (0, 0, 1, 0) (1, 1, 1, 1) (0, 1, 0, 1)

(
1
0

)
e2 + C (0, 1, 0, 0) (1, 1, 1, 0) (0, 0, 1, 1) (1, 0, 0, 1)

(
1
1

)
e3 + C (0, 0, 0, 1) (1, 0, 1, 1) (0, 1, 1, 0) (1, 1, 0, 0)

(
0
1

)

Figure 3: An example of a code with its cosets and their syndromes. Coset leaders are in
the left column of vectors.

of which has a distinct syndrome by the above paragraph. Thus all syndromes exist.

After one more definition we’ll be ready to describe syndrome decoding.

Definition 10. Given a coset u +C, a coset leader of the coset is the vector e of smallest

weight in the coset [2].

Note that it is possible to have multiple coset leaders. See the example later in this section.

On to syndrome decoding as described by Pless [2]. We first list all of the qn−k syndromes

along with their coset leaders. To do this, we simply take all vectors of weight 1 in V and

compute their syndromes. Once this is completed, we move on to vectors of weight 2, only

keeping them if their syndrome has not yet shown up. We continue for larger weights until

we find all qn−k syndromes for some vector. This will get the vectors of smallest weight

for each syndrome and thus will get all coset leaders. Now with these syndromes and coset

leaders stored in a list, we receive a vector y and compute its syndrome. As Theorem 7 tells

us, we will then know which coset the received vector is in. We then take the coset leader of

that coset e and decode to x = y−e. How do we know that y−e is in C? It is clear if that

if y is in the coset e + C, we can uniquely express it as y = e + x for x ∈ C. Computing

x = y − e is simply a rewriting of this equation. Since e is the vector of minimum weight

that can be used to express such a sum, it is sometimes called the error vector .

We will now perform an example of syndrome decoding. Suppose we have the code

C = {(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1)} ⊆ Z(4)
2 ,

17

as seen in Figure 3. A generator matrix is easily seen to be

G =

(
1 0 1 0
0 1 1 1

)
.

From Theorem 5, we know that a parity check matrix is

H =

(
1 1 1 0
0 1 0 1

)
.

In the notation from the definition of syndromes, we have h1 = (1, 1, 1, 0) and h2 =

(0, 1, 0, 1). Figure 3 shows the cosets with syndromes calculated from these row vectors.

The coset leaders are in the left-hand column of vectors.

Now suppose we receive the vector y = (1, 1, 1, 0). Looking at Figure 3, we can just

locate it on the list and subtract the coset leader, but remember that this is a consequence

of using a small code. For large codes it is much less practical to keep all of the vectors and

search the list. We will instead decode y by calculating its syndrome.

syn(y) =

(
y · h1

y · h2

)
=

(
(1, 1, 1, 0) · (1, 1, 1, 0)
(1, 1, 1, 0) · (0, 1, 0, 1)

)
=

(
1
1

)
.

So y is in the coset e2 +C where e2 = (0, 1, 0, 0). Thus, we decode y to y−e2 = (1, 0, 1, 0).

3.6 Perfect Codes

Recall from Theorem 6 that a linear code C, where C is a subspace of a larger vector space

V , of minimum weight d can correct t = b(d−1)/2c errors. That is to say, spheres of radius

t about each codeword are disjoint in the vector space V . Now it may be the case that these

spheres contain all vectors in the space or that some lie outside. This leads to the following

definition:

Definition 11. A code C ⊆ V of minimum weight d is perfect if the union of all spheres

about its codewords of radius t (t defined as above) is the vector space V [2].

18

Perfect codes are, as the name suggests, the best codes possible. Every received vector can

be decoded to a codeword in C. Granted if there are too many errors, it will not decode

to the correct codeword, but the probability of this occurring is small compared to a single

error. If a received vector does not lie in a sphere, we need to decide in some other manner

how best to decode it. We will not cover that topic here.

For an (n, k, d) code there is a simple constraint on the parameters n, k, and d for such

a perfect code to exist. Instead of constraining d, we will think of constraining t, but it is

nearly equivalent as d and t are related.

Theorem 8. [2] In order for a perfect, t-error-correcting binary (n,k) code to exist, the

numbers n, k, and t must satisfy the relation

((
n

0

)
+

(
n

1

)
+ ...+

(
n

t

))
2k = 2n.

Proof. First, let C be a perfect, t-error-correcting, binary (n, k) code. Since C is linear, it

contains the zero vector. Let St(0) be the sphere of radius t about the zero vector. The

number of vectors of weight w, where w ≤ t, in St(0) is easily seen to be
(
n
w

)
because

there are that many distinct ways to arrange the w 1s in the n coordinates. So there

are
(
n
0

)
+
(
n
1

)
+ ... +

(
n
t

)
vectors in St(0). Now C is a linear space, so adding c ∈ C to

each element in St(0) gives St(c). By linearity, St(c) has the same cardinality. Since C is

t-error-correcting, the spheres of radius t about the codewords are disjoint. At the same

time, since C is perfect we know that their union is all of V . So we add the cardinalities of

the 2k disjoint spheres, equate it to the cardinality of V and find the relation stated in the

theorem.

An analogous theorem for q-ary codes in general is possible to prove as well.

Theorem 9. [2] In order for a perfect t-error-correcting (n, k) code over GF (q) to exist,

the numbers n, k and t must satisfy the following equation

((
n

0

)
+ (q − 1)

(
n

1

)
+ ...+ (q − 1)t

(
n

t

))
qk = qn.

19

Some perfect codes are trivial. One example of a trivial perfect code is when the code

is the entire space. This code cannot correct any errors because every possible codeword is

in the code.

There are famous examples of nontrivial perfect codes. One example is an infinite family

of binary, single-error-correcting codes, the general binary Hamming codes.

Definition 12. For each r ∈ N the general binary Hamming code Hr is defined as the code

whose parity check matrix has columns consisting of all nonzero r-tuples. Typically, the

code is defined such that we order the columns numerically viewing the r-tuples as binary

integers.

This definition is somewhat opaque at first glance, so here is an example.

Example 9. Take H3. Its generator matrix is actually given by G in the first section.

Without knowing that fact we can still find the code using Definition 12. The parity check

matrix using the standard ordering is simply

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

Notice that in each column, the top row is viewed as the first digit of a binary number while

the second and third represent the rest of the digits. Given the parity check matrix, the

code is uniquely defined, so in practice, we know the code. To find the generator matrix G,

we would simply calculate a parity check matrix of H.

Note that the length of Hr is 2r − 1 (i.e. Hr is a subspace of GF (2)(2
r−1)). This is

because there are that many nonzero vectors in the r-dimensional column space. Since the

dimensions of the dual code and the code itself sum to the dimension of the larger space,

we know that the dimension of Hr is (2r − 1) − r. We showed in Example 8 that the

minimum weight of H3 is d = 3. In general, Hr has minimum distance 3 [2]. Overall, Hr is

a (2r−1, 2r−r−1, 3) code. This satisfies Theorem 8. After calculating t = b(3−1)/2c = 1,

we have

20

((
2r − 1

0

)
+

(
2r − 1

1

))
22

r−r−1 = 22
r−1 =⇒ (1 + 2r − 1)22

r−r−1 = 22
r−1.

Note that this does not prove in itself that Hr is perfect, only that it can be. It turns out,

however, that all general binary Hamming codes Hr are perfect codes. This is also true of

the general q-ary Hamming codes.

Definition 13. For each r ∈ N the general q-ary Hamming codes Hr over the Galois field

GF (q) is defined as the code whose parity check matrix has columns consisting of all nonzero

r-tuples, excluding scalar multiples. Again, the convention is to order the columns so they

count up from left to right [2].

We didn’t need to worry about scalar multiples in the case of binary codes because such

vectors have no nonzero scalar multiples other than themselves.

Example 10. Lets consider H3 over GF (3). There are 33 − 1 = 26 nonzero vertical 3-

tuples. We can multiply each by 1 or 2 to get a different nonzero scalar multiple, so overall

there is a set of 13 nonzero vertical 3-tuples none of which are scalar multiples of the others.

Choosing from each pair the 3-tuple representing the smaller number, we have that the

parity check matrix of H3 over GF (3) is

H =

 1 0 1 2 0 1 2 0 1 2 0 1 2
0 1 1 1 0 0 0 1 1 1 2 2 2
0 0 0 0 1 1 1 1 1 1 1 1 1



Since H is the generator matrix of the dual of Hr we see that the dual of Hr has dimension

3 meaning Hr itself will have dimension (33 − 1)− 3 = 23.

In general, Hr over GF (q) has length n = (qr − 1)/(q− 1) and is a perfect, single-error-

correcting (n, n− r, 3) code [2].

Another famous name in coding theory is Marcel Golay. He discovered perfect, multiple-

error-correcting codes which we will discuss briefly now. Golay discovered a binary (23, 12, 7)

code [2]. Note that since the minimum weight is d = 7, this is code can correct t =

21

b(7−1)/2c = 3 errors. Now recall that for any (n, k) code, we may write a generator matrix

of an equivalent code of the form G = (I, A) where I is the k × k identity matrix and A is

a k × n − k matrix. Golay also discovered a ternary (11, 6, 5) code with generator matrix

G = (I, A) where

A =



1 1 1 1 1
0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0

 .

We end with a nontrivial result on the existence of perfect codes.

Theorem 10. [2] The only nontrivial multiple-error-correcting perfect codes are equivalent

to either the binary (23, 12, 7) code or the ternary (11, 6, 5) code. The only nontrivial

single-error-correcting perfect codes have the parameters of the Hamming codes.

This theorem was proved after many years of work by Tietevainen, van Lint, and Pless

[2].

3.7 Cyclic Codes

Cyclic codes are a very useful type of code because of their simple structure and easy

representation as ideals of rings. Many familiar codes, like the Hamming codes, can be

represented as cyclic codes [2]. The definition is as follows.

Definition 14. An (n, k) code C is a cyclic code if whenever a = (a0, a1, ..., an−1) is in C

then so is a′ = (an−1, a0, ..., an−2) [2].

The element a′ as defined above would be called the first cyclic shift of a [2].

Suppose the code C is over a field F = GF (q). Lets correspond the element (a0, a1, ..., an−1)

in C with the element a(x) = a0 + a1x + ... + an−1x
n−1 in the factor ring Rn = F [x]/A

where A is some ideal of F [x]. Recall that F [x] is a principal ideal ring [3]. By definition,

this means we can represent A as A = (f(x)). Which f(x) should we choose to find an

ideal that gives us a cyclic code? We will see that there is an obvious choice. If we want to

22

use the polynomial operations to find the first cyclic shift, this means we want to move the

coefficient a0 to be the coefficient on x, a1 to be the coefficient on x2 and so on. Clearly we

must multiply by x.

a(x)x = (a0 + a1x+ ...+ an−2x
n−2 + an−1x

n−1)x

= a0x+ a1x
2 + ...+ an−2x

n−1 + an−1x
n

= an−1x
n + a0x+ a1x

2 + ...+ an−2x
n−1.

This result will correspond to (an−1, a0, ..., an−2) only if we choose xn = 1. That is, xn−1 =

0 in this ring, so all polynomials are viewed modulo xn − 1. Hence f(x) = xn − 1 and

Rn = F [x]/(xn − 1). From now on we will use the notation Rn = F [x]/(xn − 1) making

sure the field F is clear from context.

From the argument above, we know we can correspond a cyclic code C with some subset

of Rn. It turns out that it is not just a subset, but an ideal. We have the following nice

theorem from Pless [2] which we state without proof.

Theorem 11. A subset S in Rn corresponds to a cyclic code C if and only if S is an ideal

of Rn [2].

Now Rn is also a principal ideal ring as well, so a cyclic code C will correpond to the

ideal (g(x)) for some g(x) ∈ Rn. These next theorems give us some immediate information

about g(x). In the theorems, we state that C, by abuse of terminology, not only corresponds

to an ideal of Rn, but is itself an ideal.

Theorem 12. If C is an ideal of Rn = F [x]/(xn − 1), which by Theorem 11 makes it a

cyclic code, let g(x) be a monic polynomial of smallest degree in C. Then g(x) is the unique

monic polynomial of smallest degree and C = (g(x)) [2].

We do not offer a proof here. But notice that if g(x) and h(x) were two monic poly-

nomials of minimum degree, then the leading terms cancel in g(x) − h(x). An ideal is a

subring, so this polynomial is in the ideal and has smaller degree than either contradicting

the minimality of their degree.

23

Table 1: Showing the correspondence between divisors of x3 − 1, ideals, and codes.

Divisor of x3 − 1 Associated Ideal Associated Code

1 R3 Z(3)
2 = {(0, 0, 0), (1, 0, 0), ..., (1, 1, 1)}

x+ 1 (x+ 1) {(0,0,0),(0,1,1),(1,0,1),(1,1,0)}
x2 + x+ 1 (x2 + x+ 1) {(0,0,0),(1,1,1)}
x3 − 1 (0) = {0} {(0,0,0)}

Theorem 13. If C is an ideal of Rn then its unique monic generator g(x) divides xn − 1.

Conversely, if g(x) ∈ C and it divides xn − 1, then g(x) has the lowest degree in (g(x)) [2].

Together, these theorems determine all cyclic codes. From Theorem 11 we know all cyclic

codes are ideals of Rn. Theorem 12 says we can correspond an ideal (and hence a code)

with a monic polynomial in Rn. Finally, Theorem 13 says exactly which monic polynomials

generate ideals, namely those that divide xn − 1.

We know there are no other ideals (and hence no other cyclic codes) for suppose f(x)

were monic and did not divide xn − 1. Would (f(x)) be an ideal? Yes, it would by its

definition, and hence it would correspond to a cyclic code. But by Theorems 12 and 13 it

would not be of minimum degree in the ideal. We could rename it (f(x)) = (g(x)) in (f(x))

where g(x) is of minimum degree and by Theorem 13 does divide xn − 1. For this reason,

we call g(x) the generator polynomial of the code it generates [2].

Lets determine all binary cyclic codes of length 3. From Theorem 11, we know these

correspond to ideals of R3 = Z2[x]/(x3−1). Now lets determine all polynomials that divide

x3−1. We can easily do this if we factor x3−1. Note that x3−1 = x3+1 = (x+1)(x2+x+1).

The quadratic factor is irreducible over Z2 because it is of degree 2 and has no roots in Z2.

Table 1 gives each polynomial dividing x3− 1, its associated ideal of R3, and its associated

code. Assume a product of no factors is 1.

The next theorem is useful and should be fairly intuitive.

Theorem 14. [2] If C corresponds to (g(x)) where g(x) = g0 + g1x+ ...+ gn−kx
n−k ∈ Rn

and the degree of g(x) is n− k, then the dimension of C is k and a generator matrix is

24



g0 g1 g2 ... gn−k 0 0 ... 0

0 g0 g1 ... gn−k−1 gn−k 0 ... 0

...

0 0 0 ... gn−k


.

Proof. This is equivalent to showing that the vectors g(x), g(x)x, g(x)x2,...,g(x)xk−1 in Rn

are linearly independent and span C. Suppose they were not linearly independent. Then

there is a linear combination of these vectors with some nonzero coefficients which is equal

to zero: a0(g(x)) + a1(g(x)x) + ...+ ak−1(g(x)xk−1) = (a0 + a1x+ ...+ ak−1x
k−1)g(x) = 0.

But the degree of g(x) is n−k, so the product is a polynomial of degree k−1+n−k = n−1,

so the polynomial cannot be 0 modulo xn − 1 unless all ai are 0.

To see that the vectors span, recall that the code is an ideal generated by g(x), so any

polynomial can be written c(x)g(x) = c0g(x) + c1xg(x) + ...+ ck−1x
k−1g(x).

Finally, we move onto the dual code of a cyclic code. Note that if g(x) is the generator

polynomial of some code C then xn−1 = g(x)h(x) for some h(x) because g(x) divides xn−1.

Now h(x) is called the check polynomial of C, although it does not necessarily generate the

dual code [2]. But a polynomial closely related to it does. This is the reciprocal polynomial

of h(x) given by xkh(x−1) where k is the degree of h(x).

In Table 1 we saw that x+ 1 generates a code and x3 − 1 = (x+ 1)(x2 + x+ 1), so the

polynomial x2[(x−1)2 + (x−1) + 1] = 1 + x + x2 generates the dual code. In this case, the

reciprocal polynomial is equal to the original, but this is not always so. For example, if we

had the polynomial x3+x+1, then its reciprocal would be x3((x−1)3+x−1+1) = 1+x2+x3.

The polynomials of minimum degree are not the only generators of the ideals. There is

an easier way to find generators that does not involve factoring xn−1. It involves idempotent

elements. An element a of a ring R is idempotent if a2 = a. Lets review these elements in

the context of polynomials.

Example 11. Consider the ring Z2[x]/(x3−1). Elements of this ring look like a0+a1x+a2x
2

where ai ∈ 0, 1 and all polynomials are viewed modulo x3−1. We can recall that this means

25

x3 = 1. Then the element x2 + x+ 1 is idempotent.

(x2 + x+ 1)2 =x4 + x3 + x2 + x3 + x2 + x+ x2 + x+ 1

=x4 + 2x3 + 3x2 + 2x+ 1

=x(x3) + x2 + 1

=x2 + x+ 1

Within an ideal, an idempotent element has nice properties.

Lemma 1. Let R be a ring with ideal I and idempotent element a ∈ I. The element a is a

generator of I if and only if it acts as a unity in I.

Proof. Suppose a is a generator of I. Let c ∈ I. Then c = ba for some b ∈ R. Now

ca = (ba)a = b(a2) = ba = c. So for elements of I, a acts like the unity.

Suppose a acts as the unity of I and c ∈ I. To show that I = (a), we must show that

c = ba for some b. But this is simple as c = ca because a is a unity in I. Thus a generates

I.

We will now take a short detour to cyclotomic cosets. In the construction of finite fields,

we find a concept that naturally occurs.

Definition 15. Consider a number s such that 0 ≤ s ≤ pm − 1. Let r be the smallest

number such that pr+1s = s (mod pm − 1). The cyclotomic coset of s is {s, ps, p2s, ..., prs}

where the elements are viewed modulo pm − 1 [2].

In determining the cyclotomic cosets, the following is useful.

Proposition 5. The cyclotomic cosets partition the set {0, 1, 2, ..., pm − 1}.

Proof. Define the relation ∼ on the set such that x ∼ y if x ≡ pky (mod pm − 1) for some

integer k where 0 ≤ k ≤ m− 1. We will show that this is an equivalence relation which will

imply that it partitions the set into equivalence classes. It is reflexive because x ≡ p0x. It

is symmetric because if x ∼ y, then x ≡ pky which implies pm−kx ≡ pm−kpky ≡ pmy ≡ y.

Congruence is symmetric so y ≡ pm−kx which means y ∼ x. Finally, it is transistive. If

26

x ∼ y and y ∼ z, then x ≡ pky and y ≡ plz. Then x ≡ pk(plz) ≡ pk+lz. Note that k + l

may be greater than m− 1 but not as large as 2m− 2. If k + l > m− 1, we simply factor

out pm and note that pm ≡ 1 (mod pm−1). So x ≡ pk+lz ≡ pmpk+l−m ≡ pk+l−mz meaning

x ∼ z. This proves that ∼ is an equivalence relation implying that the cyclotomic cosets

partition the set.

Example 12. Let p = 2 and m = 3. We will compute all cyclotomic cosets for 23 − 1 = 7.

Note that 2 ·0 = 0. Therefore the cyclotomic coset for 0 is {0}. This will always be the case.

Now, looking at 1, we see that 2 ·1 = 2, 22 ·1 = 4, and 23 ·1 = 1. Referring to the definition,

the corresponding r for 1 is r = 2. Thus 1 has cyclotomic coset {1, 2, 4}. Now by Proposition

5 the cyclotomic cosets partition the set, so we need not calculate the coressponding cosets

for 2 and 4. The final cyclotomic coset is easily seen to be {3, 2 · 3, 22 · 3} = {3, 6, 5}.

Usually, cyclotomic cosets are given by Cu where u is the smallest number in the coset.

Lets now assume that we are looking only at binary cyclic codes of odd length n. It

turns out that this means xn − 1 has distinct irreducible factors [2]. Another consequence

is that it is easy to take squares of elements. Recall the following:

Lemma 2. If R is a ring with prime characteristic p and x, y ∈ R, then (x+y)p = xp +yp.

Proof. By the binomial theorem, (x+ y)p = xp +
(
p
1

)
xp−1y+ ...+

(
p

p−1
)
xyp−1 + yp. Now

(
p
k

)
is divisible by p for 1 ≤ k ≤ p − 1, so these terms are zero because the characteristic is p.

This proves the lemma.

By induction it is easy to show that for any finite sum of elements in R, taking the pth power

is simply the sum of the pth powers of the summands. To motivate this, note (x+y+z)p =

((x + y) + z)p = (x + y)p + zp = xp + yp + zp. This fact will be important when squaring

polynomials. For if f(x) = a0 + a1x+ ...akx
k, then f2(x) = (a0)

2 + (a1x)2 + ...+ (akx
k)2.

We now have a theorem that will tell us all idempotent generators.

Theorem 15. A binary polynomial f(x) is an idempotent in Rn = Z2[x]/(xn − 1) if and

only if the set S of powers of x that occur with nonzero coefficients in f(x) is a union of

cyclotomic cosets for n [2].

27

Before we begin the proof, lets attempt to understand the statement of the theorem. We

know what a binary idempotent polynomial is, but it will be useful to get an idea of what

it means for the set S of powers of x that occur with nonzero coefficients in f(x) to be

a union of cyclotomic cosets for n. Consider n = 22 − 1 = 3. The cyclotomic cosets are

{0} and {1, 2}. So if we take the polynomial x + x2 = (1)x + (1)x2 and square it, we

find ((1)x + (1)x2)2 = (1)2x2 + (1)2x4 = x2 + x. We see that the coefficient on x changed

to become the coefficient on x2. In general terms ai, the coefficient on xi becomes the

coefficient on x2i upon squaring the polynomial. Remember that this is because in Z2 both

elements are idempotents. In order for the polynomial to be idempotent, we need a2i = a2i

for all i. The polynomial must have the property that ai nonzero implies a2i is nonzero.

Thus for any nonzero coefficient, we have the entire set {ai, a2i, a4i...} is nonzero elements.

Now on to the formal proof.

Proof. For the forward direction, let f(x) = a0+a1x+a2x
2+...+an−1x

n−1 be an idempotent.

To get a contradiction, suppose the set of powers in question S is not a union of cyclotomic

cosets. Then there is some nonzero aj = 1 such that a2j = 0 where 2j is viewed modulo

n. Now since Rn has characteristic 2, f2(x) = a20 + a21x
2 + a22x

4 + ... + a2n−1x
2(n−1). But

f2(x) = f(x) by assumption, so in particular, a2j = a2j . But this implies 12 = 0, which is

not the case. So by contradiction S is the union of cyclotomic cosets of n.

Now suppose that S is the union of cyclotomic cosets. Using the same definition for

f(x), we see that this means if ai is nonzero, then a2i is nonzero, a4i is nonzero, and so

on so that the subscripts together form the cyclotomic coset of i. As before, squaring f(x)

gives a2i = a2i for all i (again, 2i is viewed modulo n). But the only elements of Z2 are 0

and 1, and we have 02 = 0 and 12 = 1. Hence, f(x) is idempotent.

The argument that states that a2j = a2j may be a little difficult to follow, so I will

provide a short example.

Example 13. Let n = 5, and consider f(x) = x + x2. That is, a1 = a2 = 1 and a0 =

a3 = a4 = 0. Note that in particular, a22 6= a4. This alone shows that f(x) will not be an

idempotent, for we ought to have f2(x) = (x)2 + (x2)2 = x2 + x4 = x+ x2, but this is not

the case.

28

Example 14. Recall that for n = 7, the cyclotomic cosets are {0}, {1, 2, 4}, and {3, 5, 6}.

Looking at the cosets, they can correspond directly to the polynomials x0 = 1, x+ x2 + x4,

and x3 + x5 + x6 which are easily shown to be idempotent. We can also take the union of

any of these cosets and use those powers to make polynomials, but this just corresponds to

taking sums of the three polynomials we just wrote down. These idempotent polynomials

are 1+x+x2+x4, 1+x3+x5+x6, x+x2+x3+x4+x5+x6, and 1+x+x2+x3+x4+x5+x6.

Of course, we may also include the empty coset which corresponds to the empty sum giving

us the final idempotent polynomial: 0. The “if and only if” in Theorem 15 means that

these are the only idempotent polynomials in R7.

4 Galois Rings

4.1 Defining Galois Rings and Examples

Galois rings are a very natural generalization of finite fields. Not only does each Galois ring

contain finite fields, but many of the most important results about finite fields generalize

to Galois rings. In particular, we can classify all Galois rings. In the case of finite fields,

the classification is up to order. For Galois rings, we must add the stipulation that the

characteristics be equal. Lets begin with the definition of a Galois ring.

Definition 16. A ring R is called Galois if it is finite, commutative, unitary, local and its

maximal ideal is given by (p) where p is prime.

Here we begin to see the hints of why Galois rings are a generalization of finite fields. Not

only are they finite, commutative, and unitary, but the element p plays an important role

for Galois rings as it does for fields of p-power order. Just as Zp is the canonical example of

a finite field, the canonical example of a Galois ring is the ring Zpn with p prime and n > 0.

We will prove that this is a Galois ring.

Proposition 6. The ring Zpn is a Galois ring.

Proof. Since this ring is obviously finite, commutative, and unitary, we must only show

that (p) is the unique maximal ideal. Stipulating “unique” will implicitly prove that Zpn

29

is local. Consider the homomorphism φ : Zpn → Zp that maps a mod pn 7→ a mod p. This

is clearly onto as we can map the elements less than p to themselves. It is obvious that

kerφ = (p). Using the First Isomorphism Theorem for Rings gives Zpk/(p)
∼= Zp which is a

field. By Theorem 1, we see that (p) is maximal. To show unicity, suppose M were some

other maximal ideal not equal to (p). We can first note that p 6∈ M . Suppose it were the

case that p ∈M . Then (p) ⊆M with (p) 6= M meaning M properly contains (p). Since (p)

is maximal, this would imply M = Zpn . A maximal ideal is a proper ideal by definition, so

this contradiction shows p 6∈ M . Now by Theorem 1, Zpn/M must be a field. Since M is

a proper ideal, 1 6∈ M and so 1 + M is nonzero. Since all fields have prime characteristic,

in this case p, this implies p · 1 + M = M so that p ∈ M . This contradiction proves the

unicity of (p). All together, we see that Zpn is a Galois ring.

We saw that we can construct finite fields of order pk from quotients of polynomial

rings over Zp. In the same way, we will be able to construct Galois rings as quotients of

polynomial rings over Zpk .

4.2 Important Properties of Galois Rings

It turns out that a Galois ring with maximal ideal (p) must have characteristic pk for some

k. We will prove this soon, but first here is a lemma.

Lemma 3. Let R be a finite, commutative, local ring with unique maximal ideal M . If I

is a proper ideal of R, then I ⊆M .

Proof. Suppose I is not a subset of M . Then there is some a ∈ I such a 6∈ M . Hence,

(a) 6⊆ M . If (a) is maximal, then this contradicts the unicity of M . There must be some

ideal A1 such that (a) ⊆ A1. If A1 is maximal, this again contradicts the unicity of M .

Continuing inductively, there must always be a larger ideal. But R is finite, so this chain of

ideals must be finite and there is some final Ar which again contradicts the unicity of M .

Hence by contradiction I ⊆M .

We will now use this lemma to prove the following important theorem.

30

Theorem 16. Let R be a finite, unitary, commutative, local ring. Then the characteristic

of R is pk for some prime p and positive integer k.

Proof. Let us first decompose R as a direct sum. We know that under addition, R is a finite

Abelian group, so by the Fundamental Theorem of Finite Abelian Groups we may write

R ∼= Z
p
k11
1

⊕ Z
p
k12
1

⊕ ...⊕ Z
p
k21
2

⊕ ...⊕ Z
p
kml
m

.

Now, since R is local, it has a unique maximal ideal M which by Lemma 1 means R/M is a

field. Clearly this is a finite field, so its characteristic is some prime p. Referring back to the

decomposition, it is clear that p = pi for some i. That is to say, we definitely have elements

of order p in R. Suppose not. Then p does not divide |R|, so p does not divide |R|/|M |.

But this is exactly the order of R/M which does have an element of order p, namely 1.

Lets now define A ∼= Zpk1 ⊕ Zpk2 ⊕ ... ⊕ Zpkt and B to be isomorphic to all group

summands that do not have orders of powers of p. In this way, we can write R ∼= A ⊕ B

where we know A is not empty. In order to show that the characteristic of R is pk for some

k, we only need to show that B is trivial.

Suppose that B is nontrivial. It is then easy to see that A⊕ {0} and {0} ⊕B are both

proper ideals of R. By Lemma 3 then A⊕ {0}, {0} ⊕B ⊆M . But since M is closed under

addition, this implies that A⊕B = R ⊆M which is clearly not the case. Hence, B is trivial

and the only group summands of R are those with order a power of p. The characteristic

of R is therefore some power of p.

Note that this theorem does not mention Galois rings, only finite, unitary, commutative,

and local rings. A Galois ring R is described by all of these adjectives but also has maximal

ideal (p). Knowing p, we know from this theorem that the characteristic of R is pk for some

positive k. Additionally, we can see directly from the decomposition of R into direct sums

as shown in the proof that the order of a Galois ring will also be a power of p. From now

on, R will be a Galois ring and M = (p) will be its maximal ideal.

Galois rings split nicely into two disjoint subsets: units and elements divisible by p. The

units turn out to be exactly those elements which are not in the maximal ideal. In addition,

31

the multiples of p, elements on M , are nilpotent elements. We prove these statements in

the next couple of paragraphs.

Proposition 7. An element x ∈ R is a unit if and only if x 6∈M .

Proof. In the forward direction, we’ll prove the contrapositive. Suppose x ∈ M . We wish

to show that x is not a unit. Clearly (x) ⊆ M . Hence for all r ∈ R, we have rx ∈ M .

Now, 1 6∈ M because otherwise M would not be a proper ideal. Therefore we cannot have

a y such that xy = 1. In the other direction, suppose x 6∈ M . Then the ideal (x) is not a

subset of M . By lemma 3 however, M contains all proper ideals of R. Hence we must have

(x) = R. This implies that 1 ∈ (x) so there is a y ∈ R such that xy = 1.

Proposition 7 tells us about the units of a Galois ring. It turns out that nilpotent

elements are important in the study of these rings as well. Recall that a ∈ R is nilpotent

if ak = 0 for some k ∈ N. It is not difficult to see that the nilpotent elements form an

ideal. For let N be the set of all nilpotent elements. Then if r ∈ R and a ∈ N , we have

(ra)k = rkak = rk0 = 0 proving N is an ideal. As we proved in Lemma 3, N ⊆M . We will

now prove M ⊆ N showing N = M .

Proposition 8. The set of nilpotent elements in R is exactly the maximal ideal M .

Proof. Let N be the ideal of nilpotent elements. We already know N ⊆ M . Now we show

M ⊆ N . Since M = (p), this is equivalent to showing that if an element of R is divisible by

p, then it is also nilpotent. But this is simple. Recall that the characteristic of R is pk for

some k, so pk = 0 showing p is nilpotent. Then if a is divisible by p, we find a = bp. This

implies a is nilpotent because ak = (bp)k = bkpk = bk0 = 0. This completes the proof.

Another useful fact is the following:

Proposition 9. In any unitary ring R, if u is a unit and a is nilpotent, then u + a is a

unit.

Proof. The inverse of u+a is (uk−1−uk−2a+ ...+(−1)k−1ak−1)(u−1)k where k is such that

32

ak = 0.

(u+ a)(uk−1 − uk−2a+ ...+ (−1)k−1ak−1)(u−1)k

=(uk + uk−1a− uk−1a+ ...+ (−1)k−2uak−1 + (−1)k−1uak−1 + (−1)k−1ak)(u−1)k

=(uk + (−1)k−1ak)(u−1)k

=(uk)(u−1)k = 1.

We will frequently consider polynomial rings over Galois rings, and so we need to study

some properties. With proposition 9, we can prove a similar theorem regarding units in the

polynomial rings over R. It is stated as follows.

Theorem 17. Let f(x) = a0 + a1x + ... + akx
k be a polynomial in R[x]. Then f(x) is a

unit in R[x] if and only if a0 6∈M and a1, ..., ak ∈M .

Proof. Suppose f(x) is a unit. Let ψ : R[x] → R[x]/M be the homomorphism taking the

coefficients of polynomials to their corresponding cosets in R/M . Since R/M is a field, the

units of R[x]/M are exactly the constant polynomials a+M . For example, (a+M)+(b+M)x

is not a unit. Now if f(x) is a unit in R[x], then ψ(f(x)) is also a unit. This is because if

f(x)g(x) = 1, then 1+M = ψ(1) = ψ(f(x)g(x)) = ψ(f(x))ψ(g(x)). Using this fact, ψ(f(x))

being a unit in R[x] means ψ(f(x)) = ψ(a0)+ψ(a1)x+...+ψ(ak)xk+M = a0+...+akx
k+M

is constant and nonzero. Thus, a0 6∈M and the rest of the coefficients are in M .

We will now prove the other direction. Since a0 6∈ M , this means a0 is a unit in R as

well as in R[x]. The element a1x + ... + akx
k is clearly nilpotent in R[x]. Since R[x] is a

unitary ring, Proposition 9 implies f(x) = a0 +a1x+ ...+akx
k is a unit as well. This proves

the theorem.

In the next section, we will prove some more specific properties about polynomials over

Galois rings that lead up to the Classification of Galois Rings.

33

4.3 Properties of Polynomials Over Galois Rings

Polynomials over Galois rings have some interesting properties that we will be able to

exploit later when proving the Classification of Galois Rings. The theorem we wish to

prove is stated as follows:

Theorem 18. Let f(x) = a0 +a1x+ ...+anx
n be a polynomial in R[x] where R is a Galois

ring with maximal ideal M and characteristic pk. Let j ≤ k be such that aj 6∈ M and

aj+1, ..., ak ∈M . Then f(x) is an associate of a monic polynomial of degree j.

Let’s take a moment to consider what this theorem states. Here, ajx
j is the highest degree

term where aj 6∈ M . Every term of degree higher than j has a nilpotent coefficient. The

theorem says that for some unit polynomial u(x), we have f(x)u(x) = g(x) where g(x) is

monic and of degree j. In rings of polynomials defined over fields, unit polynomials are

exactly the constant polynomials. However, since this polynomial ring is defined over a

ring, it is possible to have unit polynomials which are not constants, i.e. degree greater

than 0. Note also that Theorem 18 is a generalization of Theorem 17 in that if we take

j = 0, we recover Theorem 17.

The general outline of the proof is by construction but is rather tedious. Defining some

terms will make it easier to state and prove some lemmas.

Definition 17. For any polynomial in R[x] define a p-term to be a nonzero term in that

polynomial whose coefficient is divisible by p but not by p2. Inductively, define a pk-term

to be a term whose coefficient is divisible by pm but not pm+1. A pm-term of degree s is

simply a term of the form rxs where r is divisible by pm but not pm+1.

By the logic of the above definition, we could call a unit a 1-term, but there is no need

to use a new word for a familiar concept. To gain intuition for these definitions, here is an

example.

Example 15. Recall from Proposition 6 that Z8 is a Galois ring with maximal ideal (2).

In the polynomial 1 + 6x + 4x2 ∈ Z8[x], the term 6x is a 2-term of degree 1 and 4x2 is a

4-term of degree 2. There is no such thing as an 8-term in this case because such terms are

zero.

34

Theorem 18 defines the polynomial f(x) of which the highest degree of a term with

coefficient not in M is degree j. Another term will be useful to define so that we do not

have to always say “the term of highest degree with unit coefficient.”

Definition 18. The final unit term will be the highest degree term of a polynomial with

unit coefficient. The final unit degree will be the degree of the final unit term.

Now to move toward the proof, I will prove a series of lemmas.

Lemma 4. Let f(x) be defined as in Theorem 18 and let ` be the degree of the highest

degree p-term. Then f(x) is an associate of a polynomial f1(x) = b0 + b1x + ... + bn1x
n1,

where bj 6∈M and bj+1, ..., bn1 ∈M , but the highest degree p-term has degree less than `.

Essentially this lemma says that we can constrain the highest degree p-term in f(x) to a

smaller degree in a way that preserves the final unit degree, in this case j.

Proof. From the statement of the lemma, a`x
` is the highest degree p-term. Consider the

polynomial f1(x) = f(x)(a`aj x
`−j) − f(x). Remember we can divide by aj because aj 6∈ M

so it is a unit. First we show that bj 6∈ M . That is, we preserve the fact that the term

of degree j has unit coefficient. If ` − j > j, then bj = −aj which is a unit. If ` − j ≤ j,

then bj = a`
aj
a2j−` − aj which by Proposition 9 is a unit (first term is nilpotent while aj is

a unit). Since bj is a unit, bj 6∈ M . We now show bm ∈ M for m > j. By the definition of

j, for m > j we have that bm is divisible by p. Looking at bm = a`
aj
am−(`−j)− am for m > j

,we see that a` and am are both divisible by p. Since, bj 6∈M and all terms of higher degree

have coefficients in M , this proves that we have preserved the final unit degree.

We will now show that all p-terms in f1(x) are constrained to have degree strictly less

than `. First of all, the coefficient b` = (a`/aj)aj −a` = 0 so the term of degree ` is not a p-

term. Let m now be the degree of some nonzero term in f1(x). Then bm = a`
aj
am−(`−j)−am

where am = 0 if m > k by convention. Consider the case that that m − (` − j) > j, or

equivalently m > `. Then am−(`−j) is certainly divisible by p, so a`
aj
am−(`−j) is divisible by

p2. In addition, since m > ` so we know that am is divisible by p2. Thus bm is divisible by

p2, so bmx
m is not a p-term . We have constrained our p-terms in f1(x) to have degree less

than `.

35

Finally we must show that f(x) and f1(x) are associates. Rewriting f1(x) we have

f1(x) = f(x)(a`aj x
`−j − 1). By Proposition 17, (a`aj x

`−j − 1) is a unit. Hence f1(x) and f(x)

are associates.

We can use this lemma to repeatedly constrain the degree of the highest degree p-term

to smaller and smaller degrees until we reach j. That is, we are able to “get rid of” all

p-terms with degree greater than the final unit degree all while preserving the final unit

degree. This is the proof of the next lemma.

Lemma 5. Let f(x) be defined as in Theorem 18. Then f(x) is an associate of a polynomial

g(x) = c0 + c1x+ ...+ ctx
t, where cj 6∈M and cj+1, ..., ct ∈M , but g(x) has no p-terms of

degree greater than j.

Proof. By Lemma 4, f(x) is the associate of a polynomial f1(x) with its highest degree p-

term less than `. Let f1(x) = f(x)u1(x). Lemma 4 applies to f1(x) as well, so we can find an

associate polynomial f2(x) that has its highest degree p-term at an even smaller degree with

its term of degree j still having unit coefficient. Let f2(x) = f1(x)u2(x) = f(x)u1(x)u2(x).

Of course, there are a finite number of degree between j and `, so there is a finite sequence

{u1(x), u2(x), ..., us(x)} such that g(x) = fs(x) = f(x)u1(x)u2(x)...us(x). That is, we can

constrain our p-terms to have lower and lower degree until we get rid of all p-terms of degree

greater than j.

It should be easy to see that we can generalize Lemmas 4 and 5 to higher powers of p.

In the end, we would find the following lemma given without proof:

Lemma 6. Let f(x) = d0 + d1x + ... + drx
r be such that for j ≤ r we have dj 6∈ M but

dj+1, ..., dr ∈ M . Suppose also that f(x) has no p-terms, p2-terms,..., or pm-terms. Then

f(x) is an associate of a polynomial with final unit degree j and no pm+1-terms of degree

greater than j.

We are essentially able to knock out higher and higher powers of p. Now we can prove

Theorem 18.

Proof. Consider f(x). By Lemma 5 (or equivalently by Lemma 6) it is the associate of a

polynomial g1(x) with final unit degree j and which has no p-terms of degree greater than

36

j. Now by Lemma 6, g1(x) is the associate of a polynomial g2(x) with final unit degree

j and no p2 terms of degree greater than j. We may continue in this fashion. Now f(x),

g1(x), g2(x) and so on are defined over R which has characteristic pk. Thus, gk−1(x) as

defined in the above fashion will have no terms at all of degree greater than j which are

divisible by p. And since j is still the final unit degree, we see that gk−1(x) has degree j

with unit leading coefficient. Let ej be this leading coefficient of gk−1(x). We finally, take

g(x) = e−1j gk−1(x) to get a monic polynomial of degree j. We know that f(x) and g(x) are

associates, so the theorem is proved.

4.4 Lemmas for the Classification of Galois Rings

Just as we are able to classify all Galois fields by their order, we can also classify Galois

rings by order and characteristic. This section will build up to a rigorous proof that this is

the case. For the rest of the section, assume that R is a Galois ring with maximal ideal M

and characteristic pk.

We showed in the proof of Theorem 16 that as an Abelian group, R ∼= Zpk1 ⊕Zpk2 ⊕ ...⊕

Zpkt . We will now show that all ki must be equal. That is, we will show that as an Abelian

group under addition, R is isomorphic to the direct sum Zpk ⊕ Zpk ⊕ ... ⊕ Zpk . First, we

have a couple of lemmas.

Lemma 7. Suppose y ∈ R. Then there is a unique integer j ∈ {0, 1, ..., k} such that y is

an associate of pj.

Proof. If y is a unit, then from Proposition 7 we know that y is not divisible by p. Hence,

j = 0 is the only exponent possible to have y = ypj .

Now suppose y = 0. Then y is an associate of pk because upk = 0 for any unit u. There

is no other value of j that works because upj is nonzero for all units u and all j.

We may now suppose that y is not a unit and is nonzero. It is therefore divisible by p.

We may thus write y = u1p. If u1 is a unit, then we are done. If not, then u1 is a nonzero

nonunit like y and so u1 = u2p. Plugging in for u1 gives y = u2p
2. We find a sequence {u`}

by continuing this process. If u` is never a unit for all ` ∈ N, then we find y = ukp
k = 0.

But we had assumed y was nonzero. We must therefore have some j < k such that uj is a

37

unit and y = ujp
j .

To show that this j is unique, suppose y = u1p
j1 = u2p

j2 for integers j1 < j2 and units

u1 and u2. Then multiplying both sides by pk−j2 , we have

u1p
k+j1−j2 = u2p

k−j2+j2 = u2p
k = 0.

But u1 is a unit and pk+j1−j2 is also certainly nonzero as k + j1 − j2 < k. Therefore we

have a contradiction and it must be the case that j1 = j2.

From this lemma, lets define a notion of absolute value.

Definition 19. The absolute value of y = upj ∈ R, where u a unit, is given by |y| = j for

j < k. If j = k, let |y| =∞.

This definition makes sense because Lemma 7 gives a well-defined value of j for each element.

Note that 0 is the only element with an absolute value of ∞. By convention we will say

that adding ∞ to anything gives ∞.

Proposition 10. |yz| = |y|+ |z|.

Proof. Let |y| = j and |z| = `. Then yz = (uy)pj(uz)p
` = (uyuz)p

j+`. Since uyuz is a

unit, we know yz is an associate of pj+`. If j + l < k then |yz| = j + `. If j + ` ≥ k then

|yz| =∞.

This definition of absolute value allows us to speak about ideals of Galois rings more

easily. We can see this applied in the following lemma.

Lemma 8. The chain of ideals R = (1) ⊇ (p) ⊇ (p2) ⊇ ... ⊇ (pk) = {0} is a complete list

of ideals of R.

Proof. We will first show that any ideal in R can be written (pj) where j ∈ {0, 1, ..., k}. If

I is the trivial ideal, we know {0} = (pk). Now suppose I is a nontrivial ideal of R. This

will guarantee that I contains an element of finite absolute value as 0 is the only element

with infinite absolute value. Let y be an element of smallest absolute value in I, say |y| = j.

38

Since y is an associate of pj , we have (y) = (pj). We know that (pj) = (y) ⊆ I. All that

remains is to show I ⊆ (pj). Suppose a ∈ I. By the definition of y, the absolute value of a

is at least j, so a = up` where u is a unit and ` ≥ j. Thus, a = (up`−j)pj so a ∈ (pj). We

have therefore shown that I = (pj). It is clear that (pj) 6= (pj+1) because pj+1 ∈ (pj+1) but

pj 6∈ (pj+1). This shows that the ideals listed are distinct. This completes the proof.

Note that this lemma also shows that Galois rings are Principal Ideal Rings .

Lemma 9. As an Abelian group, R ∼= Zpk ⊕ ...⊕ Zpk .

Proof. We begin by showing that for j < k, we have R/(p) ∼= (pj)/(pj+1) as Abelian

groups. This is a simple application of the First Isomorphism Theorem for Rings. Take

the homomorphism φ : R → (pj)/(pj+1) given by x 7→ xpj + (pj+1). It is clearly onto.

To see that kerφ = (p), note that x ∈ kerφ if and only if φ(x) ∈ (pj+1) if and only if

xpj + (pj+1) = (pj+1) if and only if xpj ∈ (pj+1) if and only if x ∈ (p). By the First

Isomorphism Theorem for Rings, we have R/(p) ∼= (pj)/(pj+1) as rings and therefore as

Abelian groups under addition.

We showed in the proof of Theorem 16 that as an Abelian group, R ∼= Zpk1 ⊕ Zpk2 ⊕

...⊕Zpkt . Let e be the minimum exponent of p in this direct sum and f1 ≤ f2 ≤ ... ≤ fs be

the rest of the powers not equal to e, though not necessarily distinct amongst themselves.

Then

R ∼= Zpe ⊕ Zpe ⊕ ...⊕ Zpe ⊕ Zpf1 ⊕ Zpf2Zpfs .

If the groups Zpfi are indeed nontrivial, then it is clear that pe is less than the charac-

teristic of R. This is because we need only take the element that has 1 in the coordinate

corresponding to Zpf1 and 0 elsewhere to find an element with additive order pf1 > pe. Now

according to Lemma 8, we ought to have an isomorphism between R/(p) and (pe)/(pe+1)

given by x + (p) 7→ xpe + (pe+1). However, if we take element y = (1, 0, ..., 0) ∈ R then

y + (p) is certainly nonzero in R/(p) because not all coordinates are divisible by p. Its

image, however, is zero because

(1, 0, ..., 0) + (p) 7→ (1, 0, ..., 0)pe + (pe+1) = (0, 0, ..., 0) + (pe+1)

39

Therefore, this so called isomorphism has a nontrivial kernel. By contradiction there can

not be higher powers. So setting k = e, we have R ∼= Zpk ⊕ ...⊕ Zpk .

Now that we know that a Galois ring of characteristic pk is isomorphic to the direct

sum Zpk ⊕ Zpk ⊕ ...⊕ Zpk as an Abelian group, we can see why the following theorem may

become useful.

Proposition 11. Let A be a finite Abelian group that is isomorphic to an external direct sum

Zpk⊕Zpk⊕...⊕Zpk with j copies of Zpk . Then A/pA is isomorphic to B = Zp⊕Zp⊕...⊕Zp.

Furthermore, this is a vector space over Zp.

Proof. A simple application of the Fundamental Theorem of Finite Abelian Groups.

There is a tight connection with structure of A and that of its corresponding vector

space A/pA. First lets recall the definition of an internal direct product [3].

Definition 20. Let H1, H2,...,Hn be a finite collection of normal subgroups of G. Then G

is the internal direct product of the Hi (denoted G = H1 ×H2 × ...×Hn) if

1. G = H1H2...Hn = {h1h2...hn|hi ∈ Hi},

2. (H1H2...Hi) ∩Hi+1 = {e} for i = 1, 2, ..., n− 1.

Note that in the case for which the operation is addition, we have G = H1 +H2 + ...+Hn

as well as (H1 +H2 + ...+Hi) ∩Hi+1 = {0} for i = 1, 2, ..., n− 1.

Theorem 19. Let A be as defined in Proposition 11. If a1, ..., aj ∈ A are such that a1 +

pA, a2 + pA, ..., aj + pA form a basis for A/pA then there is an internal direct product

A = 〈a1〉 × ...× 〈aj〉.

Proof. We are trying to show that A is an internal direct product of 〈a1〉,〈a2〉,...,and 〈aj〉.

The definition of the internal direct product requires that these subgroups be normal. Since

A is Abelian, all 〈ai〉 are normal subgroups, so this part is trivial.

We first show condition 1 that A = 〈a1〉 + ... + 〈aj〉. Let B = 〈a1〉 ⊕ ... ⊕ 〈aj〉 and

consider the homomorphism φ : B → A given by (b1, b2, ..., bj) 7→ b1 + b2 + ... + bj . If

we can show that this homomorphism is onto, then we know we can write every element

40

as a sum of elements from all 〈ai〉. We will first show that A = pA + φ(B). Suppose

a ∈ A. Then a + pA in the vector space A/pA can be written as a linear combination of

the basis elements, say n1a1 + ... + njaj + pA. That is, a + pa′ = n1a1 + ... + njaj + pa′′

for some a′, a′′ ∈ A and we have a = n1a1 + ... + njaj + p(a′′ − a′). Note in addition that

n1a1 + ...+ njaj = φ(n1a1, ..., njaj) ∈ φ(B). Hence we can write any a ∈ A as a sum of an

element from pA and from φ(B) telling us that A ⊆ pA+ φ(A). Showing containment the

other direction is trivial because φ(B) ⊆ A and pA ⊆ A. Since A is closed under addition,

this implies pA+ φ(B) ⊆ A. Hence A = pA+ φ(B).

We now show that A = p2A+φ(B). First note that A = p(pA+φ(B)) +φ(B) is trivial

as we replaced A in the expression we found in the last paragraph. That p(pA + φ(B)) =

p2A+ pφ(B) follows from distribution over addition of the elements. So we now have that

A = p2A + pφ(B) + φ(B). To see that pφ(B) + φ(B) = φ(B), note that pφ(B) ⊆ φ(B).

And since φ(B) is closed under addition, we have pφ(B) + φ(B) = φ(B). This shows that

A = p2A+ φ(B).

We could easily generalize the last paragraph to higher powers of p, but we will spare

the reader the details as it uses the same logic. Now repeating the process, we eventually

we find,

A = pA+ φ(B) = p2A+ φ(B) + ... = pkA+ φ(B) = 0 + φ(B) = φ(B),

where we used the fact that the characteristic of A is pk. Thus, A = φ(B) proving that the

homomorphism is onto. This completes the proof that A = 〈a1〉 × ...× 〈aj〉.

Note that since A and B have the same number of elements, namely pkj , this also proves

that they are isomorphic. That A has pkj elements is clear from its definition. To show

that B has this many elements, we must show that the order of each ai in A is pk. This is

simple because ai + pA is nonzero in A/pA, so clearly ai = (ai,1, ai,2, ..., ai,j) where at least

one of the ai,s is not divisible by p, so ai must have order pk.

It is now simple to prove condition 2. The subgroups 〈a1〉⊕〈a2〉⊕...⊕〈ai〉⊕0⊕...⊕0 and

0⊕0⊕...⊕0⊕〈ai+1〉⊕...⊕0 of B have trivial intersection for all i. It follows that their images

under φ also have trivial intersection. But these images are exactly 〈a1〉+ 〈a2〉+ ...+ 〈ai〉

41

and 〈ai+1〉, so condition 2 is proved.

There is one more lemma that is rather fundamental to the study of polynomials. It is

called Hensel’s Lemma, and we include it here without proof for use in the Classification of

Galois Rings. The proof given by Bini and Flamini in [4] is long and tedious. Note that if

we have a polynomial in R[x] and view this polynomial “modulo ps”, this will mean we are

viewing the coefficients as being in R/(ps).

Lemma 10. Let R be a Galois ring of characteristic pk with maximal ideal (p). Suppose

s ≤ k. Suppose u(x), f(x), g(x) ∈ R[x] are monic polynomials and that f(x) and g(x) are

relatively prime modulo p. Suppose further that u(x) ≡ f(x)g(x) modulo ps. Then it is

possible to uniquely determine two polynomials f1(x), g1(x) ∈ R/(ps+1)[x]. such that the

following hold:

1. f(x) ≡ f1(x) (mod ps),

2. g(x) ≡ g1(x) (mod ps),

3. u(x) ≡ f1(x)g1(x) (mod ps+1).

Essentially this theorem allows us to show the existence of factorizations of polynomials

in R[x]. If we have a factorization of u(x) over R/(ps), we are essentially able to lift that

factorization to R/(ps+1) and higher until we reach R/(pk) where pk is the characteristic of

R. Since pk = 0, this is simply a quotient by the trivial ideal giving us a factorization over

R.

4.5 Classification of Galois Rings

We are now ready to prove the Classification of Galois Rings.

Theorem 20. Let R1 and R2 be Galois rings with the same characteristic pk and the same

order. Then R1 and R2 are isomorphic as rings.

Proof. We will organize this long proof into sections.

1. Preliminary Definitions and General Outline

We know R1 and R2 are isomorphic as Abelian groups because of Lemma 9 and

42

therefore they both contain 〈1〉 = Zpk . It is also clear that their residue fields F1 =

R1/(p) and F2 = R2/(p) must also have the same number of elements and are therefore

isomorphic because finite fields are unique up to order. Let φ : F1 → F2 be such an

isomorphism.

The outline of the proof is to show that R1 and R2 are isomorphic by proving that R1
∼=

Zpk [x]/(u(x)) for some monic, irreducible u(x) ∈ Zpk [x] and that R2
∼= Zpk [x]/(u(x))

as well.

2. Defining u(x)

Since F1 = R1/(p) has characteristic p, we can construct F1 as being isomorphic to an

extension Zp(ᾱ) for some ᾱ ∈ F1 [3]. Let α ∈ R1 be such that ᾱ = α+(p) ∈ F1. It can

be found in [3] that 1 +pR1, α+pR1, α
2 +pR1, ..., α

j−1 +pR1 form a basis for F1 over

Zp. Since this is the case, we know from Theorem 19 that R1 = 〈1〉×〈α〉× ...×〈αj−1〉.

We can subsequently write

αj = c0 + c1α+ ...+ cj−1α
j−1, where c0, c1, ..., cj−1 ∈ Zpk .

Let u(x) = xj − cj−1xj−1 − ...− c1x− c0 ∈ Zp[x] and note that u(α) = 0 ∈ R1.

In fact, u(x) is the minimal polynomial for α over Zp. It is monic by definition,

so we now need to show it has the minimum degree for a polynomial with α as a

root. Suppose that there were some v(x) = v0 + v1x + ... + xt of degree less than

deg(u) (i.e. t < j) for which v(α) = 0. Then in the vector space R1/(p) we find

v(α) + (p) = v0 + v1α + ... + αt + pR1 = 0 + (p). But since the powers of α form

a basis and t < j, this implies that the coefficients are divisible by p contradicting

the fact that v(x) is monic. We find that u(x) is the minimal polynomial for α by

contradiction.

3. Showing R1
∼= Zpk [x]/(u(x))

We finish showing the isomorphism involving R1 by using the First Isomorphism

Theorem for Rings. Consider the homomorphism ψ : Zpk [x] → R1 given by f(x) 7→

f(α). This is onto because the R1 is the internal direct product 〈1〉×〈α〉× ...×〈αj−1〉.

43

In addition, the kernel of this map is simply (u(x)). This follows directly from the

fact that u(x) is the minimal polynomial of α. It can be found in Gallian that if

f(α) = 0, then u(x)|f(x) so that f(x) ∈ (u(x)) [3]. We are now able to apply the

First Isomorphism Theorem for Rings and we find that Zpk [x]/(u(x)) ∼= R1.

4. Passing to F2 and R2 Now we move on to showing that R2
∼= Zpk [x]/(u(x)) for the

same u(x). First of all, recall that u(α) = 0 ∈ R1[x]. Let’s we take the natural

homomorphism ψ1 : R1 → F1 where a 7→ a+ (p). Consider also, by abuse of notation,

the homomorphism ψ1 : R1[x] → F1[x] where the coefficients are sent to their image

under the former definition of ψ1. The argument of ψ1 will determine which definition

we use. Clearly in F1[x], 0 = ψ1(0) = ψ1(u(α)) = ū(ψ1(α)) where ū(x) is the image

of u(x) under ψ1. Now recall that 〈1〉 = Zpk ⊆ R2 and that u(x) is defined over Zp.

We can therefore view u(x) as also being a polynomial in R2[x]. Let’s consider the

same natural homomorphism ψ2 : R2 → F2 that sends a 7→ a+ (p) and its polynomial

counterpart. Let ū(x) be the image of u(x) under ψ2. Note that since u(x) is defined

over Zp, ū(x) will be defined over Zpk/(p)
∼= Zp. Recall the isomorphism φ : F1 → F2

defined in part 1. Letting β = φ(α), we have ū(β) = 0. Since u(x) is monic, so is

ū(x), and so ū(x) is the minimal polynomial of β over Zp.

5. Factorizing ū(x)

Since β is a root of ū(x), we have the following factorization over F2:

ū(x) = (x− β)ḡ(x).

Of course, since ū(x) is the minimal polynomial over Zp, then by Proposition 1 it has

not repeated roots in F2 and so ḡ(x) does not have β as a root. Equivalently, x − β

does not divide ḡ(x). Since x−β and ḡ(x) share no factors, they are relatively prime.

We can now use Hensel’s Lemma (Lemma 10) to lift this factorization from F2[x] to

R2[x]. That is,

u(x) = f(x)g(x) ∈ R2[x],

44

where as in Hensel’s Lemma, f(x) ≡ f̄(x) = x− β ∈ F2[x] and g(x) ≡ ḡ(x) ∈ F2[x].

6. Showing u(x) has a root and finishing

Since f̄(x) has degree 1, this means that all terms of f(x) of degree greater than 1

have coefficients in (p). Theorem 18 then implies that f(x) is the associate of a monic

polynomial of degree 1. That is f(x)h(x) = x− α′ where α′ ∈ R2 and h(x) is a unit.

It follows that,

u(x) = f(x)g(x) = (x− α′)(h(x))−1g(x) ∈ R2[x].

So in R2[x] we have u(α′) = 0. We already know that u(x) is irreducible over Zpk ,

therefore we may use the First Isomorphism Theorem for Rings as we did with R1 to

show R2
∼= Zpk [x]/(u(x)) finally proving that R2

∼= R1.

Now the possible characteristics for Galois rings are pk for any prime p and positive

integer k. In addition, the possible orders are pkj for some positive integer j. We see why

this is from constructing R1 and R2 as isomorphic to quotients of polynomial rings. We know

that up to isomorphism there can only be one Galois ring for each possible characteristic

and order. Do Galois rings exist for all such characteristics and orders? The answer is yes.

We can construct them from the finite fields. Let’s take recall that finite fields of all possible

characteristics exist (meaning all prime characteristics) and are isomorphic if they have the

same order.-

Theorem 21. Suppose k ∈ N and F is a finite field of characteristic p. Then there is a

Galois ring R of characteristic pk such that R/(p) ∼= F .

Proof. To construct R, let f(x) ∈ Z[x] be a monic polynomial such that f(x) modulo p

gives F ∼= Zp[x]/(f(x)). Now view f(x) modulo pk so that f(x) ∈ Zpk [x]. That is, interpret

f(x) as being in Zpk [x] (similar to the way we did with the field F). The claim is that

R = Zpk [x]/(f(x)) is a Galois ring of characteristic pk. That R is finite and commutative

is obvious. It is clearly unitary having unity 1. Now we can determine the characteristic

45

because the characteristic of a unitary ring is simply the additive order of its unity. Since

1 ∈ Zpk [x], we have that the additive order of 1 is simply pk proving that the characteristic

of R is pk. To finish showing that R is Galois, we need only show that (p) is its unique

maximal ideal.

To see that (p) is maximal, note that (Zpk [x]/(f(x)))/(p) ∼= Zp[x]/(f(x)) where f(x)

is viewed modulo p on the right hand side. We know this is the field F . Since an ideal is

maximal if and only if its quotient with the ring is a field, we know that p is maximal.

Now to show unicity. Let M be any maximal proper ideal of R. We will show (p) ⊆M .

Suppose s = pt ∈ (p). Then sk = pktk = 0. This means that in R/M we have sk + M =

0+M . But R/M is a field and fields have no zero-divisors, so s+M = 0+M implying that

s ∈ M . This means (p) ⊆ M . Since (p) is a maximal ideal and M is proper, this means

(p) = M .

It is clear that for each characteristic pk, there are infinitely many Galois rings with this

characteristic. We simply construct them by taking quotients of Zpk [x] with larger degree

polynomials. We could also ask the question of how many Galois rings there are for each

order. Note that given an order for a Galois ring pn, it must have characteristic pk for some

k < n. In particular, notice that since the order is pkj for some j, it must be the case that

k|n. Therefore, the number of Galois rings of order pn is equal to the number of divisors of

n.

5 Codes Over Galois Rings

Recall from Section 3 that the definition of a code was general enough to be defined over

any finite set. We added structure to codes by considering them over a Galois field allowing

us to use properties of vector spaces. We will now add structure to codes in a slightly

more general setting by looking at codes over Galois rings. In most cases we will look more

specifically the ring Zpk . Before doing so, we must cover a concept that may be unfamiliar

to the reader.

46

5.1 Modules

The concept of a module is not typically covered in an undergraduate course on abstract

algebra. We will include a basic overview here to give some context. This concept becomes

important when talking about codes over rings because it is the natural generalization of

the idea of codes over fields. Here is the definition.

Definition 21. [5] A module M over a ring R is a set of objects which is an abelian group

under addition and is closed under multiplication by scalars from R. The operation of scalar

multiplication is distributive and associative. A submodule of M as a subset of M that is

itself a module.

Basically, a module is a vector space over a ring rather than a field. In general, a module

over a ring R is called an R-module. Technically since R is not necessarily commutative, we

should have defined this in terms of left- and right- scalar multiplication, but in all practi-

cality we will only focus on modules over Galois rings which, as we know, have commutative

multiplication.

Example 16. An example of a module M is the set of m-tuples of a ring R. That is, M =

{(r1, r2, ..., rm)|ri ∈ R} where the addition is done component-wise and scalar multiplication

distributes to each component as in the usual vector space scalar multiplication.

Example 17. Another interesting example of a module is any abelian group A over the

integers Z. Using the usual notation for the operation in an abelian group (i.e. a+b) we let

“scalar multiplication” by n ∈ Z be the sum of an element n times. That is, na = a+a+...+a

where a appears n times.

5.2 Linear Codes Over Galois Rings

Denote by R(m) the set of m-tuples of a Galois ring R. By example 16 we know this is an R-

module. A code of length m over R is a subset of R(m)[4]. This is essentially an application

of Definition 2. Now what is the natural generalization of linear codes? When speaking of

linear codes over fields, we used the term “subspace”. We now must use “submodules”.

Definition 22. A code C over R is linear if it is a submodule of R(m).

47

In [4], Bini and Flamini only consider codes over the Galois rings Zpn . They give the

following definition.

Definition 23. A code C over Zpn is linear if it is a subgroup of Z(m)
pn .

The difference is the use of “submodule” versus “subgroup”. The more general definition

is of course the former, but in the case of the module Z(m)
pn , a subgroup and submodule are

equivalent terms.

Example 18. The set M = Z(2)
4 is the set of all 2-tuples over Z4. That is, an element of

M looks like (n1, n2) where ni ∈ {0, 1, 2, 3} and addition and scalar multiplication is done

modulo 4. So (1, 3) + (1, 2) = (2, 1) and 3(1, 3) = (3, 1). Note that M is a Z4-module. Now

the subset C = {(0, 0), (1, 3), (2, 2), (3, 1)} is a linear code over Z4 because its elements form

a subgroup of Z(2)
4 under addition.

We can also extend the notion of distance. Codes over the Galois ring Zpn require a

slightly different notion than the Hamming distance. With that in mind, we move the

following definitions given by Bini and Flamini [4].

Definition 24. The Lee weight of an element h ∈ Zpn is

wtL(h) := min{h, pn − h}

Definition 25. The Lee weight of an element v = (v1, v2, ..., vm) ∈ Z(m)
pn is the sum of the

Lee weights of its coordinates

wtL(v) =
m∑
i=1

wtL(vi)

Example 19. Consider the element (1, 6) ∈ Z(2)
8 . The Lee weight of 1 is wtL(1) =

min{1, 7} = 1 and the Lee weight of 6 is wtL(6) = min{6, 2} = 2. This gives a Lee

weight for the 2-tuple of wtL((1, 6)) = 1 + 2 = 3.

Linear codes over finite fields have generator matrices. This notion extends to codes

over Zpn as well [4]. Given a linear code C of length m over Zpn , it is equivalent to a code

48

whose generator matrix is

G =



I A0,1 A0,2 A0,3 ... A0,n−1 A0,n

0 pI pA1,2 pA1,n

...

0 0 0 0 ... pn−1I pn−1An−1,n


. (2)

Here, each I represents the identity matrix of some rank, though they may not be all of the

same rank. Suppose the identity matrix in the first column has rank k0 ∈ N. Equivalently

we could say that the first column actually represents k0 columns. Next, we say the identity

matrix in the second column has rank k1 and so on up to kn. Since we are looking at a code

of length m, the constraint is that
∑n

i=0 ki = m. This simply states that G must have m

columns. The Ai,j are all matrices of appropriate size. That is, the matrices in row i have

ki rows and the matrices in column j have kj columns.

We will now motivate how this operates as a generator matrix. We could try to view

this as we did before using linear combinations of row vectors, but there is a simpler way.

Returning to the original definition of a generator matrix over Galois fields, suppose we have

a code C of length n and dimension k over a field GF (q). We could think of a vector in

this code as some linear combination of the row vectors in a generator matrix G. One way

to write this is that a vector in the code is given by (a1a2...ak)G, where each ai ∈ GF (q).

For example, lets say we have a binary code of length 4 whose generator matrix is

 1 0 0 0
0 1 0 0
0 0 1 0

 .

Then if we wish to write the linear combination that sums the first two rows we would write

(
1 1 0

) 1 0 0 0
0 1 0 0
0 0 1 0

 =
(

1 1 0 0
)
.

In the case of a code over Zpn , with regards to our generator matrix G, an element of the

49

code is given by

(
v0 ... vn−1

)
G. (3)

Carrying out the multiplication, we would see that vi left multiplies the matrices in row i of

G. Thus vi is a vector of length ki and components in Zpn−i . To confirm our understanding

of this construction, here is a concrete example.

Example 20. Suppose a code C of length 5 over the ring Z4 has a generator matrix of the

form

G′ =

 I0 A0,1 A0,2

0 pI1 pA1,2

 .

Suppose k0 = 2, k1 = 1, and k2 = 2. Note that k0 + k1 + k2 = 5. These values mean that I0

is the 2× 2 identity matrix and I1 is the 1× 1 identity matrix. The matrix A0,1 will have

size 2× 1, A0,2 is 2× 2, and A1,2 is 1× 2. Let’s multiply by the vector (v0v1). We find

(
v0 v1

)
G′ =

(
v0I0 + v10 v0A0,1 + v1pI1 v0A0,2 + v1pA1,2

)
=
(
v0 v0A0,1 + pv1 v0A0,2 + v1pA1,2

)
.

We might ask whether the sums in the second and third entries are well-defined. That is,

are these vectors the same length? Let’s consider the third entry. First of all, the vectors

v0 and v1 have the proper lengths for multiplication by these matrices. That is, they have

lengths k0 and k1, respectively, while the matrices A0,2 and A1,2 have these as heights as

well. Now for the result of their multiplication. The matrices A0,2 and A1,2 both have k2

columns, so multiplying from the left by a vector gives a vector of length k2 as well. Hence,

the third entry is a sum of vectors of length k2.

It is important to be able to calculate the order of a code C whose generator matrix is

given by G from Equation 2. We know that any element of the code may be written in the

form of Equation 3. Counting the number of codewords is therefore equivalent to counting

the number of vectors of the form (v0...vn−1). Since v0 is of length k0 and has components

50

in Zpn , there are (pn)k0 = pnk0 possible values for v0. Similarly there are p(n−1)k1 possible

values for v1. Overall (v0...vn−1) can take on (pnk0)(p(n−1)k1)...(pkn−1) = p` values where

` =
∑n−1

i=0 (n− i)ki. This is the order of the code C.

There is an analagous definition of the dual code.

Definition 26. The dual code of C is C⊥ = {x ∈ Z(m)
pn |x · y = 0 ∀ ∈ C} where x · y =∑m

i=1 xiyi.

Again, the parity check matrix is simply the generator matrix of the dual code. It turns

out that if the generator matrix is given by G as above, then the parity check matrix H is

H =



B0,n B0,n−1 ... B0,2 B0,1 I

pB1,n pB1,n−1 ... pB1,2 pI 0

...
...

...
...

...

pn−1Bn−1,n pn−1I ... 0 0 0


,

for some matrices Bi,j . This will satisfy the product GHT = 0 as we saw from Theorem

5. The sizes of the matrices must match in the product. It does not take much work to

see that this means the identity matrix in the last column must have size kn and so on. So

in general, the matrices in the ith row have kn−i rows and the matrices in the jth column

have kn−j columns. Note here we are indexing the rows and columns by 0.

6 Conclusion

The mathematical definition of a code is rather general, but the alphabet over which the

code is defined can imbue it with useful structure. Historically, the most fruitful alphabets

in terms of study and application have been the Galois fields. Among these, the field of

order 2 stands out due to its use in computers. The Galois fields allow for linear codes which

brings about topics such as syndrome decoding, perfect codes, and cyclic codes. Galois rings

generalize Galois fields and it is therefore natural to generalize the concepts associated with

codes over Galois fields to include codes over Galois rings. We have seen that the concepts

of linear codes, generator matrices, weight, distance, and dual codes all generalize. Further

51

work would have gone into generalizing the Hamming codes, cyclic codes, and other concepts

we did not cover. A discussion of such concepts can be found in [4].

52

Acknowledgements

Thank you to Professor Patrick Keef for suggesting the topic of this paper and for providing

guidance on Galois rings. Thank you to Marissa Childs for editing this paper, especially in

keeping my explanations readable. Thank you also to Professor Barry Balof for instructing

the Mathematics Senior Project course. Finally, thank you to my parents James and Donna

Holdman for supporting me during my time a Whitman College and providing me the

opportunity to explore my interests.

53

References

[1] Thompson, Thomas M. From Error-Correcting Codes Through Sphere Packings to Sim-

ple Groups The Mathematical Association of America, 1983.

[2] Pless, Vera. Introduction to the Theory of Error-Correcting Codes. Wiley: New York,

1982.

[3] Gallian, Joseph A. Contemporary Abstract Algebra, Seventh Edition. Brooks/Cole: Bel-

mont, CA, 2010.

[4] Bini, Gilberto and Flaminio Flamini. Finite Commutative Rings and Their Applications.

Kluwer Academic Publisher, Springer. 2015.

[5] Ash, Robert B. (2000). Abstract Algebra: The Basic Graduate Year. Retrieved from

http://www.math.uiuc.edu/ r-ash/Algebra.html.

54

Index

p-term, 34

pm-term, 34

Alphabet, 6

Check Polynomial, 25

Code, 6

(n, k), 9

q-ary, 6

equivalence, 7

linear, 8

linear over Galois ring, 47, 48

over Galois ring, 47

Coset Leader, 17

Cyclic Code, 22

Cyclotomic Coset, 26

Distance

Hamming, 12

minimum, 13

Dual Code, 11, 51

Encoding, 10

Error Vector, 17

Field, 2

First Cyclic Shift, 22

Galois Field, 2, 4

Generator Matrix, 9, 49

Generator Polynomial, 24

Hamming Code, 20, 21

Idempotent, 25

Information Positions, 10

Information Set, 10

Internal Direct Product, 40

Lee Weight

m-tuple, 48

scalar, 48

Length, 9

of a linear code, 8

Maximal Ideal, 3

Module, 47

R-module, 47

Nilpotent, 32

Parity Check Matrix, 11

Perfect Code, 18

trivial, 20

Principal Ideal Ring, 22, 39

Reciprocal Polynomial, 25

Reduced Echelon Form, 9

Redundancy Positions, 10

Residue Field, 4

Ring, 3

Galois, 29

local, 4

unitary, 3

55

Submodule, 47

Syndrome, 16

decoding, 17

Syndrome Decoding, 15

Unit, 3

unity, 3

Vector Space, 3

Weight, 13

minimum, 13

Word, 6

56

