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Abstract

Group and graph theory both provide interesting and meaninful ways of examining relationships
between elements of a given set. In this paper we investigate connections between the two. This
investigation begins with automorphism groups of common graphs and an introduction of Frucht’s
Theorem, followed by an in-depth examination of the automorphism groups of generalized Petersen
graphs and cubic Hamiltonian graphs in LCF notation. In conclusion, we examine how Frucht’s
Theorem applies to the specific case of cubic Hamiltonian graphs.

1. Group Theory Fundamentals

In the field of Abstract Algebra, one of the fundamental concepts is that of combining particular
sets with operations on their elements and studying the resulting behavior. This allows us to
consider a set in a more complete way than if we were just considering their elements themselves
outside of the context in which they interact. For example, we might be interested in how the set
of all integers modulo m behaves under addition, or how the elements of a more abstract set S
behave under some set of permutations defined on the elements of S. Both of these are examples
of a group.

Definition 1.1. A group is a set S together with an operation ◦ such that:

(1) For all a, b ∈ S, the element a ◦ b = c has the property that c ∈ S.
(2) For all a, b, c ∈ S, the equality a ◦ (b ◦ c) = (a ◦ b) ◦ c holds.
(3) There exists an element e ∈ S such that a ◦ e = e ◦ a = a for all a ∈ S.
(4) For all a ∈ S there exists an element b ∈ S such that a ◦ b = b ◦ a = e.

Note that under this definition there are sets together with operations that do not form groups,
for example the set of integers under division. Now that we have the notion of a group, it is natural
to begin to classify these groups and organize them into groups of similar structure. One common
group is Sn, the Symmetric Group consisting of all possible permutations of n elements. Another
is Dn, the set of symmetries of an n-gon, also known as the Dihedral Group on n elements. See
Gallian’s text for full definitions of both of these groups[6].

In examining the specific example of the group D5, the group of symmetries of the pentagon,
we notice that there are two basic kinds of elements, rotations and flips. In particular, we have 5
distinct rotations that form a group R by themselves, as well as 5 distinct flips. It is only natural
then to try to write the group somehow as a product of two other groups. There is one additional
difficulty here, which is that the flips do not actually form a group by themselves, as can be verified
by composing any two flips together as well as the fact that there is no identity element. If we
consider instead the group F of two elements formed by the identity and one flip (say the one over
the axis through vertex 0), we notice that R = {R0, R72, R144, R216, R288} and F = {R0, f}, and
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hence |R||F | = 10 = |D5|. This seems to suggest some sort of equality between D5 and these two
groups considered together. However, we need a systematic way to define products of groups. The
first method is called the external direct product, and is defined as follows:

Definition 1.2. Let G1, G2, . . . , Gn be a finite collection of groups. The external direct product of
these groups, written as G1 × G2 × · · · × Gn is the set of all n-tuples for which the ith component
is an element of Gi, and the operation is componentwise [6].

Using Definition 1.2, one might think that D5
∼= R × F . To begin, we take as an example the

symmetry of the square obtained by first operating by R72 and then f . To express the group as a
direct product, we would like to be able to represent this state in the form (R72, f). However, if we
return to Definition 1.2, we note that the operation, in this case composition of rotations and flips,
should be componentwise, meaning that it should not matter whether we rotate or flip our pentagon
first. A quick check shows us that this is not true, and order does in fact matter. Therefore we
need another way to formalize a product of groups. Before we get there, however, we will need to
formalize the notion of group homomorphisms, isomorphims, and automorphisms, which we will do
with definitions taken from Steinberger [7].

Definition 1.3. Let G and G′ be groups. A homomorphism from G to G′ is a function f : G→ G′

such that f(x ◦ y) = f(x) ◦ f(y) for all x, y ∈ G.

Definition 1.4. An isomorphism is a homomorphism that is one-to-one and onto.

Definition 1.5. An automorphism of a group G is an isomorphism from G to itself. We denote
the set of all automorphisms of G as Aut(G)

Note that in Definition 1.3, the ◦ operator refers to the operation defined as part of the group
G when inside the argument of f , but then changes to the operation defined as part of the group
G′ on the other side of the equality. These operations are context dependent, they could be two
entirely different operations depending on the nature of the two groups involved.

Theorem 1.6. The set of all group automorphisms of G forms a group under function composition.

Proof. We will show that the elements of Aut(G) satisfy the four conditions laid out in Definition
1.1.

(1) Let α, β be any two automorphisms in Aut(G). Since both α and β are automorphisms,
they permute the elements of G. It follows that the combination of the two will still permute
the elements of G, and thus the resulting permutation is an automorphism. It follows that
α ◦ β ∈ Aut(G).

(2) Since function composition is associative, this point follows by assumption.
(3) The identity automorphism i is the permutation defined by i(g) = g for all g ∈ G. Given any

automorphism α ∈ Aut(G), we find that (α ◦ i)(g) = α(i(g)) = α(g), and that (i ◦ α)(g) =
i(α(g)) = α(g) for all g ∈ G.

(4) Let us consider a generic automorphism α ∈ Aut(G). The size of Aut(G) is finite, since we
can have at most n! permutations on a set of n elements. Thus α ◦ α ◦ · · · ◦ α = αj must
eventually equal the identity permutation for some positive integer j, otherwise Aut(G)
would be infinite. Let β = αj−1. It follows that β ◦ α = α ◦ β = αj = i.

It follows that Aut(G) is a group under function composition. �

With this notion of an automorphism group we can define the second method of defining a product
of two groups. This second method, called a semidirect product, is a generalized form of the external
direct product that allows us to have the groups whose product we are taking interact with each
other. More detail on both this definition and the related concepts can be found in Steinberger [7]
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Definition 1.7. Let K and H be groups, and let α : K → Aut(H) be a homomorphism. The
semidirect product of H and K with respect to α is the set H ×K with the binary operation

(h1, k1) ◦ (h2, k2) = (h1 ◦ α(k1)(h2), k1 ◦ k2)

and is written H oα K.

This definition seems very abstract and complex at first, but we can see how it is simply a
generalized version of Definition 1.2 by proving the following Corollary:

Corollary 1.8. Given two groups H and K, the external direct product H × K is isomorphic to
the semidirect product H oi K, where i is the identity permutation on H.

Proof. Let i be the identity permutation on H, and define our homomorphism α by α(k) = i for
all k ∈ K. Then by Definition 1.7, we see that taking the product any two elelements of H oα K
is equivalent to the set H ×K with the binary operation

(h1, k1) ◦ (h2, k2) = (h1 ◦ α(k1)(h2), k1 ◦ k2)

= (h1 ◦ i(h2), k1 ◦ k2)

= (h1 ◦ h2, k1 ◦ k2)

By examining Definition 1.2, we see that this is precisely the external direct product of the two
groups. �

Now we can formalize the structure of D5 using the semidirect product defined in Definition 1.7.
To do so, we must first find some isomorphism γ of our group of rotations R other than the identity,
as Lemma 1.8 tells us that this would simply be R×F which we know is not isomorphic to D5. In
particular, we state that γ defined by γ(Rm) = R−1

m = R360−m for all Ri ∈ R is an isomorphism of
R, a proof of which is trivial. We know from the behavior of the different elements of our group
D5 that whether or not we flip makes a difference for the subsequent rotations, and this leads us
to believe that the homomorphism α : F → Aut(R) will be defined by α(R0) = i and α(f) = γ. It
follows that our guess for the structure of D5 is RoαF . To see if this solves our former problem, we
would like to show that two rotations with a flip in between is different than two rotations followed
by a flip. Using Definition 1.7 we find that

(R72, f) ◦ (R72, R0) = (R72 ◦ α(f)(R72), f ◦R0 = (R72 ◦ γ(R72), f) = (R72 ◦R288, f) = (R0, f)

while

(R72, 0) ◦ (R72, f) = (R72 ◦ α(R0)(R72), R0 ◦ f = (R72 ◦ i(R72), f) = (R72 ◦R72, f) = (R144, f).

Hence, we find that the order does matter, and therefore that this semidirect product seems to be a
good representation of the structure of D5. We will not present a formal proof of the isomorphism
between the two in this paper, but the interested reader can read further on the subject in Gallian’s
algebra text [6].

2. Graph Theory Fundamentals

Another natural question to ask when given a set of elements is how they are related to each other.
For example, given a set of cities, we might want to know which of them are directly connected
by roads. Similarly, we might want to know who is friends with whom in a given group of people.
Both of these sets lend themselves naturally to representation in the form of a graph.

Definition 2.1. A graph is a collection of vertices connected by edges. Formally, we represent
a graph G as a set of vertices VG = {u0, u1, . . . , un−1} together with a set of edges of the form
EG = {{ui, uj}, . . . , {uk, ul}} where i, j, k, l are integers in the range [0, n− 1].
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Figure 1. The complete graph on 8 vertices K8

In our first example the set VG would be the set of cities, and {ui, uj} ∈ EG if the cities represented
by ui and uj were connected by a road. In the second example, VG would be the set of people and
{ui, uj} ∈ EG if the people represented by ui and uj were friends (this is, of course, assuming that
friendship is a symmetric relation).

While these examples are very similar, there are some important potential differences. Suppose
that we are building a graph to represent cities and the roads between them because we want to
know the shortest route to drive between any two cities. Then in this case it would be important to
know how long each of the roads are. We could then assign a weight to any given edge of our graph.
Alternately, suppose we want to know how many ways there are to get from one city to another.
Then it would be important to know if there were more than one direct road between two cities,
or even if there was a scenic loop that went from one city back to itself. To faithfully represent
this in our graph, we would need to allow there to be multiple edges between vertices in addition
to edges between a vertex and itself. In contrast, we consider the case of group of people and their
friendships. It clearly does not make sense to assign a quantifier to the friendship between any two
people, nor does it make sense to have two people be friends twice over or someone be friends with
themselves. Therefore in this case we would like to only allow our graph to have edges between two
distinct vertices, and no more than one edge per vertex pair. Such a graph is said to be simple.
In this paper we will only be considering simple graphs. For more information on other kinds of
graphs, see Bogart [2] or Bona [3].

One useful concept that helps us discuss graphs is as follows: the degree of a vertex is equal to
the number of edges incident at that vertex. Therefore, to find the degree of a given vertex v ∈ VG,
we must simply count the number of edges e ∈ EG that have v as one of their two entries. Knowing
the degrees of vertices present in the graph will help to compare graphs to each other.

Just as with groups, there are a few graphs that are common enough to have their own standard
notation. The three that we will be using in this paper are;

(1) The Complete Graph on n vertices Kn in which every vertex is connected to all n− 1 other
vertices (Figure 1).

(2) The Path Graph on n vertices Pn consists of n vertices v0, v1, v2, . . . , vn−1 and n− 2 edges,
where {vi, vi+1} = ei ∈ EPn for all 0 ≤ i ≤ n− 2 (Figure 2).
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Figure 2. The path graph on 8 vertices P8

Figure 3. The cycle graph on 8 vertices C8

(3) The Cycle Graph Cn consists of the path graph Pn, but with the extra edge {vn−1, v0}
(Figure 3).

We still need more terminology to be able to investigate graphs more fully. First, given a graph
G and an edge e ∈ G, the graph obtained by removing e from G is represented by G\e. We also
will discuss the difference between adjacent and non-adjacent edges, where two edges in a graph
G are said to be adjacent if they share a vertex. Additionally, we will often discuss the idea of a
subgraph of a given graph G. Any subset of VG together with edges from EG that use only vertices
from this subset form a subgraph. Thus, G\e is a subgraph of G, as it uses the trivial subset of
VG that is the whole set and all but one edge from EG. An induced subgraph of G is a subgraph
formed by removing any number of vertices from VG as well as all edges that include those vertices.
Additionally, the complement of a graph G is denoted Ḡ and represents the graph formed by taking
the vertex set VG along with all edges not in EG. Thus, the complement of the complete graph is the
empty graph, and vice-versa. Another common concept in Graph Theory is that of a Hamiltonian
graph. A Hamiltonian graph contains a cycle such that every vertex is visited exactly once, with
the exception of the starting and ending vertex which must be the same in order for it to truly be
a cycle. Such a cycle is called a Hamiltonian Cycle. For example, the cycle graph Cn can easily be
seen to be Hamiltonian, as the edges form a Hamiltonian cycle. However, the path graph Pn is not
Hamiltonian, as there are no Hamiltonian cycles. It is worth noting that any Hamiltonian graph
can be naturally represented by putting its vertices in the form of a cycle, and then adding any
other edges that might be present through the interior of the figure.

It is only natural to want use some of our tools from our study of Abstract Algebra to understand
these graphs better. We start by refining the idea of a group automorphism defined in Definition
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1.5 to apply to graphs instead. In the case of a group automorphism, we needed a permutation that
was one-to-one and onto that had the additional property of preserving the structure of the group
under the operation ◦ associated with it. In the case of a graph, we have no operation to preserve,
but we would like to maintain the information provided by the graph through the isomorphism,
therefore preserving the relationship between two vertices that are connected by an edge. This leads
us to the following definition:

Definition 2.2. A graph automorphism of G is a permutation φ on the set of vertices VG that
satisfies the property that {ui, uj} ∈ EG if and only if {φ (ui) , φ (uj)} ∈ EG.

Now that we have a definition of a graph automorphism that parallels Definition 1.5, it not a
stretch to wonder if the set of all graph automorphisms on a particular graph G forms a group, as
was found with group automorphisms in Theorem 1.6. This is in fact the case.

Theorem 2.3. The set Aut(G) of all graph automorphisms of a graph G forms a group under
function composition.

The proof of this fact follows that of Theorem 1.6 almost precisely. We also note that a graph
and its complement are very similar in structure. This leads us to believe that there might be some
sort of relationship between their automorphism groups. This turns out to be the case, as outlined
in the next theorem.

Theorem 2.4. Given any graph G, Aut(G) = Aut(Ḡ).

Proof. We will proceed by showing set inclusion in both directions. First suppose that we have
some permutation σ ∈ Aut(G), and an edge e /∈ EG. By the definiton of the complement of a
graph, it follows that e ∈ EḠ. Similarly, we know from the definition of a graph automorphism that
σ(e) /∈ EG, and hence we find that σ(e) ∈ EḠ. Thus we have shown that σ is an automorphism
of Ḡ, and thus σ ∈ Aut(Ḡ). Note that G is isomorphic to the complement of Ḡ, so we can simply
interchange G and Ḡ and find that if τ ∈ Aut(Ḡ), then τ ∈ Aut(G). Thus we have shown that the
two automorphism groups are equal. �

3. Edge Automorphism Groups and Line Graphs

After establishing the concept of a graph, we quickly turned to the idea of graph automorphisms
that permuted the vertices of a particular graph G. However, that this is not the only way we
could approach automorphisms of a particular graph. We could just as easily have decided that we
would permute the edges instead of the vertices, and define our automorphism in this way. This
leads us to a second kind of graph automorphism, the edge automorphism. This concept, along
with the others discussed in this section, is explored in more detail in chapters 9 and 10 of Behzad,
Chartrand, and Lesniak-Foster’s book [1].

Definition 3.1. An edge automorphism is a permutation φ on the set of edges EG that satsfies the
property that e1, e2 are adjacent if and only if φ(e1), φ(e2) are also adjacent.

These automorphisms also form a group under function composition, which will be denoted
AutE(G).

However, we notice that this concept of an edge automorphism is closely related to that of a
graph automorphism given in Definition 2.2. In fact, any graph automorphism will induce some
particular edge automorphism. We call this an induced edge automorphism, and the set of all such
automorphisms will be represented by AutI(G). It is clear that AutI(G) ⊆ AutE(G), but it is
natural to wonder if there is in fact equality in all cases. Figure 5 gives three examples of graphs
for which this is not the case. Each of these graphs has an edge automorphsim that is not induced
by any graph automorphism. The automorphisms are
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G1 G2

Figure 4. Two graphs G1 and G2 that have the same edge automorphism group,
but are non-isomorphic [1].

G3 G4 G5

Figure 5. Three graphs G1, G2 and G3 that have edge-automorphisms not induced
by any automorphism [1].

φ3 =

(
{v0, v1} {v1, v2} {v1, v3} {v2, v3}
{v2, v3} {v1, v2} {v1, v3} {v0, v1}

)
φ4 =

(
{v0, v1} {v1, v2} {v1, v3} {v2, v3} {v0, v3}
{v1, v2} {v2, v3} {v1, v3} {v0, v3} {v0, v1}

)
φ5 =

(
{v0, v1} {v1, v2} {v1, v3} {v2, v3} {v0, v3} {v0, v2}
{v2, v3} {v1, v2} {v1, v3} {v0, v1} {v0, v3} {v0, v2}

)
We can also approach these groups by examining the automorphism group of a graph Aut(G)

alongside the induced edge automorphism group AutI(G).

Theorem 3.2. Let G be a non-trivial connected graph. Then Aut(G) ∼= AutI(G) if and only if
G � K2.

Proof. We begin by proving the converse of the first implication, namely that Aut(K2) � AutI(K2).
This follows from the fact that Aut(K2) ∼= S2, while AutI(K2) ∼= S1.

Next we assume that G is a connected graph on at least 3 vertices, noting that G must then have
at least two edges. We define a mapping φ : Aut(G)→ AutI(G) such that φ(α) = αI , where αI is
the edge automorphism induced by α. We wish to show that φ is onto, one-to-one, and operation
preserving.
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• Our mapping φ must be onto, as this is precisely how we constructed AutI(G) in Definition
3.1.
• Let α, β ∈ Aut(G), where α 6= β. Since α and β are not equal, there must be a vertex
v ∈ VG such that α(v) 6= β(v), and let u be a vertex adjacent to v. If α(u) 6= β(v) or
α(v) 6= β(u), then we have found that, for the edge e = {u, v}, the induced automorphisms
αI and βI cannot be equal, as αI(e) 6= βI(e). Instead we assume that α(u) = β(v) and
α(v) = β(u). Since G has at least three vertices, then there exists another vertex w such
that w /∈ {u, v} and w is adjacent to either u or v. We suppose without loss of generality
that e = {u,w} ∈ E(G), and note that αI(e) 6= β(I(e). Thus we have shown that φ is
one-to-one in all cases.
• Let e = {u, v}, and define

β(u) = u′, β(v) = v′, α(u′) = u′′, α(v′) = v′′.

It follows that

φ(αβ)(e) = φ(αβ)({u, v}) = αIβI({u, v}) = {(αβ)(u), (αβ)(v)} = {α(u′), α(v′)} = {u′′, v′′}

and also that

φ(α)φ(β)(e) = φ(α)φ(β)({u, v} = φ(α)({β(u), β(v)}) = φ(α)({u′, v′} = {α(u′), α(v′)} = {u′′, v′′}.

Hence we have shown that φ is operation preserving.

It follows from the fact that φ is onto, one-to-one, and operation preserving that φ is in fact an
isomorphism, and thus that Aut(G) ∼= AutI(G). �

Now that we have established the relationship between the automrophism group and induced
edge automorphism group of a graph, we would like to investigate how the edge automorphism
group fits in. This turns out to be a more complicated process, and the details can be found in
Chapter 9 of Graphs and Digraphs [1]. We have noted that the graphs G3, G4, and G5 in Figure
5 are such that they have edge automorphisms that are not included in the group of induced edge
automorphisms. It turns out that these are the only connected graphs on three or more vertices
that have this property. Thus we conclude that if G is a connected graph on 3 or more vertices not
isomorphic to G3, G4, or G5, then Aut(G) = AutI(G) = AutE(G).

Given a graph G, we can create a new graph L(G) by mapping each edge e ∈ EG to a vertex
v ∈ VL(G), where any two vertices in L(G) are connected if the corresponding edges are adjacent in
G. This graph L(G) is called the line graph of G, see Figure 6 for an example.

Corollary 3.3. Given a connected graph G on 3 or more vertices, the groups Aut(G) and Aut(L(G))
are isomorphic if G is not isomorphic to G3, G4, or G5 (Figure 5).

Proof. By the properties of the line graph, there exists an isomorphism between the sets EG and
VL(G), and therefore there must also be an isomorphism between AutE(G) and Aut(L(G)). By pre-
vious results, we know that Aut(G) ∼= AutE(G) ∼= Aut(L(G)), showing that the two automorphism
groups must be isomorphic. �

This provides us with a way of generating many non-isomorphic graphs that all have the same
automorphism group, which suggests that there are a very large number of graphs of this sort. We
also note that the equality between Aut(G) and AutE(G) in most gives us flexibility in terms of
how we discuss the automorphism group of a graph. It allows us to define automorphisms in terms
of edges and vertices interchangably, which will become very useful in the following sections as we
explore different examples of automorphism groups.
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G L(G)

Figure 6. A graph G and its associated line graph L(G).

4. Examples of Automorphism Groups of Connected Graphs

In this section we will determine the automorphism groups of certain classes of graphs in order
to demonstrate that there is a relationship between the structure of a graph and its automorphism
group, but we will also show that this correspondance is not unique. We begin with the classes of
graphs first presented in Section 2.

Theorem 4.1. The automorphism group of the complete graph on n vertices Aut(Kn) is isomorphic
to Sn.

Proof. The complete graph on n vertices Kn consists of n vertices connected to each of the other
n − 1 vertices by edges. Thus an automorphism of Kn can send each vertex to any of the others,
and furthermore this does not place any restriction on where any of the other n − 1 vertices are
mapped, as they are all mutually connected. Therefore the automorphism group must have size
n(n− 1)(n− 2) . . . (2)(1) = n!, and in particular is isomorphic to Sn. �

Although this is a fairly simple case, we can imagine complicating it by removing edges from the
graph, as shown in Figures 7, 8 and 9. This would allow us to determine the automorphism group
of any graph simply by the number of edges by which it differs from the complete graph on the
same number of vertices. The following theorems deal with graphs generated in such a way.

Theorem 4.2. The automorphism group of the complete graph on n vertices with any single edge
removed is isomorphic to S2 × Sn−2.

Proof. Let G = Kn\e, where e is any edge of Kn. It follows that G consists of a pair of vertices u
and v which both have degree n−2 along with n−2 vertices all of degree n−1. Any automorphism
of the graph must permute each of these two sets independently of the other, so the automorphism
group in general must be the direct product of two permutation groups. It is clear that the only
options for the set of two vertices is to either fix or swap the two, so this portion of the direct
product is isomorphic to S2. On the other hand, the other n − 2 vertices all are connected to
each other, so this portion of the direct product must be isomorphic to the automorphism group of
Kn−2, which we know by Theorem 4.1 to be Sn−2. It follows that the automorphism group of G is
isomorphic to S2 × Sn−2.

�
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Figure 7. K8 with one edge removed

Figure 8. K8 with two adjacent edges removed

Theorem 4.3. The automorphism group of the complete graph on n ≥ 4 vertices with two adjacent
edges removed is isomorphic to S1 × S2 × Sn−3.

Proof. Let u0, u1, u2 be three vertices in Kn with n ≥ 3, and define e0 = {u0, u1} and e1 = {u0, u2}.
Then G = Kn\{e0, e1}. We note then that u0 has degree n− 3, both u1 and u2 have degree n− 2,
and all other n − 3 vertices have degree n − 1. By the same reasoning as above, the isomorphism
graph of G must be isomorphic to S2 × Sn−3. �

Theorem 4.4. The automorphism group of the complete graph on n ≥ 4 vertices with two non-
adjacent edges removed is isomorphic to D4 × Sn−4.

Proof. Let u0, u1, u2, u3 be four vertices in Kn with n ≥ 4, and define e0 = {u0, u1} and e1 = {u2, u3}.
Then G = Kn\{e0, e1}. As before, we will formulate the automorphism group of this graph by
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Figure 9. K8 with two non-adjacent edges removed

examining the 4 vertices of degree n − 2, and computing the direct product of this group with
the automorphism group of the other n − 4 vertices. We note that the vertices u0, u1, u2, u3 all
have the same degree, but there are 2 edges missing of the 6 possible, e0 and e1. Let H be
the induced subgraph of G on these four vertices. These edges are mutually non-adjacent, so E
can be represented as the four edges and vertices of a square. It follows then by definition that
Aut(E) = D4, as D4 is precisely the group of symmetries of the suare. Hence the automorphism
group of G is isomorphic to D4 × Sn−4. �

This process could be repeated infinitely in order to classify the groups of all graphs, as then
all one would have to do would be to classify exactly how many edges would have to be added to
a particular graph before it was isomorphic to the complete graph. However, this would be very
impractical, as there are many non-isomorphic ways to remove m edges from the complete graph
for small m. We saw that there are two such ways to remove m = 2 edges, but even for m = 3
we note that we could remove three non-adjacent edges, two adjacent edges and one non-adjacent,
three adjacent edges that are all mutually adjacent, or three adjacent edges such that two are
mutally non-adjacent. Thus the number of cases that we would have to consider quickly becomes
prohibitive. Next we will examine the Cycle and Path graphs, and see how we can approach the
problem of finding their automorphism groups without having to consider them as a reduction of
the Complete Graph.

Theorem 4.5. The automorphism group of the Cycle Graph on n vertices Aut(Cn) is isomorphic
to Dn.

Proof. We note that the most natural representation for Cn is exactly the same as that of a regular
n-gon. Thus any automorphism of Cn must also be one of the set of symmetries of the n-gon, which
is defined to be Dn. Conversely, no permutation of Cn can be an automorphism without being
a symmetry of the n-gon, as we know that a graph automorphism must preserve the underlying
structure of a graph, so any such automorphism would necessarily be an element of Dn. It follows
that Aut(Cn) ∼= Dn. �

Theorem 4.6. The automorphism group Aut(Pn) ∼= S2 for all n ≥ 2.

Proof. We will procceed by induction. Since there are only two vertices in Pn connected by a single
edge, we find that we can either exchange them or leave them fixed, and that in either case we
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Figure 10. K3 with three pendant vertices attached

preserve the edge between them. Therefore Aut(P2) ∼= S2. Next suppose that Aut(Pk−1) ∼= S2 for
k ≥ 3. We note that Pk is a connected graph on three or more vertices, and therefore Aut(Pk) ∼=
Aut(L(Pk)) by Corollary 3.3. We then note that Pk consists of k−1 edges that can be thought of as
two “ends” only adjacent to one other edge and k− 3 edges adjacent to two other edges. Therefore
L(Pk) ∼= Pk−1, and in particular Aut(Pk) ∼= Aut(Pk−1) ∼= S2.

If follows that Aut(Pn) ∼= S2 for all n ≥ 2. �

One interesting implication of this result is that there are an infinite number of connected graphs
with automorphism groups isomorphic to S2. It is natural then to wonder what groups have this
property, and we turn to the following theorem to help investigate this fact.

Theorem 4.7. Given a graph G on n vertices, there exists a graph H on 2n vertices such that
Aut(H) ∼= Aut(G) for n ≥ 3.

Proof. We will begin by constructing the graph H and then proceed to prove the isomorphism
between the two automorphism groups.

Suppose G is a connected graph with vertex set VG = {v1, v2, . . . , vn} for some n ≥ 3. We define
VH = VG ∪ {u1, u2, . . . , un} and EH = EG ∪ {{v1, u1}, {v2, u2}, . . . , {vn, un}}, and note that H is a
graph on 2n vertices. We also note that each vertex ui is connected only to one edge, as there are no
edges that include ui in EG and only one such edge in {{v1, u1}, {v2, u2}, . . . , {vn, un}}. Similarly, we
note that every vertex vi is connected to at least two edges, as there must be an edge including vi in
EG by the fact that G is connected, and vi appears exactly once in {{v1, u1}, {v2, u2}, . . . , {vn, un}}
(an example of this construction is given in Figure 10 for G = K3). Thus we find that any
automorphism of the graph H must fix the vertices {v1, v2, . . . , vn} and {u1, u2, . . . , un} setwise,
as no vertex of degree one can be mapped to a vertex of degree two or greater and vice-versa.
Define a mapping τ : Aut(H) → Aut(G) as follows: given any φ ∈ Aut(H), τ(φ) = ρ where
φ(vi) = ρ(vi) = vj for all vertices vi ∈ VG. We wish to show that our mapping τ is a bijection.

(1) Let φ1 and φ2 be two automorphisms of H such that φ1 = φ2. It follows that φ1(vi) =
φ2(vi) = vj, so τ(φ1)(vi) = ρ1(vi) = vj and τ(φ2)(vi) = ρ2(vi) = vj and thus ρ1 = ρ2. Thus
we find that τ is well-defined.

(2) Let ρ1 and ρ2 be two automorphisms of G such that ρ1 = ρ2. We know that since G
is a connected graph on at least three vertices, H is a connected graph on at least six
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vertices and thus is not isomorphic to any of our graphs with edge automorphisms not
induced by vertex automorphisms in Figure 5. Thus we can consider the behavior of our two
automorphisms and their pre-images φ1 and φ2 defined such that τ(φ1) = ρ1 and τ(φ2) = ρ2

in terms of their behavior on the edges of G and H. In particular, we find that φ1(vi) =
φ2(vi) for all vertices vi ∈ VG by the definition of our mapping τ . However, we have also
noted that we must preserve edges under this automorphism, so in particular φ1({vi, ui} =
{φ1(vi), φ1(ui)} = {vj, φ1(uj)}. We also have noted that any automorphism of H must fix
the vertices {u1, u2, . . . , un} setwise, so in particular φ1(ui) = uk for some value 1 ≤ k ≤ n.
The only edges involving vertices ui are of the form {vi, ui}, so it follows that φ1(ui) = uj.
We can follow an identical argument to conclude that φ2(ui) = uj, and thus we have found
that φ1 = φ2. It follows that τ is one-to-one.

(3) Let ρ ∈ Aut(G). We define an automorphism φ by φ(vi) = ρ(vi) = vj and φ(ui) = uj. We
note that this automorphism fixes our two components set-wise and also preserves all of our
edges of H. Thus φ ∈ Aut(H), and it follows that τ(φ) = ρ. Hence τ is onto.

(4) Let φ1 and φ2 be two automorphisms of H. Since Aut(H) is a group under function com-
position, it follows that φ2φ1(w) = φ3(w) for all w ∈ VH , where φ3 ∈ G. It follows that
if φ1(vi) = vj and φ2(vj) = vk, then φ3(vi) = vk. By the definition of our mapping τ
we find that on the one hand τ(φ2φ1)(vi) = τ(φ3)(vi) = ρ3(vi) = vk, while on the other
τ(φ2φ1)(vi) = τ(φ2)τ(φ1)(vi) = ρ2ρ1(vi) = ρ2(vj) = vk. Thus we have found that our
mapping τ is operation preserving.

It follows that τ is a bijection, and thus that Aut(H) ∼= Aut(G).
If G is not a connected graph, then by definition the graph Ḡ connected and Aut(Ḡ) ∼= Aut(G).

We can then use the same process defined above to construct a graph H using Ḡ, and find that
Aut(H) ∼= Aut(Ḡ) ∼= Aut(G). Thus we have found such a graph independent of the connectivity of
G. �

Corollary 4.8. Given a group H ∼= Aut(G) for some graph G, there exist an infinite number of
non-isomorphic graphs whose automorphism groups are isomorphic to H.

Proof. For the group S2, the result follows directly from Theorem 4.6. For any group of size three
or greater, it must be the automorphism group of some graph G on at least three vertices by a
result known as Frucht’s Theorem. Thus the result follows directly from Theorem 4.7. �

Frucht’s Theorem is a deep result in Algebraic Graph Theory first proven by Robert Frucht in
1939. His proof uses directed graphs that are then converted into simple undirected graphs via
the use of what he called “arrows” constructed from undirected vertices and edges (see [4] for his
original paper in German, which includes an illustration of the concept of arrows). A stronger
version of the theorem is that there are an infinite number of graphs with a given automorphism
group, which is precisely the statement of Corollary 4.8. However, the method of proof outlined
here using Theorem 4.7 is different than the standard method presented by Frucht, in which he
simply made the argument that there are an infinite number of non-isomorphic arrows, and thus an
infinite number of non-isomorphic graphs that could be generated from a given directed graph by
his method. Theorem 4.7 provides us with more insight into the generality of this result, however,
as it expands the class of non-isomorphic graphs generated to have a certain automorphism group
beyond the basic underlying structure of the directed graph from which they came. It then also
follows that we could use Corollary 3.3 in most cases to find even more such graphs by taking the
line graph, which alters their underlying structure even further from the original digraph. These
tools then allow us to imagine that we can construct many qualitatively different graphs with a
given automorphism group.
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5. Groups of Generalized Petersen Graphs

Generalized Petersen graphs are a form of graph that show up quite often in applications of Graph
Theory and often serve as counter-examples to what seem to be theorems. These are compelling
reasons to wish to classify the automorphism groups of these graphs. The canonical example of this
kind of graph shown in Figure 11 is often referred to simply as the Petersen graph, and consists of
a five-cycle connected to five interior vertices, which are connected to every other interior vertex.
This is written as P (5, 2), where the 5 represents the number of vertices in each cycle, and the 2
represents the number of vertices to travel before connecting the interior vertices. This translates
easily into a general form of the Petersen graph written P (n, k). In general, we restrict the value of
k by 2 ≤ 2k ≤ n, as P (n, n−m) ∼= P (n,m) for all integers m. In this section we will show results
about this particular kind of graph by following closely the methods used in Frucht, Graver, and
Watkins’ paper [5].

The first observation we can make about a Petersen graph in general is that if we subdivide
the vertex set VP (n,k) into a set U = {u0, u1, . . . , un−1} of vertices in the outer cycle and a set
V = {v0, v1, . . . , vn−1} of inner vertices, then we can divide the edges into three categories. First
we have the outer edges of the form eO = {ui, ui+1}, inner edges of the form eI = {vi, vi+k}, and
spokes of the form eS = {ui, vi}. Note that all addition preformed in the subscripts of our vertices
will be modulo n. These three types of edges partition the edge-set of the graph EP (n,k).

With this notation in mind, we can imagine two different kinds of permutations that are auto-
morphisms of this graph fairly easily. The first is a rotation by 360◦

n
, and the second is a flip. This

is analogous to the case of the dihedral group discussed in Section 1. We can define each of these
in terms of how they act on our inner and outer vertices.

First we examine the rotation permutation ρ. We note that it acts exactly the same on inner
and outer vertices, so ρ(ui) = ui+1 and ρ(vi) = vi+1. We can quickly check to make sure that this
permutation preserves all three of our types of edges as follows:

ρ(eO) = ρ({ui, ui+1} = {ρ(ui), ρ(ui+1)} = {ui+1, ui+2} ∈ EP (n,k)

ρ(eI) = ρ({vi, uv+k} = {ρ(vi), ρ(vi+k)} = {ui+1, u(i+1)+k} ∈ EP (n,k)

ρ(eS) = ρ({ui, vi} = {ρ(ui), ρ(vi)} = {ui, vi} ∈ EP (n,k).

Note that we know that the permutation ρ acts in this way on the edges by the fact that there
is an isomorphism between the vertex and edge automorphism groups as discussed in Section 3.
Additionally, this permutation preserves edge type, so outer edges map to outer edges, etc.

Next we examine the permutation analogous to flipping the graph, φ. This operation still pre-
serves the exterior or interior nature of the vertices, so we note that φ(ui) = un−i and φ(vi) = vn−i.
To check the preservation of edges, we note that

φ(eO) = φ({ui, ui+1} = {φ(ui), φ(ui+1)} = {uk−i, uk−(i+1)} =∈ EP (n,k)

φ(eO) = φ({vi, vi+k} = {φ(vi), φ(vi+k)} = {vk−i, vk−(i+k)} =∈ EP (n,k)

φ(eO) = φ({ui, vi} = {φ(ui), φ(vi)} = {uk−i, vk−i} ∈ EP (n,k).

Again we find that this automorphism preserves the edge type.
Thus it follows that the dihedral group Dn ⊆ Aut(P (n, k)), as Dn is the group formed by the

generators ρ and φ given above. Furthermore, this group represents all possible automorphisms of
the general Petersen graph that preserve the type of edge. This can be seen by the fact that this
is the full automorphism group of C(n), as previously discussed, and therefore admits all possible
permutations of these edges among themselves, along with the fact that any permutation of the
outer edges uniquely determines the permutations of the inner ones.

Theorem 5.1. If the pair (n, k) is not equal to (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), or (24, 5),
then all automorphisms in Aut(P (n, k)) fix the set of edges that are spokes.
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Figure 11. The Petersen Graph P (5, 2)

Consider the graph P (5, 2) shown in Figure 11. This graph contains an automorphism τ such
that τ = (3, 7)(4, 5)(8, 9) in cycle notation. We can find the associated edge automorphism by
defining τ({u, v}) = {τ(u), τ(v)}, so in cycle notation

τ = ({0, 4}, {0, 5})({2, 3}, {2, 7})({6, 8}, {6, 9})({8, 5}, {9, 4})({3, 4}, {5, 7})({3, 8}, {9, 7}).

We note that the edges {0, 5}, {2, 7}, {9, 4}, and{3, 8} are all spokes, but none of these are mapped
to another spoke under τ . Thus we find that Theorem 5.1 does not apply for P (5, 2) as expected.
For a full proof of this fact for all 7 cases and the sufficiency of these 7, see Frucht’s paper [5].

We have fully described the automorphisms of a given Petersen graph that fix all edges by type,
and laid out the cases in which a graph automorphism can permute the spokes to either inner
or outer edges. Thus we wish to investigate the cases in which we can find a permutation that
exchanges inner and outer edges, as we have exhausted all other possibilities. Now suppose we
define an automorphism α that exchanges inner and outer vertices. In order to fix the set of spokes,
it must be the case that α(ui) = vmi and α(vi) = umi for some integer m. However, this permutation
also must have the effect of mapping the edge {ui, ui+1} to an inner edge of the form {vj, vj+k}.
Thus we find that m = k. However, this is not a valid permutation for all Petersen graphs. We
note that if take α operating on an inner edge, we get that α({vi, vi+k}) = {uki, uki+ k2}. We
remember that all of our arithmetic is modulo n, so it follows that α is an automorphism of P (n, k)
if and only if k2 = ±1, as this is the only case in which α operates properly on the edges of P (n, k).
This leads us to our next statement about generalized Petersen graphs.

Lemma 5.2. If G is a generalized Petersen graph of the form P (n, k) where (n, k) is not one of
the exceptional cases listed in Theorem 5.1 and k2 6= ±1 (mod n), then Aut(G) ∼= Dn.

Thus we are left with only the automorphism groups of generalized Petersen graphs for which
k2 = ±1 (mod n) to classify. We observe that if k2 = 1 (mod n), then α2 is simply the identity, as

α(α({ui, ui+1})) = α({vki, vki+k}) = {ui, ui+1}

and

α(α({vi, vi+k})) = α({uki, uki+1}) = {vi, vi+k}.
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Note that we have already discussed the fact that this permutation fixes the set of spokes. However,
we also observe that if k2 = −1 (mod n), then α2 is not equal to the identity, as

α(α({ui, ui+1})) = α({vki, vki+k}) = {u−i, u−i−1}
and

α(α({vi, vi+k})) = α({uki, uki−1}) = {v−i, v−i−k}.
Thus we must consider these two cases separately, as the addition of the automorphism α yields
different group structures in both cases.

Theorem 5.3. If not isomorphic to one of the exceptional cases outlined in Theorem 5.1, the
automorphism group of a generalized Petersen graph on n vertices is isomorphic to one of the three
following groups:

• Dn

• Dn o Z2

• Zn o Z4

Proof. If k2 6= ±1 (mod n), the automorphism group must be ismorphic to Dn by Lemma 5.2.
If k2 = 1 (mod n), we have found that both φ and α return the identity when applied twice. We

have also noted previously that the permutations ρ and φ together form the dihedral group Dn.
Since α is not an element of that group, it follows that the inclusion of α will generate a group
of the form Dn oβ Z2, where β : Z2 → Aut(Dn) is some homorphism. This could be investigated
further, but for the purposes of this proof we only need the underlying structure of the group.

Next we examine the case in which k2 = −1 (mod n). In particular, we have noted that α2 is
not equal to the identity, and that α2({ui, ui+1}) = {u−i, u−i−1} and α2({vi, vi+1}) = {v−i, v−i−1}.
However, we remember that this was precisely our definition of φ to begin with, and it follows that
α4 = φ2 returns the identity. Therefore, we find that we can describe the structure of this group
entirely using only two generating permutations, ρ and α, and hence the automorphism group of
graphs of this form is isomorphic to Zn oβ Z4 for some β : Z4 → Aut(Zn).

�

An important thing to note is that the homomorphisms β described for both of the cases outlined
in the proof of Theorem 5.3 are uniquely determined by the behaviour of our three generating
permutations when operated upon each other, but their exact form was not important to the
argument of the previous proof. This in turn means that there are in fact only three possible
automorphism groups of generalized Petersen graphs on n vertices up to isomorphism, and we
could not have two different homomorphisms to generate two non-isomorphic groups both of the
form Dn o Z2.

6. Cubic Hamiltonian Graphs

In the previous section, the generalized Petersen graphs that we examined all had a high degree
of symmetry. Specifically, every vertex of a generalized Petersen graph has degree three, no matter
what the n and k parameters are. Such a graph is called a cubic graph. In this section we will
examine cubic graphs more generally. We will specifically look at graphs that contain a cycle that
visits every vertex exactly once, with the exception of the start and end vertex. If a graph has such
a cycle, it is said to be Hamiltonian. If a given graph G on n vertices is both cubic and Hamiltonian,
then there exists a very natural way of representing it. We can simply arrange the n vertices in the
form of the cycle graph Cn, and subsequently add the third edge from each vertex passing through
the middle of the circle to its other endpoint. This is method of representing such graphs that has
its own notation, called Lederberg-Coexter-Frucht (LCF) notation after the three who developed
it.
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Figure 12. The cubic Hamiltonian graph with LCF representation [3,3,4,-3,-3,2,4,-2].

6.1. LCF notation. Since the edges of the Hamiltonian cycle have all been determined in advance,
LCF notation serves specifically to specify the interior edges. Starting at the designated first vertex,
which by convention is the uppermost one, we proceed clockwise around the figure, assigning each
interior edge as we go. This is done by indicating how far away the vertex is that forms the other
endpoint of a given edge. For example, Figure 12 shows the graph whose LCF representation is
[3, 3, 4,−3,−3, 2, 4,−2]. This is interpreted as follows:

(1) Begin by constructing the graph C8, as there are 8 integer entries.
(2) Next construct an edge between the first and fourth vertices
(3) Continue constructing edges between the vertices i and i + j, where i is the index of the

current entry and j is the value of that entry.

It is important to note that this notation is in some sense redundant, as we “construct” each edge
twice. However, since we are dealing with simple graphs, it is simply assumed that we do not in fact
intend for these to be multiple edges. The repetition is necessary for the convenience of the notation,
as we otherwise would have to come up with some sort of cumbersome technique for indicating which
of the vertices our different entries corresponded to. However, there are some instances in which it
is natural to want to truncate the notation for the sake of efficiency, examples of which follow and
are shown in Figure 13. The first is when we have the same pattern of entries repeated multiple
times, we represent this as a the repeated element raised to an exponent indicating the number
of times it should be repeated. Therefore, instead of writing [4, 4, 4, 4, 4, 4, 4, 4], Lemma we would
write [4]8. We also often will have LCF patterns that are a particular sequence of integers followed
by the same sequence reversed and negated, as with the LCF graph [2, 3,−2, 3,−3, 2,−3,−2]. In
this case, we use a semicolon and dash to indicate this symmetry, so this graph would instead by
written as [2, 3,−2, 3;−]. What follows next is an important, although fairly trivial, theorem of
cubic Hamiltonian graphs.

Theorem 6.1. A cubic graph G is Hamiltonian if and only if it has a representation in LCF
notation.

It should be clear that any graph with an LCF represenation is in fact a cubic Hamiltonian
graph, as we can simply use the outer cycle (note that there may be other Hamiltonian cycles, but
we are guaranteed at least the one). It does not take too much more consideration to note that
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[4]8 [2, 3,−2, 3;−]

Figure 13. Two graphs and their efficient LCF notations..

the converse is also true, and therefore any cubic Hamiltonian graph has an LCF representation.
It is also important to note that these graphs will always be on an even number of vertices. This
is a result of the fact that if we had an odd number of vertices in a cubic graph, the sum of the
degrees of the vertices would be 3(2n+1) = 6n+3 for some integer n. However, this sum of degrees
should also be precisely twice the number of edges, but this clearly cannot be the case as it is an
odd number. Thus we find that any cubic graph must be on an even number of vertices.

6.2. Connection to Generalized Petersen Graphs. Now that we have established a convenient
notation for cubic Hamiltonian graphs, we would like to see how it applies to graphs that we have
already encountered. In particular, we note that our formulation of a generalized Petersen graph
P (n, k) is cubic no matter what parameters are chosen for n and k, and also is on an even number
of vertices (namely 2n). We would like to know whether or not we can represent all such graphs in
LCF notation. It is fairly easy to see that there is a Hamiltonian cycle in any graph of the form
P (n, 1), as we can simply traverse the outer loop until we have reached the n − 1 vertex, cross to
the inside loop, and trace that loop in the opposite direction to return to our original vertex. Thus
at least some generalized Petersen graphs are Hamiltonian.

However, this is not always the case. Take as an example the graph P (5, 2) shown in Figure 11.
We note that the minimum length of any cycle in P (5, 2) (called the girth of the graph) is 5, so
there are no cycles of length 3 or 4. Now let us suppose that P (5, 2) were Hamiltonian. If this were
the case, then it must have a representation in LCF notation by Theorem 6.1. Since it is a graph
on 10 vertices, we find that our possible entries in one particular slot of the LCF notation are the
integers −4 through 5. However, if a particular entry is the integer k, we can easily construct a
cycle of length k + 1 by combining the edge represented by that entry with the edges of the outer
Hamiltonian cycle that connect the two endpoints of the edge, of which there are k. Thus the
LCF representation of our graph P (n, k) must only include entries of −4, 4, and5. Through a bit of
trial and error, we find that the only three LCF graphs on 10 vertices that meet this criteria are
[5,−4, 4,−4, 4]2, [5, 5, 5,−4, 4]2, and[5]10, shown in Figure 14. We will examine whether or not any
of these could be isomorphic to P (5, 2) by attempting to find cycles of length 4. In the first and
second graphs, we find that we can simply pick a −4, 4 edge pair. The endpoints of both of these
edges must be adjacent on the external cycle as there are only 10 vertices in the graph. Thus we
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[5,−4, 4,−4, 4]2 [5, 5, 5,−4, 4]2 [5]10

Figure 14. The three LCF representations of cubic Hamiltonian graphs on 10
vertices that include no integers whose absolute value is less than 4.

can find a cycle using only 4 edges, and thus neither of these graphs can be isomorphic to P (5, 2).
In the last case, we can start at vertex v0, follow the internal edge to v5, then proceed to v6. We are
guaranteed that there is an edge from v6 to v1 by the way we have constructed the graph. Since v0

and v1 are connected by an edge in the external cycle, we find that there is a cycle involving only 4
edges, and thus that it is not isomorphic to P (5, 2). Hence we find that P (5, 2) is not Hamiltonian
and has no LCF representation.

Unfortunately, there is no easy characterization for when a generalized Petersen graph is Hamil-
tonian. Therefore our discussion of the automorphism groups of LCF graphs must start from its
own foundation.

6.3. Automorphism Groups of Small LCF Graphs. We will begin this investigation by ex-
amining all LCF graphs on a small number of vertices and seeing if any patterns emerge. The
mathematical computing program Sage will be used as an aid. Conveniently, Sage has a command
graphs.LCFGraph(n, [a], b)’ that generates an LCF graph on n vertices with LCF representa-
tion [a]b (it does not support the semicolon notation introduced above for symmetric codes). After
generating the graph, we use the .automorphism group() command to generate the automorphism
group, at which point we can use the .order() and .is isomorphic() commands to investigate
the automorphism group further. This was used to check possible structures of the automorphism
groups of the graphs.

The first cubic graph is on four vertices, and we can fairly quickly see that it is unique. In LCF
notation, the only possible representation is [2]4, as this is the only way to connect the vertices of
a square such that they all are of degree three. We know this graph to be isomorphic to K4, so it
follows by previous results that the automorphism group is isomorphic to S4.

Next we examine LCF graphs on six vertices. We note that any LCF representation on this
number of vertices must include at least one entry of value 3, as there is no way to connect all 6
vertices using only 2. If we begin with a value of 3, we are forced to choose either 3 or −2 for the
second value, as 2 would terminate in the same vertex as the 3 edge. If we choose −2, then this
forces our third value to be 2, resulting in the graph [3,−2, 2]2. This graph can be viewed as two K3

graphs whose vertices are connected to one vertex of the other. Therefore one any automorphism
of K3 is an automorphism of this graph, as we can simply permute the two different K3 graphs
with the same automorphsim. Alternately, we could swap each of the vertices with the vertex
adjacent to it in the other K3, independently of any other automorphism. Therefore we find that
the automorphism group is isomorphic to S3 × S2. Next, if we choose 3 for the second value, then
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[2, 2,−2,−2]2 [4, 2, 4,−2]2 [3, 3, 4,−3,−3, 2, 4,−2] [3,−3]4 [4]8

[−2, 2, 3,−2, 3,−3, 2,−3] [4, 4,−3, 3]2

Figure 15. The five non-isomorphic cubic Hamiltonian graphs on eight vertices
and their LCF representations.

our third value is determined to be 3, resulting in the graph [3]6. This graph can be represented in
a similar way as last time, with two sets of three vertices, all of which are connected to the three
in the other set. Therefore I can permute any of the three vertices in each set with each other
independent of the permutations of the other set, resulting in a structure of S3 × S3. However, we
can also switch the two sets of vertices with each other, but as with the discussion of the Dihedral
Group earlier, this flip does not commute with the permutations previously mentioned. Thus the
automorphism group of this graph has a structure (S3 × S3)o S2.

Since there are more LCF graphs on eight vertices, we will not walk through the logic used to
determine all possible LCF representations. However, the process used is similar to that used above
in the case of six vertices. We find that there are seven distinct LCF representations, but only
five non-isomorphic graphs. In order to show that two distinct LCF representations result in an
isomorphic graph, it suffices to find a Hamiltonian cycle in the graph other than the exterior one and
re-plot the graph with that cycle as the exterior cycle. We know this new graph to be isomorphic
to the original one as we did not add or remove any vertices or edges, and thus if the new graph
has a different LCF representation, the two must in fact be isomorphic. Starting with the LCF
representation [4,−2, 4, 2]2, we find a Hamiltonian cycle of the form (v1, v5, v6, v4, v3, v7, v8, v2, v1).
By plotting the graph with this cycle on as the exterior edges, we find that the new representation
of this graph is [−2, 2, 3,−2, 3,−3, 2,−3]. Thus these two representations are isomorphic. Similarly,
the graph [4]8 has a Hamiltonian cycle (v1, v5, v6, v7, v8, v4, v3, v2, v1). Plotting the graph with this as
the external cycle we find a new graph with LCF notation [4, 4,−3, 3]2, and thus the two notations
yield isomorphic graphs.

Next we can investigate the automorphism groups of each of the five non-isomorphic LCF graphs
on eight vertices shown in Figure 15.

(1) [2, 2,−2,−2]2: We first note that a rotation by 180◦ is an automorphism of this graph. Note
that there are two induced subgraphs each on four vertices isomorphic to K4 with one edge
removed. If we consider the two vertices of degree three in each of these induced subgraphs,
we note that they can be freely exchanged. If we combine the rotation by 180◦ with one
of these two permutations, we end up with an automorphism of degree four. This together
with the permutation of the other two vertices forms our subgroup isomorphic to D4. We
can also flip the graph on the axis that separates the two induced subgraphs mentioned
above, and thus we have found our whole group structure: D4 × S2.

(2) [4, 2, 4,−2]2 or [−2, 2, 3,−2, 3,−3, 2,−3]: Given the representation shown in Figure 15, there
are two flips that come immediately to attention, both along the axes that run through the
edges of length four. We also note that there is a rotation by 180◦ that is also an automor-
phism, but we can express this as the combination of both of our flips previously defined.
These are in fact all of the automorphisms of this particular graph, so the automorphism
group structure is S2 × S2.
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(3) [3, 3, 4,−3,−3, 2, 4,−2]: To investigate this graph, we begin by looking at the induced sub-
graph on three vertices that forms a K3 on the left hand side of the representation in Figure
15. We know that the automorphism group of this subgraph is S3 by previous results, and
note that any automorphism of those three uniquely determines where the three other ver-
tices to which they are connected are sent. This leaves us with only two more vertices to
consider. Since they are both connected to the same three other vertices, we can exchange
the two while preserving the graph structure. This yields an overall automorphism group
structure of S3 × S2.

(4) [3,−3]4: If we consider the subgraph formed by choosing every other vertex as we progress
around the cycle, we note that we have four vertices all if which are mutually non-adjacent.
Thus the permutation group generated by examining this subgraph is isomorphic to S4. We
note that any automorphism of these four vertices will determine where the other four are
sent by symmetry. However, we could also exchange our two sets of four mutually non-
adjacent vertices, as there was nothing that distinguished our starting vertex in the first
step. Thus we find that our automorphism group structure is S4 × S2.

(5) [4]8 or [4, 4,−3, 3]2: The high level of symmetry here is reminiscent of the structure of the
Dihedral group. In fact, we can define a rotation by 45◦ and a flip that together form
exactly that structure. These are in fact the only automorphisms of this graph, as any other
automorphism must permute the vertices in such a way to determine a new Hamiltonian
cycle on the exterior that still preserves the graph structure, and it can be easily verified
that no such cycle exists (see the proof of Theorem 6.3 for a proof of the general result).
Hence, the automorphism group structure is D8.

6.4. Frucht’s Theorem. Back in Corollary 4.8 we established that there are an infinite number
of non-isomorphic graphs with a given automorphism group, and shortly thereafter discussed its
implications relating to Frucht’s Theorem. However, there are extensions to the theorem that
strengthen the assumptions. Specifically, there are certain restrictions that can be enforced on each
graph that still result in family of graphs that contain automorphism groups isomorphic to any given
group. One example of such a family of graphs is any collection of k-regular graphs, where k ≥ 3.
One natural extension to this question is to ask whether it holds true for k-regular Hamiltonian
graphs, or more specifically applicable to our situation, the family of LCF graphs. This is formally
stated as follows:

Conjecture 6.2. Given any group H, there exists a cubic Hamiltonian graph G such that Aut(G) ∼=
H.

What follows in this section is an investigation of the truth of Conjecture 6.2.
So far in our investigation we have seen only groups of even order, which seems to make intuitive

sense with the highly symmetric nature of the external cycle common to all LCF graphs. This
encourages us to believe that the automorphism groups are in fact generally non-trivial, but this
turns out to be false.

In order to construct a LCF graph with a trivial automorphism group, we must make sure that
we construct it so as to eliminate all possible symmetry. Ideally we could do this by splitting the
external cycle into two sets of n

2
+ 1 and n

2
− 1 vertices, respectively, and then ensure that there

is no symmetry within either of the two sets. We know from our earlier investigation that there
is no graph with a trivial automorphism group on 8 or fewer vertices, and through trial and error
we can establish that we cannot use this method to find such a group on 10 vertices, and therefore
we examine the 12 vertex case. To begin we wish to divide the graph into unequal parts, and do
so by assigning a value of 5 to our first entry. Now we have 2 more vertices in one set than the
other, and we will connect them using an edge of length two. Now we have the same number of
vertices without interior edges in both sets, and we simply connect these across in a natural fashion.
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Figure 16. The LCF graph [5,−3, 6, 4, 2,−5,−2,−4,−6, 2, 3,−2] on 12 vertices
with a trivial automorphism group.

This process yields the graph [5,−3, 6, 4, 2,−5,−2,−4,−6, 2, 3,−2] shown in Figure 16. We note
that this graph has no rotational symmetry and no symmetry about any particular axis. Therefore
the only automorphism we could possibly have would come from finding a Hamiltonian cycle not
represented by the exterior cycle of the graph. In this particular case such a cycle does exist, but
the graph that results from plotting this along the exterior is not isomorphic to our original one.
We can then use this graph on 12 vertices as a basis to construct a cubic Hamiltonian graph on n
vertices with a trivial automorphism group for any even n ≥ 12. In general, the LCF representation
will have the form [n

2
− 1,−3, n − 6, n − 7, . . . , 4, 2,−(n

2
− 1), 2, 4, . . . ,−n + 7,−n + 6, 2, 3,−2]. A

quick check shows us that this matches the graph on 12 vertices discussed previously when n = 12,
and has a trivial automorphism group by the same reasoning as before but extended to a general
number of vertices.

It turns out that we can also take advantage of similarities in the formulation of a graph to make
general claims about their automorphism groups. In the theorem that follows, we establish and
prove one such generalization.

Theorem 6.3. The graph with LCF notation [n
2
]n has an automorphism group isomorphic to Dn

for all n = 2m, where m ≥ 4.

Proof. First we consider the cases where m ≤ 3. For m = 1, we have a graph on only two vertices
which cannot be a simple cubic graph, as there is only one possible edge. In the cases where m = 2
and m = 3, this graph corresponds to examples seen earlier in this section, where the automorphism
groups were shown to be isomorphic to S4 and S3× S3× S2, respectively. Next we turn to the case
where m ≥ 4, and thus n ≥ 8. Note that the case where n = 8 is shown in Figure 15. We can
clearly see that this construction results in a symmetric structure that allows for all of the rotations
and flips that form the group Dn, so all that remains is to show that there are no other graph
automorphisms. We note that any such automorphism would have to change the structure of the
external cycle, which is equivalent to saying that one of the internal edges must be mapped to an
exterior edge. Suppose that φ is such an permutation. Without loss of generality, we can assume
that the internal edge {1, n

2
} is exchanged with the external edge {1, 2}, noting that the edge {0, 1}

is still an external edge under φ. However, we know that the vertex 2 must still be adjacent to the
vertices 1, 3, and n

2
+ 1 under φ, and thus the images of these vertices must be adjacent to n

2
+ 1. It
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follows that either φ(3) = n
2
−1 or φ(n

2
+ 1) = n

2
−1, and thus φ produces an edge either of the form

{0, 3} or {0, n
2

+ 1}, neither of which are edges in our original graph. Thus we have found that any
permutation that does not maintain the structure of the external cycle is not an automorphism of
our graph. Since there are no other allowed automorphisms, we conclude that the automorphism
group of each graph of the form [n

2
]n for n = 2m, where m ≥ 4, is isomorphic to Dn. �

6.5. Partial Results and Further Questions. We have successfully managed to find a general
result concerning a particular form of LCF graph. This suggests that there are perhaps other
generalizations to be found, but it is hard to formulate them given the nature of these kinds of
graphs. LCF notation, while extremely convenient, is often hard to extend to larger numbers of
vertices and therefore difficult to predict the structures of higher-order graphs that could be created.
We have accomplished one goal, but this is far from proving or disproving the results of Frucht’s
Theorem as applied to cubic Hamiltonian graphs.

There are two questions that promise to either support the extension of Frucht’s Theorem to cubic
Hamiltonian graphs or be a natural source of counterexamples. The first is if it is possible to create
an LCF graph with a non-trivial automorphism group of odd order. Iit seems possible that some
degree of symmetry is forced by the existence of the Hamiltonian cycle that requires the existence
of an even-order automorphism along with any odd one, forcing the group containing them to be
of even order, but the existence of such a graph would disprove this intuition. If this result could
be proven, it would serve to disprove this particular restriction of Frucht’s Theorem. The other
question is the possibility of creating a LCF graph with an automorphism group isomorphic to Dn

for some odd n, as this was not covered in Theorem 6.3. This would have similar implications to
the first.

Appendix A. Sage

This appendix serves as a quick guide to some of the Sage functions that were most useful in
investigating the automorphism groups of graphs. The first two subsections introduce functions
specific to group theory and graph theory respectively, while the third demonstrates some examples
of how they were used in this investigation.

A.1. Group Theory. Sage contains many constructors and tools relating to group theory, but
only a few will be investigated here. The dihedral group Dn and the symmetric group Sn have their
own sage commands, and we can also form a group as the direct product of an arbitrary number of
others, as shown in Listing A.1.� �
G = DihedralGroup(n);

H = SymmetricGroup(n);

I = direct_product_permgroups ([ SymmetricGroup (2), DihedralGroup (4)])� �
Listing A.1: Three different examples of group generators

For any given group, there exist a whole family of functions. that help investigate its structure
and properties. A few of these pertinent to this investigation are shown in Listing ??, but the Sage
documentation contains many more such functions.

A.2. Graph Theory. Much like groups, Sage has many default constructors for graphs. The ones
used most commonly for this project are shown in Listing A.3, but there are many more constructors
to be found in the documentation. Note that the inputs for each of the graphs are more exactly of
the form presented in general in the body of this paper.
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G = DihedralGroup(n);

H = SymmetricGroup(n);

#tests isomorphism

G.is_isomorphic(H);

#returns the order of the graph

G.order ();

#returns the generators of the graph in permutation notation

G.gens ();� �
Listing A.2: Three different examples of group functions� �

G = graphs.CompleteGraph(n);

H = graphs.CycleGraph(n);

I = graphs.PathGraph(n);

J = graphs.GeneralizedPetersenGraph(n,k);

K = graphs.LCFGraph(n, [n/2], n);

#creates a group A isomorphic to the automorphism group of G

A = G.automorphism_group ();� �
Listing A.3: Five different examples of graph generators� �

G = graphs.LCFGraph(8, [3, 2], 4);

G.plot ();� �
Listing A.4: A graph generated using the LCF function that is not cubic, whose output is shown
in Figure 17

One important note is that the Generalized Petersen Graph constructor has error-checking, mean-
ing that it will return an error if your parameters violate the rule that k ≤ n/2. Unfortunately, the
LCF constructor does not have this kind of error built in. If the notation that the user inputs is not
a true LCF graph, Sage will draw the graph anyway without any warning that it the resultant graph
is no longer a cubic Hamiltonian graph. For example, if the user inputs the code shown in Listing
A.4, Sage will run properly and treat G as a graph without any complaint, even though some of
the vertices will have degree five. Another quirk of the LCF constructor is that it generates graphs
that are precisely the mirror of what we would expect given the canonical LCF representation. This
is because Sage proceeds labelling vertices counter-clockwise, while the LCF notation specifically
states that we proceed clockwise. This difference has no effect on the structure of the graph, so
commands like the one shown in Listing A.3 to determine the automorphism group are unaffected.
For this reason, all LCF graphs displayed in figures in this paper have no vertex lables, as the
images were inverted to match standard notation and this would have also inverted the numerals.

A.3. Examples. What follows in Listings A.5 and A.6 are two different examples of Sage code
used in this investigation.
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