
The Boids are Flying!
A Look at Population Models

and the Code of Agent-Based Modeling

Alec Foote

Whitman College
Spring 2016

Abstract: Differential equations can model the competition between
species fairly well. But what if we modeled populations with moving
shapes instead? Join me as I take you on a journey into the world of
boids (that is, digital triangle birds), as they eat food, reproduce, and
might even generate an effective simulation of population interference!

i

Contents

Contents ii

1 Introduction 1

2 Smooth Curves: Differential Equation Modeling 2
The Example: Birds . 2
Constructing an Equation . 2
Exponential Growth . 3
Environmental Threshold . 3
Equilibrium . 4
Competition . 5
Examining Competition . 5
Calculations in Theory . 6

3 The Digital World: Agent-Based Modeling 10
An Object . 10
Foodstuffs . 11
The Life of the Boid . 12
Boid Values . 13
Environment . 14
Virtual Realities . 15
Optimizations in Doughnut World . 16
The Presentation of the Thing . 19
What Could Have Been . 19

4 Spreadsheets and Graphs: Boid Data Analysis 21
Conversions . 21
The Control Boid . 21
Stable Population . 23
Actual Data . 23
Test 1: Single Population, Variable Start . 23
Test 2: Two Populations, Variable Starts . 24
Test 3: Movement Tests . 25
Test 4: Food Till Birth Tests . 26
The Possibility of Predicting Populations . 27

ii

5 Models and Reality: Interrelations 28
To the Math . 28
A Differential Equations Graph Party . 30
To the World . 32

6 Conclusion 33

A Chart of Eigenvalues and Equilibrium Points 34

B Chart of Boid Values for One Species 35

C Processing Code: The Utilized Version of Boids 36

Bibliography 53

iii

Chapter 1

Introduction

In our various roles as mathematicians, scientists, and humans, we try to examine the world
and make sense of it. Oftentimes this leads us into the world of predictive models. One
important situation in which such models can help us is the studying of populations: How
populations grow and change over time, in response to factors such as population size, envi-
ronment, and competition with other species.

This paper will examine two such population models: The math-based differential equa-
tion model, and the more computer-generated agent-based model.

We shall begin our exploration by putting together the differential equation model and
seeing how it works. We will then move on to examine an agent-based model and the code
that drives it. With that established, we will analyze some example simulations and relate
them back to our mathematical models and to the real world.

1

Chapter 2

Smooth Curves: Differential Equation Modeling

This first model is based entirely around mathematical ideas and concepts—it is simple, but
in many cases effective.

The Example: Birds

In investigating these population models, I will be looking at, as an example, two different
types of birds: green birds, which are our initial focus, and red birds. These two species will
stand in for practically any two similar but competing species in the real world.

These birds will have different quantities and qualities depending on what we want them
to do and represent. We will denote the population of green boids by the function over time
g, while we will denote the population of red birds by the function r.

Now, onward into the world of modeling.

Constructing an Equation

Simply put, when a population is bigger, it will (barring any growth restrictions like food short-
ages or environment size) grow faster. The rate of change will grow in proportion to this pop-
ulation size.

Having a bigger population developing even faster certainly does make intuitive sense:
There would be lot more birds to make babies together, and as the number of birds making
babies grows, the growth rate would continue to rise.

Thus, the easiest way to express this relation is with this differential equation:

dg

dt
= ϵg

2

where g is our function of green bird population, dg
dt

represents the change in green bird popu-
lation over time, and ϵ (which must be greater than 0, else the growth rate would shrink as the
population size rises, which is contrary to our assumptions) denotes the intrinsic growth rate

Definition 1 Intrinsic Growth Rate: a number which describes the linear proportion between the pop-
ulation size and the population growth rate, taking into account no other factors.

The basic model assumes the proportion is linear because that is the easiest model to use
and describe, and it generally describes population growth well.

Exponential Growth

We know that a differential equation including such a linear relation between population size
and growth rate only has one solution: g = g0e

ϵt, where g0 is the initial population size.
This is known as the exponential equation, so we say that a population of our green birds,

at least within this model, grows exponentially—given these ideal conditions.
So let us look at situations where those conditions are less than ideal.

Environmental Threshold

As I said, a bird population growing exponentially forever would not make any sense in the
context of the real world. There is not enough space for all those birds, and there definitely
are not enough resources.

Thus, at some point, these green bird population will reach what we call the environmental
threshold.

Definition 2 Environmental Threshold: a number that describes the upper limit of a growth rate given
environmental constraints like size and resource availability.

Essentially, the threshold is a measure of how much a population will interfere with its own
growth—resources become scarcer relative to the number of birds, and the population growth
ceases to be exponential. This effect is felt more heavily the larger the population grows.

So how can we express that in our differential equation?
We add more expressions.
We know this slowing of population growth happens proportionally to the size of the pop-

ulation, so our environmental threshold must be related to the current population size.

3

Let us first take our original equation and replace the coefficient with a function h(g)
instead, so: dg

dt
= h(g)g.

When the population is small enough, h(g) is approximately our original constant ϵ, but
it must also decrease as the population grows. We will introduce another coefficient, σ, to
describe how the growth rate changes based (once again, linearly) on population.

We end up with: h(g) = ϵ − σg, making our expression

dg

dt
= g(ϵ − σg)

which is also known as logistic growth—the rate increases steadily as it goes along, much like
exponential growth, before gradually leveling off.

These values for a intrinsic growth rate and environmental threshold must be found ex-
perimentally, through observation and data collection (which we will examine more later on).

Equilibrium

As I said, a logistic growth curve eventually approaches some level point and stays there. This
is known as equilibrium.

Definition 3 Equilibrium: a population size that causes the population growth rate to be 0.

This point can easily be found in our differential equation: wherever h(g) is 0, that popu-
lation size rests at equilibrium, as this means that the rate of change is also 0.

(As a note, the derivative is 0 when population is 0, too. This makes sense; with no popu-
lation there is no capacity for growth. So, population zero is another place of equilibrium. It
is simply not a very interesting one).

On the graph of a curve of population versus population growth, these are known as critical
points—x-axis intersections. In a sense, the rate of change “wants” to be 0, so it will “tend”
towards the equilibrium population, where it will then have no reason to change.

From our equation dg
dt

= g(ϵ − σg), we can see that when g = σ
ϵ
:

ϵ − σ
ϵ

σ
= 0

so dg
dt

= 0, so point g = ϵ
σ

is a second (non-trivial and more interesting) critical point.
A population larger than equilibrium would have a negative growth rate (the environmen-

tal threshold overcoming the intrinsic growth—the population size beyond equilibrium is not
sustainable by the environment), and anything smaller would have a positive growth rate, be-
fore settling at our critical point. On a more conventional time versus population graph, this
is our asymptote—in real world terms, leveling out.

4

Competition

Now, to complicate the model further, we introduce the second species of birds: The red
birds, population r. In the real world, this could represent the sudden introduction of a new
species to one environment, or comparing multiple environments containing different types
and numbers of types of birds.

Our approach in constructing the newly complicated equation is remarkably similar to
that of adding the environmental threshold. The greater the red bird population, the smaller
the green bird population growth can be, as the red birds are taking up space and consuming
resources.

(All of this can apply just as well the other way, with red bird population growth being
affected by green bird population).

Thus, let us introduce a third variable into all of this: α. This will represent the competition
coefficient.

Definition 4 Competition Coefficient: a number that describes the limitations of one population that
is coexisting and fighting for the same resources with a separate population.

Thus, ϵ − σg − αr becomes the new h(g) of this situation, so:

dg

dt
= g(ϵ − σg − αr)

is our new differential equation.
The red bird population can also be described with their own equation, with an intrinsic

growth rate, environmental threshold, and competition coefficient based on the presence of
green birds; these values also depend entirely on the properties of these red birds, and, depend-
ing on factors describing the species, can vary wildly from the green bird species variables.

Examining Competition

With the presence of the red birds, the equilibrium state of green birds is going to be even
lower than before—provided, of course, the equilibrium state is not simply r = 0, in which
case the green birds will proceed as they would if they had been a single population all along.

In cases of competition, extinction is very possible. In fact, this can vary depending on
what the initial conditions are: Sometimes extinction is practically inevitable.

Say the green birds are a lot more efficient at surviving than red birds. Maybe they require
fewer resources to give birth, or red birds do no live as long. If the green birds start with a

5

higher population, it is very likely that they will drive all of the red birds out—be that out of
the given environment, or out of life entirely.

It is possible, however, that if the red birds start with a high enough population, there
will generally be enough of them to survive and achieve a different equilibrium with a smaller
population of green birds, even though the green birds may have been more effective.

This depends on the interactions between the expressions σg and αr. If σg is big enough
that the environmental threshold alone brings about stability, the red birds might be squeezed
out, but if αr is big enough to make an impact, then the red birds may remain at some level.

Thus, we can construct a different sort of graph—green birds versus red birds. In the prior
example, this graph would have multiple critical points, and the graph would tend towards
separate outcomes depending on what the starting point was.

(Again, a critical point that always exists is (0, 0)—a stable population always exists at the
point when nothing is alive, which once again proves itself monumentally dull).

There could also exist situations where red birds could actually flourish in the presence of
green birds (in the case of a parasite or some such creature), but for now we will focus on two
birds competing over the same outside resources.

Calculations in Theory

In setting up the systems of equations for the competition model, the issue in trying to apply
the model now becomes: How does one actually solve such a system? Often the differential
equations become non-linear systems, which are much more difficult to solve than one would
like.

To circumvent this, we focus on a critical point, and reduce our field of view to the part of
the system that contains only that critical point and no others. This is then termed an isolated
critical point, and we use a technique known as local linearization to approximate it as a much
more easily calculated linear system.

The Jacobian
Take two differential equations x′ = f(x, y) and y′ = g(x, y). Let (a, b) be an equilibrium
point, so that f(a, b) = 0 and g(a, b) = 0. To linearize the system, we want to find the matrix
A that solves the equation

z′ = Az

where z is the vector
x

y

6

and z′ is the vector
x′

y′

To find the matrix A we use to linearize a system (remember, we are considering only the

space around the point (a, b) such that the non-linear system would approximate a linear one),
we take multiple partial derivatives and develop what is known as The Jacobian Matrix:

fx(a, b) gx(a, b)
fy(a, b) gy(a, b)

We can then take this matrix and plug in the various critical points to get multiple matrices

A for each critical point vector z, for which we can then find eigenvalues.

Eigenvalues
If you will recall some linear algebra, eigenvalues and vectors are found by solving the equation
Av = λv, where v is the eigenvector and λ is the eigenvalue. Eigenvalues in this scenario can
be used as a tool to identify the type of equilibrium point we are working with in the given
system.

The solutions to this are only non-trivial when |A−λI| = 0 (where I is the identity matrix).
We start by defining

A =

a b

c d

so we see that

A − Iλ =

a − λ b

c d − λ

and thus we can calculate that the magnitude |A − Iλ| = 0 = ad − aλ − dλ + λ2 − cb.

We define the Tr(A) as the trace of A which is the sum of the diagonal, a + d, and the
det(A) as the determinant of A which is, in general form, ad − bc. Thus, we can simplify this
to λ2 − Tr(A)λ + det(A) = 0.

This can be solved by the quadratic formula to become

λ = Tr(A) ±
√

∆
2

where ∆ = (Tr(A))2 − 4det(A) is the discriminant, which can be easily used to determine how
many and what sort of eigenvalues there are.

7

Types of Equilibrium Points
Let us investigate exactly what types of equilibrium points there are, connected to the eigen-
values. This will at first be based on the trace, determinant, and discriminant ∆. This will
be a textual representation of the points; for a more graphical look, see the Poincare diagram
below. This diagram represents points in a Trace vs. Determinant plane.

For the first cases, let us assume that ∆ is positive. (On the diagram, this is the area
underneath the parabolic curve). Here, there are two real eigenvalues.

If the determinant is negative, the equilibrium point is always a saddle point: The slope
vectors point into the point in two directions, and out in all others. Two positive eigenvalues.

If the determinant is zero and the trace is negative, there is a line of points of stability: All
vectors approach the line at various points. One negative, one zero eigenvalue. If the trace
is positive, it is the opposite: a line of unstable fixed points, where vectors are repelled from
points on the line. One positive, one zero eigenvalue.

If the determinant is positive and the trace is negative, then the point is a sink: Every
vector runs toward the point from every direction. Two negative eigenvalues. If the trace is
positive, then the point is a source: Every vector points away from the point in every direction.
One positive, one negative eigenvalue.

Now let us consider the situations where ∆ is 0. (On the Poincare diagram, this is repre-
sented with the parabolic curve, where det(A) = 1

4(Tr(A))2). Here there is one eigenvalue.
If the trace is negative, the point is still a sink, but acts slightly differently: Vectors do not

run directly to the point, but curve in more sharply, like a pinwheel. This is a degenerate sink.
Single negative eigenvalue. The same is true if the trace is positive, being a degenerate source:
The vectors pinwheel out. Single positive eigenvalue.

If both the determinant and trace are zero, nothing moves. This is uniform motion. Single
zero eigenvalue.

Now to where ∆ is negative. This is where there is where we have two imaginary eigen-
values. Here the determinant is always positive. (On the diagram, this is the area above the
parabolic curve). Here there are two imaginary eigenvalues.

If the trace is negative, the point is a spiral sink: The vectors spiral in to the point and
do not escape. Complex eigenvalues with a negative real component. If the trace is positive,
the point is a spiral source: The vectors spiral out away from the point. Complex eigenvalues
with a positive real component. If the trace is zero, the point is a center: Vectors make circles
around the point, but do not approach. Complex eigenvalues, no real component.

For a more visually accessible summary table of the relationship between eigenvalues and
equilibrium points, please see the appendices.

8

I will be going through a numerical example near the end of this paper pertaining to the
data gathered in agent-based modeling simulations.

Figure 1: Poincare Diagram—“Phase Portraits” being Equilibrium Points

9

Chapter 3

The Digital World: Agent-Based Modeling

The differential equations model is as its base a model based on mathematical curves—but
populations are not represented perfectly by smooth curves in relation to time. They are
composed of individuals, and change comes from individual discrete temporal events: Births
and deaths.

An Agent-Based Model is computer-based model meant as an alternative model of popula-
tion change.

Definition 5 Agent-Based Model: a model in which autonomous agents are given individual program-
ming and allowed to operate independently within a digital environment.

Agents are not directed by any outside forces; they are fed stimuli and react in certain
ways depending on how they are programmed. Thus, populations are composed of individu-
als acting independently, which is a more complicated system to figure than the differential
equations model, less smooth, and potentially more accurate.

An Object

I constructed my agent-based models in a language called Processing, which is an object-based
language.

Definition 6 Object: a digital construct within a simulation that has both data and functionality.

Data is a any value or string of characters that an object can store to define its individual
identity and behavior. Functionality is any function or process an object can run to enact that
behavior and any motion.

Each object is defined by a class, which acts as a mold for each object—for example, a class
would define the shape of an object, and how long it takes until it reproduces, etcetera. But

10

each individual object contains data that tells it where it is, how fast it is currently moving,
how many resources it has consumed, and so on.

The passage of time in Processing is determined in frames—one iteration through the run-
ning draw program is one frame.

In the context of Agent-Based Modeling, the object is the agent. The agents are given
tendencies and values, then are released into the environment to operate as they will.

In this case, our objects of choice are known as boids.

Definition 7 Boid: an artificial bird-like object shaped liked an arrowhead that wants to seek food and
avoid other boids to varying determined degrees.

Figure 2: A green boid, facing left

The word “boid” is evidently a corruption of the word “bird,” so our examples now become
green boids and red boids—their simple arrowhead shape represents how they are simplified
bird-like agents, instead of real complex birds (and, for modeling purposes, that is okay. It
would take a lot more computing power to draw a lot of realistic birds).

Foodstuffs

There is another object present in the simulations: The Foodstuffs. These are not agents,
however, as they cannot move or take any actions. They are a representation in the area of
resources that the boids want and need to consume.

Figure 3: A foodstuff

These foodstuffs are generated randomly: Whenever one is eaten, another is generated
elsewhere in the environment.

11

The Life of the Boid

As a note, the initial placement of boids is also random. This randomness eliminates any odd
properties from predetermined placement, and any trends caused by some particular random
placement can be eliminated by running multiple trials if one is so inclined—and you really
can, as I have included my entire boid code in the appendix.

In this simulation, the only action a boid can take is changing velocity—its direction and
its speed. We therefore give each boid two functions: Seek and Separate.

Separate
The boids want to separate from each other, which I first introduced as a way to keep the
boids from overlapping completely, as that was unsightly and unrealistic (nothing can exist in
the same place at the same time as something else).

Later this became a way of creating “flocking.” If boids want to avoid other species of boids
more than they want to avoid their own species, they will tend to stick together in flocks—
much like birds in the real world tend to.

This flocking is an example of emergent behaviors, that is, patterns that were never specif-
ically programmed to happen that nevertheless emerge. This can be an important aspect of
agent-based modeling. Changing one variable might affect other aspects of the simulation
about which one would not have thought.

A different flocking function could be written that would allow the boids to seek other
similar boids as well, but this was unnecessary for the scope of this simulation.

Seek
In regards to the first function: The boids seek the nearest foodstuff—once they get close
enough (in this case, 10 pixels, though that can be bigger or smaller depending on the needs
of the model and general size of boids), the food is considered consumed and is removed.

Birth and Death
Food also serves as the fuel for reproduction. Unlike most birds, boids reproduce asexually.
Given some determined amount of food consumed, a boid will split into two different younger
boids. Thus, birth essentially kills a boid, but the population increases by one.

Boids have two other methods of dying, apart from reproduction. Every time a boid is
generated, it is given two timers: A starvation timer and an aging timer. If either timer reaches
some determined time limit, the boid will die.

The starvation timer resets every time a boid eats food, but nothing resets the age timer,
so if a boid has not reproduced before reaching that determined time limit, even if it has eaten
some amount of food, it will disappear from the simulation, leaving nothing behind.

12

Boid Values

Each boid has 12 different values that describe how it lives and operates, which can be variable
from species to species, but never boid-to-boid within one species. Please see the appendices
for a simpler chart. Here I will describe them in more detail.

The first three of these boids values are simply color values; Red, Green, Blue. These are
a visual indicator for someone watching the simulation to tell the types of boids apart, and
are thus an aesthetic choice by the user (as stated, for example I primarily used green and red
boids).

The next value for boids is the starting population. A greater starting population can mean
greater survivability, as discussed previously—the species is not crowded out from resources.
However, if the population is too big and the resources too scarce, it can crowd itself out and
each boid can die of old age or starvation before any manage to eat enough to give birth.

Next we have two related values: Starvation and Lifespan. These are the two values that
tell the boid when to die after not eating or since being born, respectively.

The next two values involve the separate function: selfinterference (SI) and otherinterfer-
ence (OI). This is how much a boid wants to avoid other boids, in pixels. As stated, to generate
flocking behaviors, OI is typically set higher than SI.

The next, foodtillbirth, tells the boids how many pieces of food it needs to eat to give birth
to two new boids.

(As an aside: Connected to this variable, there is another value that describes a boid, which
is its radius. This governs the size of the boid. The radius for each boid starts at some prede-
termined startingsize, and increases to some maxsize as it eats more food—though as it eats
enough food to become that maxsize, it instead gives birth to two new boids and disappears.
This change in size is another purely aesthetic choice, but it can be rather fun to generate
terrifyingly gigantic boids).

The last three values, maxforce, maxspeed, and transitiontime are also interrelated: All
three tell a boid how it can move. The former essentially tells the boid how well it can turn.
It is a measure of agility and acceleration ability. A fast boid will miss food if it cannot turn
well. The second value gives the maximum speed of a boid—a slow boid might die before it
ever reaches the food. The transitiontime tells a boid how many frames it will be until it can
reach that maxspeed since eating a piece of food. This subsection will explain this aspect in
greater detail.

Changes in Speed Function
It did not make sense to me that a boid would always want to be going at its maxspeed. When
you eat, do you immediately sprint after the next meal? I certainly do not, and nor do birds,

13

so boids do not either. I determined that their speed should slow considerably immediately
after eating, before increasing again as hunger returns.

Previously, a boid’s maxspeed was determined linearly from how long it had been since it
had eaten, multiplied by some constant. As boids had no real maximum speed, it was difficult
to compare between species, and it was unrealistic. No animal simply gets faster and faster,
no matter how hungry it might be.

The curve with the properties I needed that was the easiest to understand and program was
a simple sinusoid. This would start at zero, start increasing, increase maximally at the halfway
time until it would reach max speed, and speed up more slowly until it reached a maxpoint
with derivative zero.

I created a piecewise function–after the suiusoid reaches the top of its curve, it then con-
nects to a constant maxspeed function, which avoided any jarring movement or acceleration.

This maxspeed holds until a boid eats a piece of food. The speed is then reset to 0, but
immediately begins increasing sinusoidally again. The length of this sinusoidal curve is deter-
mined by transitiontime, so a boid with a higher transition time will take longer to reach its
maximum speed.

As a note, this change in programming increases competition between even boids of the
same type. Previously, the hungriest boid (the one in most need of food) was also necessarily
the fastest, and thus the most likely to eat the food. Now, however, there is a cap on this
speed—any boid past its transition time will be equally fast.

For example, if a boid has a transition time of 100 frames, and a starvation time of 1000,
a boid with a hunger timer of 101 since eating will have just as much chance of getting to a
piece of food as a boid with a timer of 999 (right on the cusp of starvation), depending on the
relative positions. Thus, the neediest boids no longer have a better change of eating the food.

This decreases the efficiency of the boids, but makes them a little more realistic—they
certainly starve more now.

Environment

The digital environment operates on three numbers: Height and width, which determine the
size of the area, and numfoods—the number of the pieces of food that exist at any time. More
food generally means more boids.

When I began constructing the digital area for the boids, I put up rigid walls the boids
could not pass through. This always kept the boids visible (previously they would fly off the
screen before then begrudgingly returning, sometimes after quite a long while).

14

This worked, but it caused a behavior I called “skating.” Programming-wise, I stopped the
boids at the walls by setting the velocity perpendicular to the impacted wall back to zero and
disallowing the boid’s position to change in that direction. This caused boids to bunch up
on the walls as they tried to avoid each other, skating along the wall until they could find a
moment to escape (generally this was when they finally got hungry enough).

So, to avoid this phenomena, I formed the boid world into a torus of sorts: When the
boids reached the walls, they would be sent to the opposite wall—thus, the top and bottom
wrap around to each other, forming a tube whose edges are the right and left walls, which
themselves also connect, forming a torus.

This, however, presented some problems regarding the seek and separate functions: the
boids became incredibly shortsighted whenever they were near one of the walls (walls which
should, from their perspective, not exist).

If a boid was at the bottom of the screen and a piece of food at the top, the boid could
simply fly down and get to the food quickly. But it only checked where the food was relative
to the distances across the area, not through the walls, and flew all the way up instead—they
could not see to the correct places on the doughnut world.

So how to make the boid seek a piece of food just beyond the wall? Or separate itself from
boids that would be nearby on an actual torus, but do not appear to be so near?

Virtual Realities

First I need to talk about parallel universes.

Definition 8 Parallel Universes: a parallel universe (PU) is a virtual replica of the objects in the area,
shifted to a different nearby zone, which can be identified by the program but not seen by the user.

The parallel universes come in grids—eight parallel universes surround the single original
universe (OU).

The boids proper exist only in the center area (representing the real world), but they can
sense replicas of boids and foodstuffs in the virtual realities. Thus, the boid near the bottom
does not sense the food near the top, but it does sense that there is a piece of food down below
the border—that this food is virtual does not affect the boid’s behavior. The program does not
render this food, but the boid can sense the shifted marker of foodstuff. Thus, it flies down,
wraps around to the top where it then senses the real food as the nearest, thus continuing to
move in the direction it was already going, and appearing as if it were heading for that real
food the whole time.

15

OU

Figure 4: The parallel universe grid

This is accomplished by iterating through not only every object, but other copies of that
object—a boid senses not just food in the real world, but also senses replicas that it treats as
real and will pursue.

This also applies to the separate function. The boids sense each real boid and virtual copies
of the boids and avoid each one as they should.

And so, boids can properly see the whole doughnut. Let us look at how this was accom-
plished programming-wise in a bit more detail.

Optimizations in Doughnut World

Two sections of programming changed majorly when the boids were placed on a torus.

Separate
The separate function works by iterating through every other boids’ position and determining
whether the distance to that position is less than the desired separation (variable depending
on SI and OI). If it is, that position is added to the vector force applied to the boid at the end
of the separate. This was done for all boids.

When I first put the boids on a torus, I had the program iterate through not just every boid,
but every virtual boid as well—meaning the program had to do nine times as many distance
calculations for each boid. When there were 50 or 100 boids, this was not a huge issue, but
with 200 or 400 boids slowdown was evident, and with 1000 boids the program went at a painful
crawl.

In place of this, I wrote a new function, “replicate,” which is fed a position and a string of
one or two letters that then returns a vector to the position of the virtual boid in the quadrant
as determined by the string, as seen below.

16

(Capital letters make a virtual boid with a greater position value, while lower case letters
send it back. It is worth it to note that greater x-values send you right, while greater y-values
send you down).

—

Y

y

x X

xY

xy

XY

Xy

Figure 5: The separate function key

This is called in the boid’s separate function only when a boid close enough to a wall—
within the distance of desiredseparation to the wall. If the presence of a boid could have any
impact, a virtual boid is created. If the boid is near two walls, three virtual boid vectors are
fed into the calculations—two past the opposite walls, and one in the appropriate diagonal
quadrant.

If the boid is not near enough to any walls, then, no virtual copy is generated, which speeds
up calculation immensely (unless you have a fringe case where every boid is near enough to
the borders, but this seems unlikely, and would not be permanent in any case).

Thus, the program only has to calculate boids within a limited area, represented as a blue
square in the figure.

OU

Figure 6: The calculated universe

Ignoring the rest speeds up the calculations immensely, making our system of PUs that
much more efficient. Admittedly, this is not terribly important for the boids (even if every

17

frame took an entire day to render, they would still move forward in time), but certainly helps
in real world time when attempting to run simulations with large flocks of them.

NearestFoodstuffs
For the nearestFoodstuffs function on the doughnut, I wrote a nearestToZero function, which
took in three inputs and returned the one nearest to zero (a sort of absolute value without
removing any negative signs).

This could then be used to calculate the nearest food, real or virtual—it found the nearest
x-distance and the nearest y-distance, and then I just had to put these values into the distance
formula to find the location of the nearest food:

√
(xdistance)2 + (ydistance)2.

This function iterated through every foodstuff to make sure it had found the closest one,
then returned the index of the food—that is, the number the machine had internally assigned
to the food on the foodstuffs list. The main program then took the index and iterated through
the real food and each of its eight virtual copies for a second time to determine which was
closest.

This repetition was unnecessary.
So, I made the nearestFoodstuffs function return a vector (known in Processing as a PVec-

tor). This is not a typical Calculus xy-vector, however; the relationship between the two con-
tained values is a bit more complicated.

The first number of the vector is still the index of the food. Giving the main program the
index makes it very easy to remove the correct foodstuff once the boid has consumed it.

The second number is a new value called the offset, which represents which of the nine
quadrants the closest food is in, real or virtual. This allows the main program to much more
easily determine the point the boid is supposed to seek.

Essentially, this offset uses a trinary system. It is a number from 0 to 8, all of which repre-
sent different quadrants. If the x-coordinate of the nearest food is to the right, the function
adds 3 to the offset; if the x-coordinate is to the right, 6 is added. If the y-coordinate is down,
1 is added, and if up, 2.

The program then receives this number: If the number is greater than 5, shift the boid’s
target to the right; if it is not, but is greater than 2, shift to the left. If the number is 1 modulo
3, shift down, and if it is 2 modulo 3, shift up.

Thus, the program takes the location of the food indexed and shifts the boid’s target ac-
cordingly, cutting down on the number of calculations necessary.

This is not as huge of an improvement as the separate function was, but it is still an opti-
mization.

18

0

1

2

6 3

7

8

4

5

Figure 7: The trinary system of food

The Presentation of the Thing

The actual window where the boids fly around is bordered by two bars (actually just shapes,
which help cover up the boids as they are teleported across the area when they wrap around),
which contain real time information about the total number of boids alive, starved, aged to
death, and births, followed by the individual numbers for each species.

This is accomplished by initiating running totals of each of these values for each boid type,
and for the total number dead of either type of death, and born. These are then printed on the
side. The bottom left corner shows the total number of frames, and is constantly increasing.

These counters also help to print out data to a spreadsheet, once the simulation ends. The
data points are printed out every 100 frames, and put into separate cells of the spreadsheet by
separating the print out with \u0009, which is Unicode for the tab key. These spreadsheets
can then be analyzed and generate graphs and other data sets—which we can then do proper
hard science with as we shall soon see.

What Could Have Been

As much as I love these boids, and as effective as they might be in forming a potentially pre-
dictive model, there are a couple improvements that could still be made.

First, there is a certain threshold of number of boids (somewhere around 1500 or 2000,
depending on boid type) where every piece of food is eaten every frame or nearly every frame.
As consuming a piece of food immediately causes another to be generated, these means every
frame there is more food.

This is too much food.
This is reflected in the number of boids. The populations grow immensely and show little

to no sign of stopping, though I cannot truly test that hypothesis—my computer is not pow-

19

erful enough to run that simulation with more than 2000 boids at anything faster than one
frame every six seconds, which is just not feasible.

Secondly, also involving food: Boids automatically head towards the nearest piece of food,
no matter how far away that piece of food might be. It could be more realistic for the boid to
head towards the piece of food if it is within some range of sight.

Boids that always know exactly where the food is, no matter how far away it is, act less like
birds hunting prey and more like sharks smelling blood in the water.

(So, shoiks?)

20

Chapter 4

Spreadsheets and Graphs: Boid Data Analysis

In this section, we will set up experiments and analyze the data that this agent-based model
gives us.

What can we know about these boids?

Conversions

Our goal here with this agent-based model is to use it to generate data that can then be com-
pared to the differential equations model. To do so easily and effectively, I will use this tem-
poral conversion:

Definition 9 Frame to Year Conversion: 100 Frames = 1 year.

This comes from the fact that the program generates a data point in our spreadsheets every
100 frames, so this seems a reasonable and useful comparison. It at least makes things easier
to talk about.

The Control Boid

To more directly use the boids for testing, I had to establish a control boid and control en-
vironment to measure all other boids by. This required some guess and check to create a
boid that would be easy to use and give me numbers that could be easily measured. If stable
population was too small, for example, any deviation seemed huge.

I started with establishing reasonable lengths of time for starvation and lifespan. To ensure
speedy tests, I wanted these lengths to be fairly short, and the most important thing was
comparison: A boid with a shorter lifespan than starvation would be unable to starve. So, 5
years seemed a reasonable starvation rate, with lifespan set at four times that, at 20 years.

21

The other temporal variable is transition time, the time it takes a boid to get to its maxi-
mum speed. As I was not planning on varying this amount very much in my example tests, I
set it fairly low, to one fifth of starvation: 1 year.

The consumption of resources, Foodtillbirth, was also rather arbitrary; 9 pieces of food
until birth seemed a healthy but not insurmountable amount, and gave me room enough to
play around with it (increasing it and decreasing it) in my tests.

The variables left were spatial variables. I could never figure out a practical real-world
value for what space could represent, so everything else—maximum speed, maximum force,
and the two separation variables—were determined through running simulations and seeing
what worked.

(It is also important to note that there is absolutely no area size or distance involved in the
differential equation model—thus, there is no constraint for me to determine a comparison
to anything in particular).

Self and other interference are related—OI has to be greater than SI to generate flock-
ing behaviors. A desired pixel length of 20 from like boids let each species cluster together
without overlapping all that much, which was aesthetically pleasing, and assigning a value ap-
proximately four times that length to the distance kept away from other boids was enough to
noticeably create flocking. Thus, the values became 20 and 80.

Maxspeed and maxforce had to be related somehow as well; if speed increases but force
does not, the boids become incompetent, flying right past the food without eating it as they
are not agile enough to actually reach it. If force increases too much, however, the boids fly
erratically, with no regard to previous motion. They also gain an uncomfortable jitter, as they
are able to oscillate wildly back and forth in their quest to separate themselves from other
boids. Thus, through some trial and error, a ratio of 30 to 1, maxspeed to maxforce, would be
my baseline, leaving the control boid starting at 6 and .2.

For the control environment, my area had been 600 pixels by 600 pixels for a long while; it
seemed a good dimension, so I saw no reason to change it.

When first testing this boid, the equilibrium seemed to be around 6 to 14 boids. These are
not big numbers. I upped the food count from 2 to 10 and the populations grew considerably,
to around 100, which was much more workable.

From there, it was simply a matter of testing the control boid, putting a second boid species
in, and further altering some variables to see how it all interacted and what data I could gen-
erate.

I also limited each test to 200 years, simply for real-life time reasons—boid populations
tended to attain stability long before that time.

22

Stable Population

In order to compare the boids to the differential equation model, I needed some value to
compare to that model’s equilibrium or critical points.

Definition 10 Stable Population: a stable population, or equilibrium population, is the average of a
range of boid populations that continues for a period of time such that it shows no signs of moving signifi-
cantly (more than 20 boids) out of that range.

As the food is produced randomly, there is an element of randomness when running these
simulations. In one test, the average stable population of a control boid may appear to be
102, while in another it is 110, for example. This can come down simply to lack of luck, or
abundance of it, on the part of the boids. If food is generated close enough to eat, then that
works out well—for that specific boid (not so much for any others).

The populations also tend to oscillate somewhat, instead of reaching some definite pop-
ulation and forever remaining there—these are ever-changing systems. This must be kept in
mind; as much as possible I used my control of 20 boids, but on more than one occasion the
exact point this became true was based off of some amount of visual approximation.

Actual Data

Now we move on to what I have been promising: Actual data gathered from boid simulations!
All approximations of boid populations are rounded to the nearest whole number—with

the relative impreciseness of this model versus the more mathematical curves, two significant
figures seemed appropriate. But we will take what we have and see what we can find.

Test 1: Single Population, Variable Start

For the first test, I had to look at the simplest simulation: One population of control boids
(which obviously had to be green). I placed them into the environment with varying starting
population values, and saw what could happen.

I tested them starting at population 5, 50, 100, 200, 500, and 1000—smaller numbers, then
approximately the stable population, then higher numbers.

I created two graphs: One only including the first four tests to it is easier to see, and one
including all six tests including the larger numbers. Here they are:

23

It is easy to see, especially in the second graph, that no matter the starting population, it
always tends towards a certain range—in this case, each boid species achieved a definite stable
population around year 77, which generated averages of 104, 106, 107, 108, 101, 106, with a
total mean of 105.

Thus, the stable population of our control boid is approximately 105.

Test 2: Two Populations, Variable Starts

For my second test, I added a second population of boids—the red boids arrived. Here I
tested variable starting population numbers, to see if two groups of boids would also even out
to approximately the same numbers given different starting points.

I tested, going green-red, the numbers 5-5, 50-50, 50-5, 50-1, 100-1. Here are the graphs of
each boid species separately:

24

Here 114 years was the definite stable point for all populations. The average population
for green are 48, 51, 54, 57, 57, with a total average of 53—all approximately the same.

For red the stable populations are approximately 63, 53, 57, 55, 51, with a total average
of 56—again, all approximately the same, and additionally quite similar to green’s. Thus, no
matter what the starting points, these two identical boid species are going to come to nearly
enough the same equilibrium population.

Test 3: Movement Tests

For my third test, I set the control boid start to 50, and kept that constant.
I varied the speed and force of the red boids, keeping the ratio between speed and force

constant and varying them within that framework. Along with the baseline of maxspeed = 6.0
pixels/frame, I also tested 3.0, 9.0, and 12.0.

I attempted to test 24.0, but the red boids expanded too rapidly, reaching a population of
2000 within 10 years. I had to shut that one down.

Otherwise, here are the results:

25

Here we can see that increasing the speed gives the boids a drastic improvement in stable
population numbers. Most obviously this can be seen in the slower boid: At speed 3.0, they
were wiped out completely by the speed 6.0 green boids.

Otherwise, 99 years was definitely stable point:
At speed 9.0, red boids had a stable population of 209 (while green boids had a population

of 12—poor show, green).
At speed 12.0, red boids had a stable population of 129 (green boids had 23—better).
And at speed 6.0, as we have already seen, the boids have equal populations, somewhere

around 55.

Test 4: Food Till Birth Tests

For this test, I kept all things constant except foodtillbirth. Along with the baseline of 9, I
tested intervals of 4: the red boids were given FTB values of 17, 13, 5, and 1. FTB 1, however,
once again blew the population up over 2000 and I had to dump the whole mess into the digital
ether.

And here once again, the graphs:

26

Here, a lower FTB greatly increases a stable population. Once again, we have another
extreme result: AT FTB 17, the red boids were wiped out by the FTB 9 green boids.

The other average stable populations, after year 80:
At FTB 13, the red boids had a stable population of 17 (green boids had 78).
At FTB 5, red boids had a stable population of 133 (green boids had 25).
And the baseline once again is approximately the same.

The Possibility of Predicting Populations

If I were to run more trials testing every variable, I could potentially create a mathematical way
to predict what a certain boid species’ stable population would be, given every value, possible
presence of other species, and the environmental state.

With the number of variables involved, however, and the approximating that would have
been necessary, this proved to be beyond the scope of this project. This makes sense, given the
fact that the purpose of the agent-based model is to more easily represent detailed simulations
that would be difficult to compute accurately.

27

Chapter 5

Models and Reality: Interrelations

After studying the mathematics and examining the generated data, it is time to put it all to-
gether and see how the agent-based model can compare to both the differential equations
model and the real world.

To the Math

Now that I have all of the stable populations in each of these cases, I need only find the
intrinsic growth rate to be able to calculate everything for each of a given model to represent
it with differential equations.

As the stable population represents the place where the derivative is 0, I can first plug
numbers into equations for a single population to find the environmental threshold (0 = ϵ −
σg), and following this I can take the numbers for each of the two population models and find
the competition coefficient (0 = ϵ − σg − αr)—provided I can use an exponential model on
the lower ranges of the single population test to find that initial ϵ.

Luckily, using those spreadsheets it can easily be shown that the start 5 population growth
from year 2 to year 35 is approximately exponential, as demonstrated by this graph:

28

(To explain the year range: The first five years skew the graph a bit—no boid has reached
their starved point at that time yet, so there is no death, and there is also little to no growth,
as each boid starts as an unfed baby. So year one can be quietly ignored, as year two gives a
better approximate curve and better starting point. This means that for the population size
itself based on time, we are actually dealing with times t − 1, but for our differential equation,
in which is not directly a variable, this still serves as a good approximation).

Given that we are attempting to approximate

dg

dt
= ϵg

we rewrite it as
g = g0e

ϵt

where g0 is, as before the starting population of g(0) = 5.
Using the excel graph and functions shown above, the approximate equation we get is

g = 4.9515e0.0776t

which, while slightly different due to approximations, gives us an initial value very near to our
wanted g0, so we can comfortably use this ϵ value of 0.0776 to calculate a differential equations
model!

Since we found the stable population of a single type of boid to be 105, we can see from
0 = 0.0776 − 105(σ) that the environmental threshold is σ = .000759. Further using that,
we see that the stable population of two species of identical boids is about 55 each, so 0 =
.0776−55(.000759)−55(α), so our competition coefficient α = .000652. Thus, our differential
equations for green boids and red boids are:

dg

dt
= g(0.0776 − 0.000759g − 0.000652r)

dr

dt
= r(0.0776 − 0.000759r − 0.000652g)

Return of the Jacobian
Returning to our discussion of the Jacobian matrix and eigenvalues, we define functions G and
R with g′ = G(g, r) and r′ = R(g, r), where our equilibrium point is g = r = 55, or (55, 55).

The partial derivative Gg = −0.001518g − 0.000652r + 0.0776, while the partial derivative
Gr = −0.000652g. The two partial derivatives for R are the same with g and r swapped.

Thus, we have our matrix A:
Gg(55, 55) Rg(55, 55)

Gr(55, 55) Rr(55, 55)

 =

−0.04175 −0.04175
−0.03586 −0.03586

29

With this, we see that Tr(A) = −0.07736, det(A) = 0, where ∆ = .005985. Thus, our
eigenvalues are −0.1547 and 0: One negative and one zero eigenvalue. Thus, we would predict
a line of stability around one equilibrium point, which is consistent with our graph, as we shall
shortly see. We could repeat this with any other equilibrium points.

And that is the basis for a predictive mathematical model. If we wanted a better approx-
imation for our values, we would run several different trials to generate more data, which we
would then statistically evaluate more thoroughly.

A Differential Equations Graph Party

So to check over and compare, here are some generated graphs of the differential equations
based on these values, for two congruent species:

This is a graph of population r versus population g. Here, we can clearly see the arrows
as the graph tends to move towards the line of stability and the equilibrium point directly
in the middle; in this case, with any amount of red boids and green boids, that amount is
approximately 55 boids for each population. However, we also see on the edges that if one
population is the sole type of boid in the environment (so, r = 0 or g = 0) the amount of that
sole species would tend to be around 100, also as predicted.

(As well, if both populations are 0, there are no tendencies to go anywhere else, because
there are no boids. This is also as stated before, and as stated before it is possibly the least
interesting part of the graph: It is not going anywhere at all).

30

This second graph compares the population of green boids to time.
The topmost line represent starting conditions of g(0) = 150 and r(t) = 10.
The line that starts second from the top represents g(0) = 100 and r(0) = 150.
The third line represents g(0) = 10 and r(0) = 10.
The bottom line represents g(0) = 10 and r(0) = 150.
As we can see, the equilibrium values are approximately 55 for each population, no matter

the starting conditions, which makes sense—these population amounts are what we used to
calculate the environmental threshold and competition values, after all.

But what is most interesting is that the equilibrium is approached much more slowly than
the agent-based model demonstrated, especially when there is a large difference in starting
population sizes. This can be explained with a fairly simple concept: Inefficiency.

The differential equations model assumes that populations will be as efficient as possible—
the most members of the population getting the most food for the greatest amount of time.
Thus, when red starts high and green starts low, or vice versa, one population will dominate
for a lot longer.

For the boids, this is not at all the case. Boids are opportunistic little things, and as dis-
cussed under the change in speed function section, they are even less efficient than they used
to be—many more boids starve than would in a more fair system.

In the agent-based model I have constructed, a population will approach equilibrium far
more quickly in the boid world than the differential equations model, even without a lot
of trans-population competition, because boids are highly individualistic and difficult—they
compete heavily even with themselves.

Thus, when the smooth model is taken away and all that is left are individuals, things can
get very messy indeed.

31

To the World

As stated, the differential equation model is not the most accurate representation of the boid
world—but what matters in the end is the real world. The point of these models is not the
data points or the boids, but the real life birds flying around us. How can we more accurately
predict and understand them?

As demonstrated using data from the simulation, our Greek letter differential equation
constants (or at least usable estimates of them) can be found with graphical curves, calculating
stability, and lines of best fit. This gives us a place to start.

But the agent-based model must be tinkered with a bit more to give accurate findings.
First off, no birds I know live on a doughnut. This was a decision I made to give the boids

a limitless but finite area in which to live. Birds in real life have far more physical areas to exist
in, often far larger and more varied.

Thus, a better agent-based model than mine would factor in terrain and area, making it
more than a blank white space.

In addition, the resources would have to have more definite sources, and would be more
than just food. Birds need more than that—shelter, mates, water, and so on, would all be
represented in a more complicated ABM. As touched on under the “What Could Have Been”
section in chapter 3, the way the boids seek food is entirely unrealistic; birds have a much
more limited scope than that.

As far as the values ascribed to the boids themselves, this would have to rely on running
simulations and comparing the data generated to real world data and adjusting. Not enough
boids dying of old age in relation to real birds? Up the foodtillbirth. Too many starving? Either
up the resource count, or raise the starvation time—these birds are hardier than you thought.

More basic changes could also be made; for example, more new boids could be generated
at birth, if the bird tends to have more young—and the older boid does not necessarily have
to disappear (though this would be accurate if you were modeling something like salmon, who
do tend to die upon spawning).

More generally, the life cycle could be made much more apparent (baby boids being reliant
on their parents for food until a certain age, for example).

The world of agent-based modeling, while starting off as a very basic idea (let individuals
go and do what they want to), can be made very complicated very quickly. In comparison to
the potential for detail—and especially in comparison to the real world—my simulations here
are barely getting started.

32

Chapter 6

Conclusion

The point of this paper was not to come to any grand sweeping conclusions about the nature
of the real world or of the realm of mathematics, but instead serve as an introduction to what
agent-based modeling might be capable of, and how we can compare it to one of the simpler
models out there.

Our original red birds and green birds will never act like curves, nor will they act exactly like
their respectively colored boids even as we complicate the simulations, but we can approximate
and subsequently try to use those approximations to interpret and predict the world around
us, and understand how we and other forces impact these living systems.

Though, according to my model, the world can be so cruel and heartless when your only
goal is “eat all the food you can and avoid anyone different even more than you usually avoid
things.”

So, as much as I love those dopey little primary-colored arrowheads, perhaps there is a
lesson in there after all.

Be smarter than a boid.
Thank you for reading.

33

Appendix A

Chart of Eigenvalues and Equilibrium Points

Number and Types of Eigenvalues Type of Equilibrium Point

two positive saddle point
one negative, one zero line of attracting points
one positive, one zero line of repelling points
two negative sink
one positive, one negative source
single negative pinwheel sink
single positive pinwheel source
single zero uniform motion (zero)
two complex with negative real components spiral sink
two complex with positive real components spiral source
two complex with no real component center

34

Appendix B

Chart of Boid Values for One Species

Variable Definition

red red color value
green green color value
blue blue color value
start starting population
starvation how long since eating till a boid will starve
lifespan how long since birth till a boid will die of old age
selfinterference how far a boid prefers to be from those of its own species
otherinterference how far a boid prefers to be from those of other species
foodtillbirth how many pieces of food must be eaten until birth
maxspeed speed limit
maxforce speed change and turning limit
transitiontime time till a boid’s maxspeed reaches maximum

35

Appendix C

Processing Code: The Utilized Version of Boids

This is the entirety of the version of the boid code I used to run my simulations. As I said, there
are always improvements to be made and more variables to add, but it served my purposes well.
It is fairly well annotated, so if you have any interest in getting further into the gritty details
than this paper already has, dive right in.

int leftmargin = 55;
int rightmargin = 95; //for fitting text; x-value only (no y margins)
float maxsize = 5.0; //maximum size of boids; purely aesthetic.
//A bit bigger than root(2)*startingsize
//so viewer can better differentiate boids.
float startingsize = 3.0; //starting size of baby boids

int numfoods = 10; //How many foods are generated at start

int totaltime = 20000; //how many frames to run till automatic closing
//(for testing!)
String filename = "lasttests" + ".xls"; //the filename! Can be varied.
//(for testing!)

float nearestToZero(float a, float b, float c) {
//for looking at food vs. virtual food
//and finding which is closer
if (min(abs(a), abs(b), abs(c)) == abs(a)) return a;
if (min(abs(a), abs(b), abs(c)) == abs(b)) return b;
return c;

}

36

enum Boid_Type { //enumerating each boid type
//to allow for easy access to values.

GREEN_MACHINE(0, 200, 0, 50, 500, 2000, 20, 80, 9, .2, 6.0, 100),
RED_FED(200, 0, 0, 50, 500, 2000, 20, 80, 9, .2, 6.0, 100),
BLUE_CREW(0, 0, 200, 50, 500, 2000, 20, 80, 9, .2, 6.0, 100),
ORANGE_DOORHINGE(200, 155, 0, 50, 500, 2000, 20, 80, 9, .2, 6.0, 100);

int red;
int green;
int blue; //color of boid
int start; //How many boids at the start
int starvation; //how long till the boid will starve from hunger
int lifespan; //the boid lifespan
int selfinterference; //avoiding self boids
int otherinterference; //avoiding other boids
int foodtillbirth; //how many pieces of food to consume until birth
float maxforce; //how well a boid can turn
float maxspeed; //maximum speed of boid
int transitiontime;
//how long it takes for a boid, based on timer, to get to maxspeed
//(to get hungry enough)

int alive;
int starved;
int aged;
int births;

Boid_Type(int red, int green, int blue, int start,
int starvation, int lifespan,
int selfinterference, int otherinterference, int foodtillbirth,
float maxforce, float maxspeed, int transitiontime) {

this.red = red;
this.green = green;
this.blue = blue;

37

this.start = start;
this.starvation = starvation;
this.lifespan = lifespan;
this.selfinterference = selfinterference;
this.otherinterference = otherinterference;
this.foodtillbirth = foodtillbirth;
this.maxforce = maxforce;
this.maxspeed = maxspeed;
this.transitiontime = transitiontime;

this.alive = 0;
this.starved = 0;
this.aged = 0;
this.births = 0; //counters initialized for each type

}
}

class Vehicle { //called to create each boid

PVector location;
PVector velocity;
PVector acceleration; //for each individual boid

float heading = 0; //used in display
//so the boids aren't always facing to the left

float r; // Additional variable for size of boid
Boid_Type type;
int timer; //how long it has been since a boid ate (changes per frame)
int lifetime; //how long a boid has lived (changes per frame)
int eaten; //How many pieces of food a boid has eaten

float speed() {//Replaced simpler maxspeed.
if (timer > type.transitiontime) return type.maxspeed;
else return type.maxspeed/2*(1-cos(timer*PI/type.transitiontime));

}

38

Vehicle(float x, float y, Boid_Type type) {
//the object constructor itself
r = startingsize;
acceleration = new PVector(0, 0);
velocity = new PVector(0, 0);
location = new PVector(x, y);
this.type = type;
timer = 0;
lifetime = 0;
eaten = 0;
type.alive++;

}

void update() { //called each frame to describe the boid
separate(boids); //Where Separate is called
velocity.add(acceleration);
velocity.limit(speed());
location.add(velocity);
if (location.x < leftmargin) { //loop when it reaches the margins
location.x = width - rightmargin;

}
if (location.x > width - rightmargin) { //loop it around
location.x = leftmargin;

}
if (location.y < 0) { //more loops
location.y = height;

}
if (location.y > height) { //loops!
location.y = 0;

}
acceleration.mult(0); //reset the acceleration each time

}

void applyForce(PVector force) { // Newton’s second law, to move the boid
acceleration.add(force);

}

39

void seek(PVector target) { // To seek!
PVector desired = PVector.sub(target, location);
desired.normalize();
desired.mult(speed());
PVector steer = PVector.sub(desired, velocity);
steer.limit(type.maxforce);
applyForce(steer);

}

PVector replicate(float positionx, float positiony, String placement) {
//to generate virtual boid vectors that separate can use.
//capital letters make virtual boids at greater points
PVector virtual_boid = new PVector(0, 0);
if (placement == "X") {
virtual_boid.x = positionx + width - rightmargin - leftmargin;

} else if (placement == "x") {
virtual_boid.x = positionx - width + rightmargin + leftmargin;

} else if (placement == "Y") {
virtual_boid.y = positiony + height;

} else if (placement == "y") {
virtual_boid.y = positiony - height;

} else if (placement == "XY") {
virtual_boid.x = positionx + width - rightmargin - leftmargin;
virtual_boid.y = positiony + height;

} else if (placement == "Xy") {
virtual_boid.x = positionx + width - rightmargin - leftmargin;
virtual_boid.y = positiony - height;

} else if (placement == "xY") {
virtual_boid.x = positionx - width + rightmargin + leftmargin;
virtual_boid.y = positiony + height;

} else if (placement == "xy") {
virtual_boid.x = positionx - width + rightmargin + leftmargin;
virtual_boid.y = positiony - height;

}
return virtual_boid;

40

}

void separate(ArrayList<Vehicle> boids) {
float desiredseparation; //Separation value of boids from each other
PVector sum = new PVector();
int count = 0;
for (int i = 0; i < boids.size(); i++) {
Vehicle other = boids.get(i);
if (other.type == type) { //To differentiate boids of different type

desiredseparation = type.selfinterference;
} else {

desiredseparation = type.otherinterference; //boids of other types
}
if (other.location.x > leftmargin + desiredseparation &&

other.location.x < width - rightmargin - desiredseparation &&
other.location.y > desiredseparation
&& other.location.y < height - desiredseparation) {
; //do nothing at all;
//boid is far enough away from the walls copy is unnecessary

} else {
if (other.location.x < leftmargin + desiredseparation) {
PVector apparentlocation =
replicate(other.location.x, other.location.y, "X");

float d = PVector.dist(location, apparentlocation);
//distance to virtual boid

if ((d > 0) && (d < desiredseparation)) {
PVector diff = PVector.sub(location, apparentlocation);
diff.normalize();
sum.add(diff);
count++; //added to count to separate from

}
if (other.location.y < desiredseparation) {
//adds second pvector, diagonal
PVector apparentlocation2 =

replicate(other.location.x, other.location.y, "XY");
float e = PVector.dist(location, apparentlocation2);

41

if ((e > 0) && (e < desiredseparation)) {
PVector diff = PVector.sub(location, apparentlocation2);
diff.normalize();
sum.add(diff);
count++;

}
}
if (other.location.y > height - desiredseparation) {
//adds second pvector, diagonal
PVector apparentlocation2 =

replicate(other.location.x, other.location.y, "Xy");
float e = PVector.dist(location, apparentlocation2);
if ((e > 0) && (e < desiredseparation)) {

PVector diff = PVector.sub(location, apparentlocation2);
diff.normalize();
sum.add(diff);
count++;

}
}

}
if (other.location.x > width - rightmargin - desiredseparation) {
PVector apparentlocation =
replicate(other.location.x, other.location.y, "x");

float d = PVector.dist(location, apparentlocation);
if ((d > 0) && (d < desiredseparation)) {
PVector diff = PVector.sub(location, apparentlocation);
diff.normalize();
sum.add(diff);
count++;

}
if (other.location.y < desiredseparation) {
//adds second pvector, diagonal
PVector apparentlocation2 =

replicate(other.location.x, other.location.y, "xY");
float e = PVector.dist(location, apparentlocation2);
if ((e > 0) && (e < desiredseparation)) {

42

PVector diff = PVector.sub(location, apparentlocation2);
diff.normalize();
sum.add(diff);
count++;

}
}
if (other.location.y > height - desiredseparation) {
//adds second pvector, diagonal
PVector apparentlocation2 =

replicate(other.location.x, other.location.y, "xy");
float e = PVector.dist(location, apparentlocation2);
if ((e > 0) && (e < desiredseparation)) {

PVector diff = PVector.sub(location, apparentlocation2);
diff.normalize();
sum.add(diff);
count++;

}
}

}
if (other.location.y < desiredseparation) {//second check of this
//makes either first or third vector, depending
PVector apparentlocation =
replicate(other.location.x, other.location.y, "Y");

float d = PVector.dist(location, apparentlocation);
if ((d > 0) && (d < desiredseparation)) {
PVector diff = PVector.sub(location, apparentlocation);
diff.normalize();
sum.add(diff);
count++;

}
}
if (other.location.y > height - desiredseparation) {//same as above
PVector apparentlocation =
replicate(other.location.x, other.location.y, "y");

float d = PVector.dist(location, apparentlocation);
if ((d > 0) && (d < desiredseparation)) {

43

PVector diff = PVector.sub(location, apparentlocation);
diff.normalize();
sum.add(diff);
count++;

}
}

}
float d = PVector.dist(location, other.location);
if ((d > 0) && (d < desiredseparation)) {

PVector diff = PVector.sub(location, other.location);
diff.normalize();
sum.add(diff);
count++;

}
}
if (count > 0) { //separate from all added vectors!
sum.div(count);
sum.setMag(speed());
PVector steer = PVector.sub(sum, velocity);
steer.limit(type.maxforce);
applyForce(steer);

}
}

void display() {// Vehicle is a triangle pointing in the direction of velocity
if (velocity.mag() != 0) heading = velocity.heading() + PI/2;
//so it can face a different way when stopped
fill(type.red, type.green, type.blue); //color of boid
stroke(0);
pushMatrix();
translate(location.x, location.y);
rotate(heading);
beginShape();
vertex(0, -r*2);//top point.
//Following points are connected with straight lines

vertex(-r, r*2);

44

vertex(0, r);//dimple!
vertex(r, r*2);
endShape(CLOSE);
popMatrix();

}
}

ArrayList<Vehicle> boids = new ArrayList<Vehicle>(); //list of boids
ArrayList<PVector> foodstuffs = new ArrayList<PVector>(); //list of foods

int frames = 0; //time!
int starved;
int aged;
int births; //all numbers to display

PFont f; //for displayed font
PrintWriter output; //for flushing data to named file

// Given location, will give index of nearest foodstuffs.
//Replacement for food class
PVector nearestFoodstuffs(PVector location) {
PVector foodvector = new PVector (0, 0);
//not a literal vector; x is index of food, y is offset
float nearest_distance = sqrt(sq(width) + sq(height));
//setting it to some max
for (int i = 0; i < foodstuffs.size(); i++) {

float distancex = nearestToZero(
location.x - foodstuffs.get(i).x,
location.x - foodstuffs.get(i).x + width - leftmargin - rightmargin,
location.x - foodstuffs.get(i).x - width + leftmargin + rightmargin
); //closer: real, or two virtual x-spaces?

float distancey = nearestToZero(
location.y - foodstuffs.get(i).y,
location.y - foodstuffs.get(i).y + height,
location.y - foodstuffs.get(i).y - height
); //real or virtual y-spaces?

45

float distance = sqrt(sq(distancex) + sq(distancey)
);//distance to the nearest food, either real or virtual

if (distance < nearest_distance) { //set nearest to be a different food
foodvector.y = 0; //reset to zero to set to a different offset, if necessary
foodvector.x = i;
nearest_distance = distance; //to compare
if (distancex == location.x - foodstuffs.get(i).x -

width + leftmargin + rightmargin) {
foodvector.y += 3;

} else if (distancex == location.x - foodstuffs.get(i).x +
width - leftmargin - rightmargin) {
foodvector.y += 6;

}
if (distancey == location.y - foodstuffs.get(i).y - height) {

foodvector.y += 1;
} else if (distancey == location.y - foodstuffs.get(i).y + height) {
foodvector.y += 2; //numbers to iterate through in trinary, down below

}
}

}
return foodvector; //(index of nearest food, offset)

}

void goodnight() { //for shutting down the program and getting data
output.flush(); // Writes the remaining data to the file
output.close(); // Finishes the file
exit(); // Stops the program

}

void setup() {
size(750, 600); //size of area
output = createWriter(filename); //use earlier name
f = createFont("Arial", 16, true); //font!
for (Boid_Type t : Boid_Type.values()) { //iterate through all boid types

for (int i=0; i<t.start; i++) {
boids.add(new Vehicle(

46

floor(random(width - rightmargin - leftmargin) + leftmargin),
floor(random(height)), t)); //Random placement of boids

}
}
for (int i = 0; i < numfoods; i++) {

foodstuffs.add(new PVector(
floor(random(width - rightmargin - leftmargin) + leftmargin),
floor(random(height))));//initial food placement

}
}

void draw() {
background(255); //background color
stroke(0); //Color of food
for (int i = 0; i < foodstuffs.size(); i++) { //drawing shape of food

line(foodstuffs.get(i).x-2, foodstuffs.get(i).y-2,
foodstuffs.get(i).x+2, foodstuffs.get(i).y+2
);

line(foodstuffs.get(i).x-2, foodstuffs.get(i).y+2,
foodstuffs.get(i).x+2, foodstuffs.get(i).y-2
);

}
for (int i=0; i <boids.size(); i++) { //go through all boids

Vehicle this_boid = boids.get(i);
if (this_boid.timer > this_boid.type.starvation) { //starves it
this_boid.type.starved++;
this_boid.type.alive--;
boids.remove(i);

} else if (this_boid.lifetime > this_boid.type.lifespan) { //ages it
this_boid.type.aged++;
this_boid.type.alive--;
boids.remove(i);

} else if (this_boid.eaten >= this_boid.type.foodtillbirth) { //births
boids.add(new Vehicle(

this_boid.location.x - 1, this_boid.location.y, this_boid.type));
boids.add(new Vehicle(

47

this_boid.location.x + 1, this_boid.location.y, this_boid.type));
this_boid.type.births++;
this_boid.type.alive--;
boids.remove(i);

} else if (foodstuffs.size() != 0) { //to make sure there is actually food
PVector nearestFoodstuff = nearestFoodstuffs(this_boid.location);

//function called
int nearest_index = int (nearestFoodstuff.x);
int offset = int (nearestFoodstuff.y);
PVector nearest_food = new PVector(0, 0);
nearest_food.x = foodstuffs.get(nearest_index).x;
nearest_food.y = foodstuffs.get(nearest_index).y;
if (offset > 5) nearest_food.x -= (width - rightmargin - leftmargin);

else if (offset > 2) nearest_food.x += (width - rightmargin - leftmargin);
if (offset % 3 == 1) nearest_food.y += height;
else if (offset % 3 == 2) nearest_food.y -= height;

//iterates, trinary. External chart...
if (sqrt(sq(this_boid.location.x - nearest_food.x) +

sq(this_boid.location.y - nearest_food.y)
) < 10) {
//10 away from food and they eat it!
//taking into account all virtual foods too
foodstuffs.remove(nearest_index); //remove the food
foodstuffs.add(new PVector(

floor(random(width - rightmargin - leftmargin) + leftmargin),
floor(random(height)))
);//more food place

this_boid.timer = 0;
this_boid.eaten++;
this_boid.r += ((maxsize-startingsize)/this_boid.type.foodtillbirth);

} else this_boid.seek(nearest_food);
}
this_boid.timer++;
this_boid.lifetime++;
this_boid.update();
this_boid.display(); //end of boid activity for one frame

48

}
frames++; //time!
stroke(0);
fill(200, 200, 200); //colors for walls and borders
beginShape();
vertex(0, -1);
vertex(leftmargin, -1);
vertex(leftmargin, height);
vertex(0, height);
endShape();
beginShape();
vertex(width, -1);
vertex(width-rightmargin, -1);
vertex(width-rightmargin, height);
vertex(width, height);
endShape(); //walls!
//Actually shapes placed on the side to cover up boids as they cross borders.

textFont(f, 14); //on-screen text
fill(0);
text(boids.size(), 10, 20);
for (int i = 0; i < Boid_Type.values().length; i++) {

Boid_Type current = Boid_Type.values()[i];
fill(current.red, current.green, current.blue);
text(current.alive, 10, 40 + 20*i);

}

fill(0);
text(frames, 10, height - 10);

starved = 0;
for (int i = 0; i < Boid_Type.values().length; i++) {

Boid_Type current = Boid_Type.values()[i];
fill(current.red, current.green, current.blue);
text(current.starved, width - 30, 40 + 20*i);
starved += current.starved;

49

}
fill(0);
text("Starved:", width - 85, 20);
text(starved, width - 30, 20);

aged = 0;
for (int i = 0; i < Boid_Type.values().length; i++) {

Boid_Type current = Boid_Type.values()[i];
fill(current.red, current.green, current.blue);
text(current.aged, width - 30, floor(height/2) +

floor(20*(i+1 - Boid_Type.values().length/2.)));
aged += current.aged;

}
fill(0);
text("Aged:", width - 70,

floor(height/2) + floor(20*(-Boid_Type.values().length/2.)));
text(aged, width - 30,

floor(height/2) + floor(20*(-Boid_Type.values().length/2.)));

births = 0;
for (int i = 0; i < Boid_Type.values().length; i++) {

Boid_Type current = Boid_Type.values()[i];
fill(current.red, current.green, current.blue);
text(current.births,
width - 30, height - 20*(Boid_Type.values().length - (i+1)) - 10);

births += current.births;
}
fill(0);
text("Births:", width - 73, height - 20*(Boid_Type.values().length) - 10);
text(births, width - 30, height - 20*(Boid_Type.values().length) - 10);
//now for external file output
if (frames == 1) { //boid initial data, labels
output.println("Area Size" + "\u0009" + (width - rightmargin -leftmargin) +
" x " + height + "\u0009" + "" + "\u0009" + "Numfoods" + "\u0009" + numfoods
);

output.println("Boid Type" + "\u0009" +

50

"Red" + "\u0009" + "Green" + "\u0009" + "Blue" +
"\u0009" + "Start" + "\u0009" +
"Starvation" + "\u0009" + "Lifespan" + "\u0009" +
"Self Itf" + "\u0009" + "Other Itf" + "\u0009" + "FTB" + "\u0009" +
"Maxforce" + "\u0009" + "Maxspeed" + "\u0009" + "Transition"
);

for (int i = 0; i < Boid_Type.values().length; i++) {
Boid_Type current = Boid_Type.values()[i];
output.println(current.name() + "\u0009" + current.red + "\u0009" +

current.green + "\u0009" + current.blue + "\u0009" +
current.start + "\u0009" +
current.starvation + "\u0009" + current.lifespan + "\u0009" +
current.selfinterference + "\u0009" +
current.otherinterference + "\u0009" +
current.foodtillbirth + "\u0009" +
current.maxforce + "\u0009" +current.maxspeed + "\u0009" +
current.transitiontime
);

}
output.println(" "); //empty line
output.print("Frames\u0009Alive\u0009" +//labels!
"Starved\u0009Aged\u0009Births\u0009"
);

for (int i = 0; i < Boid_Type.values().length; i++) {
output.print((i+1) + " Alive" + "\u0009" + //more labels!

(i+1) + " Starved" + "\u0009" + (i+1) +
" Aged" + "\u0009" + (i+1) + " Births" + "\u0009"
);

}
output.println();

}
if (frames%100==0) { //how often it spits out data
output.print(frames + "\u0009" + boids.size() + "\u0009" + //total values

starved + "\u0009" + aged + "\u0009" + births + "\u0009"
);

for (int i = 0; i < Boid_Type.values().length; i++) {

51

Boid_Type current = Boid_Type.values()[i];
output.print(current.alive + "\u0009" + //individual type values

current.starved + "\u0009" +
current.aged + "\u0009" +
current.births + "\u0009"
);

}
output.println();

}
if (frames >= totaltime) goodnight();

}

void keyPressed() { //to shut it down early
goodnight();

}

52

Bibliography

[1] William E. Boyce, Richard C. Diprima. Elementary Differential Equations and Boundary Value
Problems, Ninth Edition. Wiley. Grafton, NY, 2008.

[2] Douglas R. Hundley. “Poincare Diagram: Classification of phase portraits in (detA, TrA) –
plane.” Whitman College, WA, Fall 2012. http://people.whitman.edu/~hundledr/
courses/M244F12/M244/PoincareDiagram.jpg

[3] Daniel Shiffman. The Nature of Code. Self-published, 2012. http://natureofcode.com/

53

	Contents
	Introduction
	Smooth Curves: Differential Equation Modeling
	The Example: Birds
	Constructing an Equation
	Exponential Growth
	Environmental Threshold
	Equilibrium
	Competition
	Examining Competition
	Calculations in Theory

	The Digital World: Agent-Based Modeling
	An Object
	Foodstuffs
	The Life of the Boid
	Boid Values
	Environment
	Virtual Realities
	Optimizations in Doughnut World
	The Presentation of the Thing
	What Could Have Been

	Spreadsheets and Graphs: Boid Data Analysis
	Conversions
	The Control Boid
	Stable Population
	Actual Data
	Test 1: Single Population, Variable Start
	Test 2: Two Populations, Variable Starts
	Test 3: Movement Tests
	Test 4: Food Till Birth Tests
	The Possibility of Predicting Populations

	Models and Reality: Interrelations
	To the Math
	A Differential Equations Graph Party
	To the World

	Conclusion
	Chart of Eigenvalues and Equilibrium Points
	Chart of Boid Values for One Species
	Processing Code: The Utilized Version of Boids
	Bibliography

