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Abstract. This paper starts with an exploration of the volume of sphere of radius r in n dimensions. We

then proceed to present generalized results for the volume of a sphere under different p-norms or metrics

also in n dimensions. We use a linear transformation to find the volume of an n dimensional ellipse, and

use the Fundamental Theorem of Calculus in a clever way to find the surface area of a generalized spheroid.

This paper is accessible to those familiar with calculus and linear algebra, but select parts of the paper use

pieces of real analysis.

1. Introduction

What follows is a road map to this paper, and a outline of references. Section 2 defines an n dimensional

sphere of radius r under the p-norm. Section 2.1 discusses how different p norms influence the shape of

a sphere. In Section 2.2 we prove that the limit as p goes to infinity of the p norms is equivalent to the

infinity norm. Section 2.3 extends the idea of volume to n dimensions and shows that a sphere is measurable

using Lebesgue measure theory. In Section 3 we use a simple argument to show that the unit sphere in n

dimensions is contained in a set of of thin boxes, and that the volume of these boxes goes to 0 as n goes to

infinity.

This paper then outlines the properties of the gamma function in Section 4, since Γ is used in Section 5

where we use calculus in two different methods to prove an explicit formula for the volume of a n dimensional

sphere. In Section 6 a formula for the volume of sphere as function of n, p, r is presented. Section 6.1 discuses

p as a function of n, and finds function p(n) that makes the volume of a sphere in the limit as n goes to

infinity an arbitrary constant. In Section 6.3 the it is shown that p(n) is well defined. We then explore the

surface area of a sphere.

In Section 7 we prove a the volume formula in a third way that naturally leads to a surface area formula

through the Fundamental Theorem of Calculus. In Section 8 we use basic linear algebra and a linear

transformation of Rn to calculate the volume of a n dimensional sphere. Finally Section 9 shows that

although the surface area of an n dimensional sphere is a manageable problem, the same techniques do not

work on the ellipse.

The thin box proof comes from [4]. The first two proofs come from [2], which states the Gamma function

properties with out proof. The proofs of the Gamma function properties mostly come from [5]. The volume

as a function of n and p comes from [8] The third proof and surface area argument are from [11].

2. Definition of an n , p sphere

In this Section we denote an n dimensional sphere, of radius r with respect to a p-norm by Snp (r). Snp (r)

is the set of all n dimensional points that which have a distance less then or equal to r from the origin when

distance is measured under the p metric.

thanks to Albert Schueller for mathematical and latexical guidance.
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Definition 2.1. The p norm of x ∈ Rn denoted |x|p is

|x|p =

(
n∑
i=1

|xi|p
)1/p

for p > 0.

Definition 2.2. The infinity norm of x ∈ Rn is defined as

|x|∞ = sup{|xi|
∣∣1 ≤ i ≤ n}.

As in standard vector notation |x| means the norm or length of the vector x. We will use |x|p to denote

the length of x under the p norm or equivalently the distance from x to the origin. Given this notation, for

clarity, we make the following definition.

Definition 2.3. Snp (r) is the set of all x ∈ Rn where x = (x1, x2, . . . xn) such that

n∑
i=1

|xi|p ≤ rp.

For example if n = 2 and p = 2 we recover have S2
2(r) which is the circle:

x2
1 + x2

2 ≤ r2.

Similarly S3
2(r) is the standard sphere. The standard (or Euclidean) norm is p = 2, throughout if we do not

specify a p value then we will assume p = 2.

If we combine these two definitions then a point x ∈ Snp (r) sphere if an only if:

|x|p ≤ r.

2.1. Convexity of S2
p(1) for different values of p. To develop intuition about p-norms we look at unit

circles in 2 dimensions under the different p-norms. Here we discuss the effect of different p norms on a circle

in 2 dimensions. In particular for p ≥ 1 we have convex shapes, and for p = ∞ we have a square centered

on the origin of side length two, which is also convex. FIGURES 1 2 3 4 are plots of |x|p = 1 for different

values of p. When p = 2 we have a circle, for p = 1 we have a square of side length
√

2, centered on the

origin, with the y and x axis as its diagonals.

For p ∈ (0, 1) the plots get more and more spiky as p decreases. For p = 1
2 we get a cycloid. Although

p = 0 is nonsensical, the geometric limits as p goes to zero would be a cross of line segments from (−1, 0) to

(1, 0) and (0, 1) to (0,−1). When p ∈ (1, 2) as p increases our shape bulges from a diamond to a circle. For

p ∈ (2,∞] as p increases the plots bulge from a circle to the circumscribed square. As p increases from “0”

to infinity our shape bulges out along the lines y = x and y = −x.

These statement can be generalized to higher dimensions. For p ≥ 1 we still have convex shapes, and

p = 1 is a box inscribed in Sn2 (1). Similarly p = ∞ is an n dimensional box that circumscribes Sn2 (1).

Furthermore we can sketch the process of p increasing. Though not technically defined, one can imagine (at

least in the limit) starting at p = “0” the shape is simply the unit axis from −1 to 1. As p increases our

shape bulges along a basis of axis rotated π/4 from each of the original principle axis, (Analogous to y = x

and y = −x).

2.2. Proof that the limit as p goes to infinity of |x|p is the sup norm. The definition of the infinity

norm is quite different from the other p-norms, here we show that it is a natural extension of the finite p
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Figure 1. S2
p(1) for various values of p, p = “0” in green, p = 1/2 is blue, p = 1 in red,

p = 2 a circle in purple, and the infinity norm in black

Figure 2. Here p = .3 is in red, p = .4 is in purple and p = .5 is in black

norms. we prove that the limit as p goes to infinity of the p-norm is equivalent to just choosing the component

of x with the largest magnitude, or the supremum of {|xi|
∣∣1 ≤ i ≤ n}.

Theorem 2.1. If x ∈ Rn, then

lim
p→∞

|x|p = |x|∞ = sup{|xi|
∣∣1 ≤ i ≤ n}.

Proof. We use the proof found in [10]

For all k = 1, 2, . . . , n , and p ≥ 1, |xk| ≤
(∑n

j=1 |xj |p
) 1

p

= ‖x‖p , we have ‖x‖∞ ≤ ‖x‖p. Thus,

‖x‖∞ ≤ limp→∞ ‖x‖p
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Figure 3. p = .5 in red, p = .7 in purple and p = .9 in black

Figure 4. p = 1 in red, p = 1.25 in purple, p = 1.5 in black, p = 1.75 in green and p = 2 a
circle in red

On the other hand, we know that

‖x‖p =

 n∑
j=1

|xj |p−q · |xj |q
 1

p

≤ ‖x‖
p−q
p
∞ ·

 n∑
j=1

|xj |q
 1

p

= ‖x‖1−
q
p

∞ · ‖x‖
q
p
q

for all q < p where we used |xj | ≤ ‖x‖∞ for all integers j = 1, 2, . . . , n In the last equality we have rewritten

the right sum as the q-norm raised to the q
p . The q cancels in the exponents of the sum leaving the 1/p.

Therefore,
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Figure 5. p = 2 in red, p = 3 in purple, p = 4 in black, p = 5 in green and p = 8 in red,
and the infinity norm in black

lim
p→∞

‖x‖p ≤ lim
p→∞

(
‖x‖1−

q
p

∞ · ‖x‖
q
p
q

)
= ‖x‖∞ · 1

We conclude limp→∞ ‖x‖p ≤ ‖x‖∞ ≤ limp→∞ ‖x‖p Then by the Squeeze Theorem for limits, limp→∞ ‖x‖p
exists and equals ‖x‖∞. �

2.3. An introduction to volume in n dimensions and measurable sets. In this Section we use

Lebesgue measure theory and associated theorems to extend a relatively easy and intuitive definition of vol-

ume to n dimensions. After defining the n dimensional sphere, we then show that a sphere has a measurable

volume in any dimension. This Section is summarized from pages 141 to 163 of [3] .

Consider closed n-dimensional intervals of the form I = {x : aj ≤ xj ≤ bj , j = 1, ...n} In one dimension

this is simply an interval [a, b], see FIGURE 6. In two dimensions this is a box or rectangle [a1, b2]× [a2, b2],

see FIGURE 7. The “volume” of an interval is its length, and the “volume” of a box is its area. For n = 3,see

FIGURE 8 this a rectangular prism, [a1, b1]× [a2, b2]× [a3, b3], whose volume is:

Vcube = (b1 − a1)(b2 − a2)(b3 − a3).

Figure 6. Volume of a 1 dimensional interval is its length V = (b− a)

In each case the volume is the product of the length of each of the 1 dimensional subintervals. Or formally:

V ([a1, b1]× · · · [an, bn]) = Π∞j=1(bj − aj).
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Figure 7. Volume of a 2 dimensional interval is an area, V = (b− a)(d− c)

Figure 8. Volume of a 3 dimensional interval is traditional volume, V = (b− a)(c− d)(f − e)

Now suppose we are given an arbitrary subset E of Rn. For any set E we can contain E in a countable

union of intervals of Rn. Hence cover E by a countable collection S intervals Ik. Now we know the volume

of intervals, hence let;

σ(S) =
∑
Ik∈S

v(Ik)

Now σ(S) is easy to understand. It is simply the sum of the volume of a bunch of intervals, each of whose

volume is easy to understand and compute. But for any given S , σ(S) ≥ V (E), since the intervals in S

cover E. But if we look at all possible sets S that cover E, then for E to be measurable it has to have a

minimum cover. This coverS′ minimizes σ(S). We will define the Lebesgue outer measure to be volume,

Hence σ(S′) = V (E).

Definition 2.4. The Lebesgue outer measure of E, denoted |E|e is defined by

|E|e = inf σ(S)

where the infimum (or greatest lower bound) is taken over every S that covers E.

In this paper we take volume and measure to be equivalent, hence we have a rigorous formulation of

volume in n dimensions, but is not very useful for finding the volume of a given set, or a sphere. With a

little effort in understanding the Lebesgue outer measure we may apply this theory to the volume of Snp (r).

First we need two definitions:

Definition 2.5. The complement of a set E in Rn, denoted by CE is:

Rn − E.
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The complement of E is the set of all points in Rn that are not in E.

Definition 2.6. A set E is open if for each point x ∈ E, there exists a δ > 0 such that a sphere centered

on x of radius δ is contained in E. Or

{y : |x− y| < δ} ∈ E

In other words a set is open if it does not contain any points that are precisely on its border. The familiar

[a, b] represents a closed set in R. a and b are in this interval. Similarly (a, b) represents the open set, and a

and b are not in the interval. Note that in our definition (a, b] is is neither open nor closed.

Theorem 2.2. A set E is closed if and only if CE is open.

To return to a simple example, let E = [a, b]. Then CE = (−∞, a) ∪ (b,∞). CE is open, and hence E is

closed.

Theorem 2.3. Every closed set is measurable.

Recall that Snp (r) is defined as all n dimensional points |x|p ≤ r , hence Snp (r) is closed. Therefore its is

measurable and has a well-defined volume.

3. Thin boxes used to generate Upper Bound on Volume of Unit Sphere

Using only the above definition of the volume of n-dimensional boxes we prove that the volume of the

unit sphere approaches zero as n approaches infinity. Perhaps this is surprising given that the volume of the

circumscribed box (of edge length 2) goes to infinity as n approaches infinity. This is my own work and [4].

Theorem 3.1. For r = 1,

lim
n→∞

vol(Sn2 (r)) = 0.

Proof. Consider n ≥ 5 and a point x = {x1, x2, ...xn}, with in the unit sphere. Now only 5 of the coordinates

of the point x can have an absolute value greater than 1√
5
. If 6 or more did then:

|x| =

(
n∑
i=1

x2
i

)1/2

≥

√
6

(
1√
5

)2

> 1

Each point can have up to 5 coordinates greater then 1√
5
. There are

(
n
5

)
ways to to pick these big

coordinates. Up to some permutation of the Cartesian product, every point in the n dimensional sphere is

contained in
(
n
5

)
boxes of this form:

[−1, 1]5 ×
[
− 1√

5
,

1√
5

]n−5

To see this, suppose y is in the n dimensional unit sphere which will denote as Sn2 . Then y has at most

5 points with an absolute value greater then 1√
5
. Since there are

(
n
5

)
boxes, by the pigeon hole principle,

we can find a box that such that the big coordinates fall into [−1, 1] interval. The other coordinates are all

smaller than 1√
5

and are contained in the
[
− 1√

5
, 1√

5

]
.

The volume of a n dimensional unit sphere is bounded above by:
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vol(Sn2 (1)) ≤
(
n

5

)(
2√
5

)n−5

=
n!

5!(n− 5)!

(
2√
5

)n−5

< n5

(
2√
5

)n−5

=
n5

(
√

5/2)n−5
.

Since
√

5/2 > 1 the the last value goes to 0 as n goes to infinity.

�

Figure 9. Three thin boxes cover a sphere for n = 3, this gives the general idea

4. Outline of the Gamma function and its properties

To get a formula for the volume of Sn2 (r) we need to use the Gamma function. This Section defines the

Gamma function and explores some its properties that we will need latter. [1]

Definition 4.1. The gamma function is defined as follows: [5]

Γ(t) ≡
∫ ∞

0

xt−1e−xdx.

This definition is computationally challenging. Much of our use of the gamma function is limited to

positive integer arguments. We will prove that for positive integers n, [2]

Γ(n) = (n− 1)!.
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Figure 10. Upper bound volume of S2
n(1)

This is just a factorial function shifted by 1. Γ is a “natural” extension of the factorial to all real numbers,

except non-positive integers. It has applications in probability theory, mathematical physics, and in our case

evaluating particular integrals.

4.1. Properties of the gamma function. Here we prove some properties of the gamma function that will

be useful later.

Theorem 4.1. The following are properties of Γ. [2]:

(1) For all t > 0, tΓ(t) = Γ(t+ 1).[2]

(2) For all positive integers n, Γ(n) = (n− 1)![2]

(3) Γ(1/2) =
√
π [2]

(4) Γ(t+ 1) ∼
√
t( te )xe , (t→∞)

Proof. (1) Consider the left hand side of the identity:

tΓ(t) = t

∫ ∞
0

xt−1e−xdx

Then recall the integration by parts formula and let dv = xt−1 and u = e−x∫ b

a

udv = uv|ba −
∫ b

a

vdu

With t > 0, we have:

tΓ(t) = t
(
e−x

xt

t

∣∣∣∣∞
0

−
∫ ∞

0

xt

t
(−1)e−xdx

)
The first term is zero, by L’hopital’s rule, and the negative signs cancel in the second term. This

leaves:

t
(∫ ∞

0

xt

t
e−xdx

)
Since t is a constant with respect to the integral

=

∫ ∞
0

xte−xdx

= Γ(t+ 1)
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(2) This will be a proof by induction. For the base case:

Γ(0) =

∫ ∞
0

x0e−xdx

=

∫ ∞
0

e−xdx = e−x|∞0 = 1

Hence Γ(0 + 1) = 1 = 0! this establishes our base case. Now suppose k ∈ N, furthermore we assume

the induction hypothesis that Γ(k + 1) = k!, Now using the first result:

Γ(k + 2) = (k + 1)Γ(k + 1) = (k + 1) ∗ (k!) = (k + 1)!

(3)

Γ(1/2) =

∫ ∞
0

x−1/2e−xdx

We now make the substitution u2 = x , and dx = 2udu

Γ(1/2) =

∫ ∞
0

1

u
e−u

2

2udu

=

∫ ∞
0

2e−u
2

du

Since e−x
2

is an even function, and we know
∫∞
−∞ e−u

2

du =
√
π, two times half the integral returns:

2 ·
√
π

2
=
√
π

(4) Since Γ(x+ 1) is continuous for positive x, if Γ(x+ 1) has a limit L as (x→∞), then each sequence

xn that converges to ∞ , Γ(xn + 1) converges to L. In particular we only have to consider Γ(n) for

n ∈ N. We seek an approximation for n!. Since it works, we start with: [7]

ln(n!) = ln(1) + ln(2) + ln(3) + ...+ ln(n)

subtracting 1
2 ln(n) from both sides yields:

ln(n!)− 1

2
ln(n) = ln(1) + ln(2) + ln(3) + ...

1

2
ln(n)

The trapezoidal approximation for
∫ n

1
ln(x)dx with equal partitions each of length one, or xi = i, 0 ≤

i ≤ n, equals:

=
ln(1) + ln(2)

2
+

ln(2) + ln(3)

2
+

ln(3) + ln(4)

2
+ ...+

ln(n− 1) + ln(n)

2

= ln(1) + ln(2) + ln(3) + · · ·+ 1

2
ln(n)

Combing this expression with our approximation for
∫ n

0
ln(x)dx yields

ln(n!)− ln(n)

2
≈
∫ n

1

ln(x)dx = (x(ln(x)− 1))|n1

Plugging in the end points and using some properties of the natural logarithm yields:

ln
( n!√

n

)
≈ n ln(n)− n+ 1.
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Now exponentiating both sides of this approximate equality:

n!√
n
≈ e1−nnn.

In the positive limit of a continuous function we have:

Γ(x+ 1) = Γ(n+ 1) = n! ≈
(n
e

)n
e
√
n.

�

Definition 4.2. The Beta function, β(x, y) is defined as follows: [2]

β(x, y) =

∫ ∞
0

tx−1(1− t)y−1dt.

Theorem 4.2. The Γ and β functions satisfy the relationship [6]

Γ(x)Γ(y)

Γ(x+ y)
= β(x, y).

Proof. Notice that

Γ(x)Γ(y) =

∫ ∞
0

e−uux−1du

∫ ∞
0

e−vvy−1dv.

Now by Fubini’s Theorem, we rewrite this expression as a double integral in u and v.

Γ(x)Γ(y) =

∫ ∞
0

∫ ∞
0

e−u−vux−1vy−1dudv.

Use a change of variables, u = zt and v = z(t− 1). When v = 0 then z = 0, and when v =∞ then z =∞.

When u = 0 then t = 0. When u =∞ then t = 1, since z ranges to ∞. We have:

Γ(x)Γ(y) =

∫ ∞
z=0

∫ 1

t=0

e−z(zt)x−1((z(t− 1))y−1zdzdt.

We use Fubini’s Theorem in the other direction to separate the integrals.

Γ(x)Γ(y) =

∫ ∞
z=0

e−zzx+y−1dz

∫ 1

t=0

tx−1(1− t)y−1dt.

By definition, the first term is Γ(x+ y) and the second term is β(x, y).

Γ(x)Γ(y) = Γ(x+ y)β(x, y)

Γ(x)Γ(y)

Γ(x+ y)
= β(x, y).

�

5. Explicit formula for the volume of S2
n(r) dimensions

Now that we have a basic grasp on the Γ, we will use some of its properties and induction to derive a

closed form expression for the volume of S2
n(r). This Section is a combination my own simple mathematics

and [2].
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5.1. Induction hypothesis. We present two inductive proofs. Not surprisingly they both rely on the same

induction hypothesis. Suppose for 1, 2, 3...n that the volume of S2
n(r) is:

Vn(r) =
rnπ(n/2)

Γ
(
n
2 + 1

) .
Since it this is a rather abstract formula, we evaluate 2 base cases.

• For n = 1 we have:

V1(r) =
r1π(1/2)

Γ
(

1
2 + 1

)
V1(r) =

r
√
π

Γ
(

1
2 + 1

) .

Now we need to evaluate Γ
(

3
2

)
. Using Corollary 1.1 and Theorem 1.2 we have:

xΓ(x) = Γ(x+ 1) (x > 0).

Now we let x = 1/2, and use the property that Γ
(

1
2

)
=
√
π

1

2
Γ
(1

2

)
=

1

2

√
π = Γ

(3

2

)
.

Substituting this into our original equation

V1 = 2r.

In 1 dimension, there is only one degree of freedom. Volume is just length. Hence V1 = 2r, says

the length of all the points that are with in r of another point is 2r. In other words the length of

the interval [r, r] is 2r. It also has the correct units, of lengthn.

• For n = 2 things will start to make sense. Our (as of yet unproven) formula yields:

V2(r) =
r2π

Γ(2)

V2(r) = r2π (since Γ(2) = 1)

Which is the familiar formula for the area of a circle of radius r.

Theorem 5.1. For p = 2, r > 0 and n = 1, 2, . . . volume of a sphere of radius r in n dimensions is:

Vn(r) = vol(Sn2 (r)) =
rnπ(n/2)

Γ
(
n
2 + 1

)
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Proof. We have already stated our induction hypothesis and established several base cases. Now we view

Rn as Rn−2 × R2. By definition a point (x1, x2, x3...xn) is in S2
n(r) if and only if x2

1, x
2
2, x

2
3...x

2
n ≤ r2 Or

rearranging for utility:

x2
1 + x2

2 + x2
3 + · · ·+ x2

n−2 ≤ r2 − x2
n−1 − x2

n

Converting to integrals:

Vn(r) =

∫
Sn
2 (r)

dx1dx2 · · · dxn

Vn(r) =

∫
S2
2(r)

(∫
S

(n−2)
2 (

√
r2−x2

n−x2
n−1)

dx1...dxn−2

)
dxn−1dxn

The interior integral we can evaluate with our induction hypothesis. By Fubini’s Theorem we can do the

“double” integral in either order. We do the (n− 2) integral by induction, and pull out constants. Our r for

the (n− 2) integral is
√
r2 − x2

n−1 − x2
n−2 and is not constant with respect to r and cannot be pulled out of

the S2
2(r) integral. This leaves:

Vn(r) =
π(n−2)/2

Γ
(
n−2

2 + 1
) ∫

S2(r)

(
r2 − x2

n−1 − x2
n

)(n−2)/2
dxndxn−1.

Now we change to polar coordinates, but since r is taken, we use t as our radius measurement in polar. Thus

−x2
n−1 − x2

n = −t2 and dxndxn−1 = tdtdθ. Simplifying our Γ argument yields:

π(n−2)/2

Γ(n/2)

∫ 2π

0

dθ

∫ r

0

(
r2 − t2

)(n−2)/2
tdt.

The first integral is 2π. The second integral is done by a u substitution. We wish to evaluate

π(n−2)/2

Γ(n/2)
2π

∫ r

0

(
r2 − t2

)(n−2)/2
tdt

Let u = r2 − t2. Now du = −2tdt, or dt = − 1
2du. Similarly when t = 0, u = r2. For our other end point,

when t = r, u = 0. Now our integral is:

Vn(r) =
π(n−2)/2

Γ(n/2)
− π

∫ 0

r2
u(n−2)/2du

= − π(n/2)

Γ(n/2)

2

n
(un/2|0r2)

=
π(n/2)

Γ(n/2)

2

n
(rn)

= rnπ(n/2) 1

Γ(n/2)n2

Now by Theorem 1.1
1

Γ(n/2)n2
=

1

Γ(n2 + 1)
.

Substituting into the equation above yields:

Vn(r) = rnπ(n/2) 1

Γ(n2 + 1)
=

rnπ(n/2)

Γ
(
n
2 + 1

) .
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�

Now we prove the same result slightly differently.

Proof. Using the same hypothesis and base cases, but now we regard Rn as Rn−1 × R.

Vn(r) =

∫
S1(r)

(∫
S

(n−1)
2

(√
r2−x2

n

) dx1...dxn−1

)
dxn

Again we can do the (n− 1) integral by induction.

Vn(r) =
π(n−1)/2

Γ
(
n−1

2 + 1
) ∫ r

−r

(
r2 − x2

n

)(n−1)/2
dxn

Since our integrand is even, we can multiply the integral by two, and take the positive half of the interval.

Vn(r) =
π(n−1)/2

Γ
(
n−1

2 + 1
)2

∫ r

0

(
r2 − x2

n

)(n−1)/2
dxn

Now make the substitution xn = r
√
t, and dxn = 1

2rt
− 1

2 dt. We must also adjust our limits. When t = 0,

xn = 0 and when t = 1, xn = r. Our expression now reads:

Vn(r) =
2π(n−1)/2

Γ
(
n−1

2 + 1
) ∫ 1

0

(
r2 − tr2

)(n−1)/2
t−

1
2

1

2
rdt.

Now we can factor an r2 from the term in parenthesis, and pull our an rn. We also cancel the 2 with the 1
2 .

Vn(r) =
rnπ(n−1)/2

Γ
(
n−1

2 + 1
) ∫ 1

0

t−
1
2 (1− t)(n−1)/2

dt

Now recall the definition of the Beta (β) function:

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

We see that

Vn(r) =
rnπ(n−1)/2

Γ
(
n+1

2

) β

(
1

2
,
n+ 1

2

)
.

Now Theorem 4.2 (a property of the β function)

Vn(r) =
rnπ(n−1)/2

Γ
(
n+1

2

) β

(
1

2
,
n+ 1

2

)
=
rnπ(n−1)/2

Γ
(
n+1

2

) Γ
(
n+1

2

)
Γ( 1

2 )

Γ(n2 + 1)

canceling the Γ(n2 + 1) and remembering that Γ
(

1
2

)
=
√
π We have:

rnπ(n−1)/2
√
π

Γ(n2 + 1)

rnπn/2

Γ(n2 + 1)
.

�

There is another more direct brute force proof for this result. It is much more difficult and involves a

Jacobian transformation with n terms and generalized spherical coordinates. It can be found in [2]
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6. The Volume of Snp (r) for different p-norms

As we discussed in Section 2 The traditional unit sphere is defined by a set points less than 1 unit-

p-distance from the origin. This definition is dependent on a distance formula/definition. All the points

|x|p ≤ 1 are in the unit sphere. In this Section we consider the volume of Spn(r) for different values of p. For

n > 3 its unclear that an intuitive distance measurement exists. As a perhaps motivating aside, distance in

special relativity, 3 spatial dimensions and one time dimension looks like Euclidean distance with an added

term, it is
√
x2

1 + x2
2 + x2

3 + (tc)2. Let

Dp(x) =

(
n∑
i=1

xpi

)1/p

be the distance from x = (x1, x2, · · ·xn) to the origin. Note that for p = 2 we recover the traditional distance

formula, and therefore the traditional unit sphere.

In [8] the authors show that the volume of n dimensional sphere for a given value of p is:

VBn
p

=

(
2Γ
(

1
p + 1

))n
Γ
(
n
p + 1

)
This formula leads to many different explorations. Is there a value of p or a function p(n) that makes the

volume of the sphere as n approaches infinity be a nonzero constant?

Suppose that p is constant. Recall that the gamma function is continuous and strictly increasing on [2,∞)

and that Γ(n− 1) = n!. Then:

lim
n→∞

VBn
p

=

(
2Γ
(

1
p + 1

))n
Γ
(
n
p + 1

)
 .

Now the numerator is just a number, call it k raised to the n. Note that 0 ≤ k ≤ 2. This limit must be

non-negative. For values of n ≥ j · p were j is an integer we have:

lim
n→∞

(
VBn

p
≤ kn

j!

)
Despite the multiplicative shift, the factorial function grows faster then the 2n. Hence this limit is zero for

any fixed value of p.

6.1. What if p is a function of n. Perhaps we utterly left the land of intuition a long time ago, but we

may be near its border. It makes some sense for how distance is defined to vary with how many of degrees

of freedom we have in our space. For example if the number of roads between Fargo and Sarasota increases

(ie the degrees of freedom for getting between them) then the travel time (distance) would change. As n

increases Dp(xFargo − ySarasota) would decrease. If that were the case then p would be a function of n.

For another example if n = 1, we have one degree of freedom and may be forced to travel along some

train tracks that don”t go directly from point A to B, then if n = 2 we can get off the train tracks and cut

a shorter distance between the end points.

Now suppose n = 2, and p = 1, otherwise known as the taxi cab norm. These are the n and p values of

walking around a city on a grid. But if we change n to 3, and allow our pedestrian to fly (i.e. use the 3rd

dimension or the z axis) then p will change to 2. (assuming the buildings are negligibly tall). Hence thinking

about p as a function of arguably n makes sense.
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Figure 11. For n = 1 the distance is the curve, for n = 2 its the shorter straight line

Figure 12. taxi cab norm is the distance on a grid, p changes if the taxi can fly

As an example suppose p(n) = n. Then:

VBn
p

=

(
2Γ
(

1
p + 1

))n
Γ
(
n
p + 1

)
VBn

p
=

(
2Γ
(

1
n + 1

))n
Γ (2)

VBn
p

=

[
2Γ

(
1

n
+ 1

)]n
Since Γ(x) ≥ .5, for x ∈ (1, 2) the limit as n goes to infinity of the above expression is infinity. Hence we

need a more complex or subtle function p(n).

6.2. Finding p(n) such that the limit of the volume of a n dimensional sphere as n goes to

infinity is a nonzero constant. We now seek a function p(n) such that

lim
n→∞

VBn
p

= c

It is shown below that p(n) = n
Γ−1(c2n)−1 makes the limit c for any constant c.

One easy way to do this is to set,

c

(
2Γ

(
1

p
+ 1

))n
= Γ

(
n

p
+ 1

)
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remembering that p is a function of n. For the moment assume that (or make the ansatz) limn→∞ p(n) =∞.

Since Γ(1) = 1 the left hand side is just c2n. Then:

c2n = Γ

(
n

p
+ 1

)

Γ−1(c2n) =
n

p
+ 1

Γ−1(c2n)− 1 =
n

p

pΓ−1(c2n)− p = n

p(n) =
n

Γ−1(c2n)− 1

Now we must check that our ansatz holds. That is does

lim
n→∞

(
p(n) =

n

Γ−1(c2n)− 1

)
=∞?

The above equation is valid since Γ(x) grows faster then 2x, hence Γ−1 will grow very slowly. (Think

ln(x) and ex).

6.3. Some comments on well definition of p(n). We are concerned primarily with where is Γ invertible.

The Inverse Function Theorem says a strictly increasing function is invertible. [9] Since Γ(x) is strictly

increasing on [2,∞) as long as c 6= 0, p(n) is eventually well defined. Since we wanted to avoid the limiting

volume being 0 this is not a constraint, as c = 0 for any fixed value of p.

We must also require that Γ−1(c2n) − 1 6= 0, which happens only when c2n = 1or2. Hence for large

enough values of n our distance metric will be well defined.

Figure 13. Γ(n) vs. 2n
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7. Surface area of Sn2 (r), denoted ∂Sn2 (r)

In this Section we present another proof of the volume formula for an n-dimensional sphere that leads

naturally to a surface area formula for the n-sphere. What follows is from [11]

Definition 7.1. The surface area of Sn2 (r) is

∂Sn2 (r) = {x ∈ Rn
∣∣∣|x| = r}.

Theorem 7.1. The volume and surface area of Sn2 (r) are given by:

∂Sn−1
2 (r) = nCnr

n−1 =
nrn−1πn/2

Γ
(
1 + n

2

)
Vn(r) = Cnr

n =
rnπn/2

Γ
(
1 + n

2

)
Proof. To calculate the volume of the n dimensional sphere we must evaluate the following integral:

Vn(r) =

∫
· · ·
∫
x2
1+x2

2+···x2
n≤r2

dx1dx2 · · · dxn

Were dx1dx2 · · · dxn = dV the infinitesimal volume element for n dimensions. We claim that:

Vn(r) =

∫
· · ·
∫
x2
1+x2

2+···x2
n≤r

dx1dx2 · · · dxn = Cnr
n

For some function C of n. The rn results from dimensional analysis. The answer must be factorisable

into a number, Cn times rn, otherwise it would not have the correct units for volume in n dimensions. We

must still calculate Cn.

The surface area of an n dimensional sphere is the set of points that correspond to x2
1 + x2

2 + · · ·x2
n = r2.

For a given sphere, we can construct it by adding infinitesimally thin shells of this form. If Sn is the surface

area of a n dimensional sphere, then in integral form this reads:

Vn(r) =

∫ r

0

Sn−1(r′)dr′.

Assuming for the moment that Sn(r) is continuous for r ∈ (0,∞), then by the Fundamental Theorem of

Calculus we have:

Sn−1(r) =
dVn(r)

dr
= nCnr

n−1

We we have used the fact the Cn is independent of r in the last equality. Now if we can calculate Cn we

get a volume area formula and a surface area formula. We now have two expressions for Vn(r), setting them

equal yields: ∫
· · ·
∫
x2
1+x2

2+···x2
n≤r

dx1dx2 · · · dxn =

∫ r

0

Sn−1(r′)dr′. = nCn

∫ r

0

(r′)n−1dr′

To make things easier we want to write dx1dx2 · · · dxn in generalized spherical coordinates. Since we

won’t need an explicit formula for the spherical differentials we will bury then all in dΩ. Equating these two

Jacobian’s yields:

dx1dx2 · · · dxn = rn−1drdΩn−1
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Where dΩ contains the necessary trig functions of θ1 through θn−1. Now if we let r = 1 and combine the

two previous equations we see that: ∫
· · ·
∫
dΩn−1 = nCn.

Were the integral is taken over all (angular) space. This integral is still difficult. In typical mathematical

fashion we do something seemly unrelated that solves the problem (a hidenblau). Consider the function

defined as:

f(x1, x2, . . . xn) = e−(x2
1+x2

2+···x2
n) = e−r

2

.

We now integrate this function over all space in both rectangular and spherical coordinates.∫ ∞
−∞
· · ·
∫ ∞
−∞

e−(x2
1+x2

2+···x2
n) =

∫ ∞
0

rn−1dr

∫
dΩn−1e

−r2

The dΩ terms are independent of r. They are a bunch of angular terms integrated from 0 to π or from 0 to

π/2. Hence we can do that portion of the integral. Recall
∫
· · ·
∫
dΩn−1 = nCn. Hence:∫ ∞

−∞
· · ·
∫ ∞
−∞

e−(x2
1+x2

2+···x2
n) = nCn

∫ ∞
0

rn−1e−r
2

dr.

Then applying Fubbini’s Theorem to the left hand side to separate the integral leaves:∫ ∞
−∞

e−x
2
1dx1

∫ ∞
−∞

e−x
2
2dx2 · · ·

∫ ∞
−∞

e−x
2
ndxn = nCn

∫ ∞
0

rn−1e−r
2

dr.

We can do all of these integrals. ∫ ∞
−∞

e−x
2
1dx1 =

√
π∫ ∞

0

rn−1e−r
2

d =
1

2
Γ
(n

2

)
Plugging these results in yields:

πn/2 = Cn
n

2
Γ
(n

2

)
= CnΓ

(
1 +

n

2

)
.

In the last step we used the recursive property of Γ . Solving for Cn we obtain:

Cn =
πn/2

Γ
(
1 + n

2

) .
Returning to our original definition of Cn we see that:

Sn−1(r) = nCnr
n−1 =

nrn−1πn/2

Γ
(
1 + n

2

)
Vn(r) = Cnr

n =
rnπn/2

Γ
(
1 + n

2

) .
�

Personally I find the result from the Fundamental Theorem of Calculus more interesting, or in other words

the fact that:

Sn−1(r) =
(n
r

)
· Vn(r).
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8. Volume of n dimensional Ellipses

We have computed the volume of Sn2 (r). With a simple linear transformation of Rn and Pick’s Theorem

we can compute the volume of a n dimensional ellipse. The material here is taken from: [12] and [13].

Theorem 8.1. Suppose c1, c2, ..., cn are positive constants. Consider the n dimensional ellipsoid, En given

by

En = {(x1, ..., xn)|
n∑
k=1

x2
k

c2k
≤ 1}.

Its n dimensional volume is
πn/2

Γ(n/2 + 1)

n∏
k=1

ck.

Proof. The less than 1 part is merely a convenience. By adjusting the constants ck, we can make our ellipse

as big or small as we want. To get an ellipse from the unit sphere all we have to do is a simple linear

transformation of our coordinates. The nth coordinate is scaled by cn. This can produce any ellipse that has

major axis aligned with the coordinate axis. Since a rotation leaves the volume unchanged, this will suffice

for our purposes.

To make this transformation we must multiply a given vector point by a diagonal matrix, with diagonal

entries c1, c2, ..., cn. The determinant of a diagonal matrix is the product of its diagonal entries. From

linear algebra we know that a linear transformation from Rn to Rn multiplies the of volume an object by

the determinant of the matrix corresponding to said linear transformation. Hence the volume of the n

dimensional ellipsoid is the volume of unit sphere times the determinant of the diagonal matrix with entries

c1, c2, ..., cn.

If we multiply each element of the unit sphere by this matrix:

M =


c1 0 0 0

0 c2 0
...

0 0
. . . 0

0 · · · 0 cn


We get the the n dimensional ellipsoid given by

{(x1, ..., xn)|
n∑
k=1

x2
k

c2k
≤ 1}.

Equivalently if a point x is in the unit sphere then the point Mx is in the ellipsoid as formulated above.

En = T̂ · Sn
V (En) = V (T Ṡn)

V (En) = det(M)V (Sn)

V (En) =
πn/2

Γ(n/2 + 1)

n∏
k=1

ck.

�

What follows are two simple examples. Suppose x = (1, 0, 0, · · · , 0). Then Mx = (c1, 0, 0 · · · , 0). Our

original point x was on the surface of the sphere, and the final point Mx is on the surface of the ellipse.
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Suppose y = ( 1
2 ,

1
2 ,

1
2 ,

1
2 , 0, · · · , 0), which is on the surface of a unit sphere in n dimensions. Now My =

( c12 ,
c2
2 ,

c3
2 ,

c4
2 , 0 · · · , 0), which is also on the surface of the ellipsoid.

9. surface Area of n dimensional Ellipses

The surface area of an ellipse is a solved only via an infinite sum. In this Section we explain why

the Fundamental Theorem of Calculus method and linear transformation method do not neatly solve the

problem.

9.1. Fundamental Theorem of calculus, surface area of n dimensional ellipses. If we repeat the

same calculations as before 7 but with an ellipse we get an answer, but it is wrong. It is wrong because the

integral argument relied on the fact that the distance between successive spherical shells that make a sphere

was the same everywhere on the sphere. This is not true for an ellipse.

9.2. Linear transformation to generate surface Area of n dimensional Ellipses. Surface area does

not behave nicely under linear transformations. As an aside / example we deal with a cube.

We have a simple question with out a simple answer; if we have a shape whose surface area we know,

and we apply a simple linear transformation of its vector space, what happens to the surface area of the the

resulting shape? Namely if we have a sphere of radius 1, and we apply the matrix:

M =


c1 0 0 0

0 c2 0 0

0 0
. . .

...

· · · 0 0 cn


to our sphere, what is the resulting surface area? Since we cannot answer this question, we will answer an

easier question. If we have a cube of side length 1 in the first quadrant that looks like FIGURE 14.

Now if we transform this sphere by a matrix

T =

 c1 0 0

0 c2 0

0 0 c3


to this cube we get a rectangular based prism. Since T is diagonal each of our eigenvectors is just a unit

vector. Hence our shape still has all right angles, just not all equal sides. Now the point (1, 1, 0) is mapped

to the point (c1, c2, 0) Hence the surface area of the base is now c1c2. There is nothing special about the

base of the cube, in general the new surface area is:

2(c1c2 + c1c3 + c2c3).

This form suggests that the surface area formula for a ellipsoid might look something like:

n∑
j=1

 n∏
i=1,i6=j

ci

 ∗ C,
were C is just an over all constant, similar to the 2 we got out for a cube.
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Figure 14. 3 dimensional cube of side length 1 [14]

10. Conclusion

There are still a few remaining questions. Could a linear transformation method lead to a simpler method

or result for the surface area an ellipse? On another note, geodesics are the shortest path on a manifold

(or surface), is there an interesting relationship between the geodesics of a Sp3 (1) and p. In other words, we

know that the geodesics of a normal sphere are great circles, but can the altering of distance calculation be

built into the geodesic calculation? Something like a the geodesics of a Sp3 (1) is a Sp2 (1) path, which would

be extremely elegant, but I don’t know if its true. More generally can we find a function of f(p) such that

the geodesics of Sp3 (1) are S
f(p)
2 (1) ? Or is there a nice relationship between p and the geodesics of Sp3 (1)?
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