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Abstract

An important component of clinical trials is determining the smallest sample size
that provides accurate inferences. The Frequentist approach to determining sample size
is most common; however there has been a recent shift towards using a Bayesian ap-
proach due to its flexibility. This paper will review both the Frequentist and Bayesian
branches of statistics and their respective approaches to sample size determination.
As well, the advantages and disadvantages of using each method will be considered.
Finally, along with the Bayesian approach to sample size determination, we will also
discuss a Bayesian adaptive design for clinical trials that allows for sample size adjust-
ments during the trial.

1 Introduction

Clinical trials are research studies used to gain insight about new treatments or interventions,
for example drugs, procedures, medical devices, etc. Clinical trials are an important part
of the development process of new interventions because they determine and confirm the
efficacy, as well as the safety, of an intervention.

Conducting a clinical trial requires a lot of preparation, and an important aspect of de-
signing a clinical trial is determining the correct sample size for that trial. Having the correct
sample size limits unneeded exposure to possible harmful treatments, while ensuring accu-
rate results. Additionally, determining the correct sample size saves money and resources.
There are many ways in which sample size can be calculated, and all these methods aim
to find the “best” sample size, or the smallest sample size necessary to get accurate and
inference worthy results.

A common approach to calculating sample size is the Frequentist approach because of its
simplicity. However, in recent years, the Bayesian approach has become more popular due
to its ability to incorporate existing information about the effect of a treatment, as well as
its flexibility.

In this paper we will first introduce both the Frequentist and Bayesian statistical ap-
proaches and the differences between the two. Then, using that background, we will outline
the basic process of clinical trials and then propose the sample size determination methods
for each approach, as well as the limitations of using each approach. Lastly, we extend the
Bayesian sample size approach to a two stage adaptive clinical trial.
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2 Overview of Frequentist and Bayesian Statistics

There are two dominant statistical approaches that are commonly used, the Bayesian ap-
proach and the Frequentist approach. Here we will summarize the main ideas from each
methodology, which we will later use to compare the sample size determination for each
approach.

2.1 The Frequentist Approach

The Frequentist approach uses hypothesis testing and probabilities to make statistical infer-
ences about unknown parameters.

Under the Frequentist approach the data is considered random, because if the study is
repeated the data will be different with every repetition. On the other hand, the unknown
parameter being tested, or the hypothesis, is believed to be fixed and is either true or false. As
stated above, inference is made by looking at probabilities, p-values, where this probability is
the expected frequency that a random event will occur, or the probability of the data given
a hypothesis.

Before a given study begins, null and alternative hypotheses are stated, which are cus-
tomarily ‘no relationship or effect exists’ versus ’there is some effect or relationship’. Next a
significance level, typically α = .05, is chosen. The significance level is the probability of re-
jecting a null hypothesis that is true, or the fixed probability that a observed result couldn’t
have occurred by chance alone. Data are collected and a statistical test is conducted to
calculate a p-value, which in this case can be interpreted as the probability of getting results
as extreme as the one observed assuming the null hypothesis is true. If p-value ≤ .05 the
results are thought to be “significant” and the alternative hypothesis is favored.

2.2 The Bayesian Approach

The Bayesian statistical approach uses existing beliefs and/or information, along with newly
collected data, to draw inference about unknown parameters. More succinctly, this is sum-
marized through Bayes’ Theorem.

Definition 2.1 Posterior Distribution (ξ(θi|x)): The distribution that describes the poste-
rior probability of θ given old information and newly acquired data.

Theorem 2.2 Bayes’ Theorem: Let θ = (θ1, θ2, . . . , θm) be events such that 0 < P (θi) < 1,
for i = 1, 2, 3, . . . ,m. And let x = (x1, x2, . . . , xk). If θ follows a continuous distribution,
then,

ξ(θi|x) =
fn(x|θi) ξ(θi)∫
fn(x|θ) ξ(θ) dθ

, (1)

and if θ follows a discrete distribution, then for j = 1, 2, 3, . . . ,

ξ(θi|x) =
fn(x|θi) ξ(θi)∑m
j=1 fn(x|θj) ξ(θj)

.
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The variables, θ = (θ1, θ2, . . . , θn) are the unknown parameters of interest. Under
Bayesian statistics these are random variables, and therefore we would like to find the dis-
tribution of these variables. As stated above, Bayesian statistics is unique in its ability to
incorporate existing information about θ, and this is represented by the prior distribution,
ξ(θi). Because this distribution is based on prior information, it is constructed before the
experiment begins.

After determining the prior distribution, we use the observed data, x = (x1, x2, . . . , xk),
where x is independent and identically distributed, and the prior distribution to construct
the likelihood function, fn(x|θi). This likelihood function is the conditional probability dis-
tribution of the data x given the parameter θi, and is calculated as follows,

fn(x|θi) = f(x1, x2, . . . , xk|θi)
= f(x1|θi)× f(x2|θi)× · · · × f(xk|θi)

=
k∏
j=1

f(xj|θi)

In the denominator of (1), we have the normalizing constant∫
fn(x|θ) ξ(θ) dθ,

which is a unique value that ensures that∫
ξ(θi|x) dθ = 1.

When using Bayes’ theorem, it is common to leave out the normalizing constant to make
calculations easier, and modify the theorem to say the posterior distribution is “proportional”
to the product of the prior multiplied by the likelihood function,

ξ(θi|x) ∝ fn(x|θi)ξ(θi).
Finally, using Bayes’ Theorem we have derived the posterior distribution, which is the

conditional distribution of θ given x. This posterior distribution can be analyzed and sum-
marized by looking at its mean, standard deviation, etc. It can also be used in another
experiment as the prior distribution, as we continue to gain inference about our parameters.

It is important to note that unlike Frequentist statistics, Bayesians consider the data to
be fixed, they believe that there is a single set of data that we are continuously sampling
from. Additionally, Bayesians use probability to represent beliefs that values of a parameter
are true. More specifically, Bayesians define probability as the probability of our hypothesis
given the data.[12]

2.2.1 Prior Distributions

Prior distributions summarize and express existing information about an unknown parameter
and how much researchers believe in the possible values the parameter can take on. The
researcher has the option of making the prior distribution informative or non-informative.
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A non-informative prior has little impact on the posterior distribution. It is used when
little to no information exists about a parameter, or when the researcher wants to take a more
conservative approach to the data analysis. This approach is more conservative because when
the prior is non-informative, the data will have more of an influence on the inference and
posterior distribution. A common non-informative prior is the uniform distribution because
it states that every value for the parameter is equally likely, however any distribution can
be made relatively non-informative by setting the variance equal to a large value.

An informative prior incorporates existing information that will impact the resulting
posterior distribution. There are two types of informative priors, skeptical and optimistic
[9]. A skeptical prior distribution assumes that there is no difference between the effectiveness
of both treatments. This distribution can be a normal distribution centered around the null.
Conversely, an optimistic prior is centered around the alternative hypothesis and has a strong
belief that the new treatment is effective.

The associated parameters of a prior distribution are called prior hyper-parameters. If
these hyper-parameters are known, determining the posterior distribution is relatively easy
using Bayes’ Theorem. However, if some of these hyper-parameters are unknown, an esti-
mation method or hierarchical model must be used. The hierarchical Bayes’ model allows
the researcher to create levels of prior distributions, or hyperpriors, for unknown hyper-
parameters of the desired prior distribution. These added hyperpriors fill in missing infor-
mation or elaborate about our prior distribution. [8]

Unfortunately, no single method is a panacea for picking a prior distribution, and compu-
tations using Bayes’ Theorem can become computationally intensive. To make calculations
and decisions easier, conjugate prior families were constructed.

Definition 2.3 Let X1, X2, . . . , Xn be conditionally i.i.d. given θ with a common distribu-
tion f(x|θ). Let ψ be the family of distributions for θ. If both the prior distribution, ξ(θ),
and posterior distribution, ξ(θ|x), belong to ψ, then ψ is called a conjugate family of priors
for f(x|θ).

Thus, conjugate prior families are distributions such that the prior and posterior distri-
butions are the same, or, in other words, our likelihood functions multiplied by our prior
distribution results in a posterior that is proportional to the same distribution as our prior.
As an example, if our data follows a Binomial distribution, X ∼ Binomial(p), then the
conjugate prior is a Beta distribution, ξ(p) ∼ Beta(a, b) where a, b > 0, and p given our
data will also follow a Beta distribution, ξ(p|x) ∼ Beta(a1, b1). Thus, using conjugate prior
families can make decisions and calculations simpler because it removes the need of finding
the normalizing constant through integration.[12]

3 Introduction to Clinical Trials

Before we begin talking about adaptive clinical trials, the general overview of what clinical
trials are and the process of how drugs are reviewed should be discussed.

Clinical trials are used to research whether a treatment or device is safe and effective for
humans. After development, drugs may first be tested on animals first to help determine
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toxicity levels and possible harmful side effects, and then moved on to humans. Thus, clinical
trials usually occur in the final stages of the development process.

Before a clinical trial begins, a protocol is prepared that details the experiment in length
and why those decisions were made, including number of participants, who is eligible, what
will be measured, etc. In this protocol, the researcher will also outline how they will ensure
that their study will not be biased. A bias is a systematic error that deviates our results from
the true result and effects inferences made. To combat this researchers will typically include
comparison groups, groups they can compare results with, randomization, participants are
assigned to groups randomly to make sure that differences occurred are because of the
treatment and not where participants are allocated, and/or masking, where they ensure
participants don’t know which group they are in as long as the safety of the participant is
not compromised. This protocol must be approved by the Food and Drug Administration
(FDA) before any research begins.

As stated above, comparison groups can be used as a safeguard against bias, but can also
be used to compare the effects of the new drug with existing treatment or placebo. This
comparison may not only uncover which treatment is better, but also whether a treatment
is better for a specific patient.

Clinical Trials follow specific standards that protect the patients and help the researcher
produce statistically sound results. The FDA has established the general steps to the process
of clinical trials which will be detailed in the next section. The conclusion of a clinical trial
is to determine whether a new treatment improves a patients condition, has no effect, or
causes harm.

3.1 Phases of Drug Development

The following is the FDA approved process. After the drug is created, sponsors (companies,
organizations, etc) must show the FDA results from animal testing and present their pro-
posal for human testing. If the FDA believes the drug is safe and approves their proposal,
testing is continued on humans. This clinical trial testing occurs in 3 phases:

Phase 1 Testing: The focus of Phase 1 is on safety. This testing is usually on healthy vol-
unteers to determine what the drugs main side effects are and how the drug is metabolized.
This phase is also used to evaluate what a safe dose range is.

Phase 2 Testing: If Phase 1 doesn’t show high levels of toxicity, then researchers can
continue on to Phase 2. The focus of Phase 2 is on effectiveness. The drug is administered
to a larger sample who have the specific disease or condition. In this phase, the drug is
compared to patients who receive a placebo treatment, or the common treatment. Some
Phase 2 trials are broken up into two stages so trials can terminate earlier if no significant
data is found.

Phase 3 Testing: If Phase 2 testing shows that the drug is effective, Phase 3 testing
can begin. In this phase of testing, more information is gathered about the effectiveness
and safety of the drug by looking at a different population, different dosages, or using the
drug with a combination of others. This phase also determines any long-term effects from use.
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After these phases, a meeting is set with the FDA and the sponsor before the New Drug
Application is submitted. The NDA application is submitted and reviewed by the FDA,
as well as the drug labeling and facility used to make the drug. Onces all these steps are
completed and passed by the FDA, the drug will be approved. [10]

4 Sample Size Determination

Determining sample size is one of the most critical calculations in any study or experiment
because it can directly influence results. Having the right sample size will make it more
likely that results couldn’t have occurred by chance alone but from a true effect or differ-
ence. Additionally, having the right sample size can ensure that if a statistically significant
difference exists it will be uncovered in our data. If the effect size is small, a larger sample
size is required to detect a difference, however, if the effect size is large a smaller sample
size is needed. Lastly, having the correct sample size, and correct participant pool, can
assure that the data are representative of the targeted population, and not just those who
participated in the study. All of these points can be solved by having a sufficiently large
sample size, however many don’t have unlimited recourses to make a larger participant pool
feasible. Thus, having a sample size that is just large enough can help save money and make
sure resources are allocated as efficiently and effectively as possible.

This section will cover the Frequentist approach and two methods of the Bayesian ap-
proach to sample size determination, and review some limitations to each approach.

4.1 Frequentist Sample Size Determination

The following is a derivation of the Frequentist approach of determining the appropriate
sample size of a comparative experiment with a desired power.[6] [7]

Suppose the experiment is looking at the mean difference between two treatments where
µc is the average response of the control group and µt is the average response of the new
treatment group. Also suppose that all responses, Xci = responses from the control group
and Xti= responses from the treatment group, are normally distributed. Then we would like
to test H0 : µc = µt and Ha : µc 6= µt.

First, a value for δ = µt − µc is selected, which represents the minimal size of difference
between the treatment and control groups the researcher would consider important. This is
different from the Bayesian approach because now δ is fixed. Since δ is initially unknown,
a value is chosen that is obtainable but also enough to distinguish between groups. It can
be determined by looking at previous experiments. Similarly, the variances of the treatment
and control group responses, σ2

c and σ2
t , are unknown but estimated from prior data.

Next, the power of the test, P , is determined. In Frequentist hypothesis testing, there
are four outcomes that can occur once a decision about H0 is made (Table 1).

As the table shows, power is the probability of rejecting a false null hypothesis. If the
actual difference between the two treatments is greater than δ, the researcher would like to
have a strong probability ( 0.8, 0.9, or 0.95) of showing a statistically significant difference,
a difference that could not be due to chance alone. In other words, if the actual difference is

6



Decision H0 True H0 False
Fail to Reject H0 no error Type II Error
Reject H0 Type I Error no error (Power)

Table 1: There are four possible outcomes for every decision made from a hypothesis test.

δ, the power is the probability of actually observing a difference δ. Determining the power
is important because the power also decides the probability of a Type II error, β = 1 − P ,
or the probability of failing to reject a false null hypothesis. Lastly, the researcher should
determine the significance level, α. This value determines the probability of rejecting a true
null hypothesis, which is also known as a Type I error.

It is important to note that the Type I and Type II errors are inversely related, see
Figure 1, therefore a decrease in one results in an increase in another (when the sample size
remains constant). This, however, will not effect our calculations because we are determining
a sample size for selected α and β.

As stated above, the two groups follow normal distributions,

Xc1, Xc2, . . . , Xcn ∼ N(µc, σ
2
c )

Xt1, Xt2, . . . , Xtn ∼ N(µt, σ
2
t ).

Normal distributions have the unique property of being closed under addition. Let
Y1, Y2, . . . , Ym be normal random variables with means µi and variances σ2

i for i = 1, 2, 3, . . . ,m.
Let W= c1Y1 + c2Y2 + · · · + cmYm where c1, c2, . . . , cm are real numbers. Then W ∼
Normal(µW , σ

2
W ) where,

µW = c1µ1 + c2µ2 + · · ·+ cmµm

and
σ2
W = c2

1σ
2
1 + c2

2σ
2
2 + · · ·+ c2

mσ
2
m.

We can now calculate the sample mean distributions for both groups.

X̄c =
Xc1 +Xc2 + · · · , Xcn

n

then,

µX̄c
=
µc + µc + · · ·+ µc

n
= µc

and

σ2
X̄c

=
σ2
c + σ2

c + · · ·σ2
c

n2
=
σ2
c

n
.

A similar calculation can be made for the sample mean of the treatment group.
Let D = X̄t− X̄c be the observed mean difference. Using the closure property of normal

distributions, D is normally distributed about µt − µc with a variance of (σ2
t + σ2

c )/n or
standard deviation of

√
(σ2

t + σ2
c )/n. We will use the previously devised test statistic, an
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(a) The pink represents the Type I error and the blue is a
Type II error.

(b) When α is smaller, the Type I error decreases, but the
Type II error increases showing their inverse relationship.

Figure 1: Type I and Type II Error

equation that standardizes the mean difference, for this hypothesis test to make calculations
simpler,

Z0 =
(X̄t − X̄c)− (µt − µc)√

(σ2
t +σ2

c )

n

.

Recall that (µt − µc) = 0, therefore we can rewrite the test statistic for this specific
example,

Z0 =
D− 0√

(σ2
t +σ2

c )

n

=
D√

(σ2
t +σ2

c )

n

.

We see that under H0, the test statistic follows a standard normal distribution,
Z0 ∼ N(0, 1). Under Ha, D = δ, thus Z0 ∼ N(δ

√
n/
√
σ2
t + σ2

c , 1).
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Looking at [Figure 2] we see that if Ha is true, a Type II error, β, will be made if
−Zα/2 ≤ Z0 ≤ Zα/2. Thus, the probability of a Type II Error β is the probability that Z0

will fall between those critical values. Thus,

−Zα/2 ≤ Z0 ≤ Zα/2

−Zα/2 −
δ
√
n√

σ2
t + σ2

c

≤ 0 ≤ Zα/2 −
δ
√
n√

σ2
t + σ2

c

.

Figure 2: This figure graphically shows what our null and alternative hypotheses are, and
where their distributions overlap.

From here, we can use the the the function Φ(x), which calculates the probability to the
left of x under the standard normal distribution. Then,

β = Φ

(
Zα/2 −

δ
√
n√

σ2
t + σ2

c

)
− Φ

(
−Zα/2 −

δ
√
n√

σ2
t + σ2

c

)
,

and

β ≈ Φ

(
Zα/2 −

δ
√
n√

σ2
t + σ2

c

)
because when δ > 0, Φ(−Zα/2 − δ

√
n√

σ2
t +σ2

c

) ≈ 0. Let Zβ be the higher percentile of the

standard normal distribution, which means β = Φ(−Zβ). Our previous equation for β can
be simplified to,
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−Zβ ≈ Zα/2 −
δ
√
n√

σ2
t + σ2

c

.

Thus, for a two-sided hypothesis test with a significance level α and power 1− β,

n ≈
(Zα/2 + Zβ)2 (σ2

t + σ2
c )

2

δ2
.

4.1.1 Example

Suppose we would like to test the success of a new drug that lowers systolic blood pressure,
pressure in the arteries when the heart is beats. Let δ = 10mm Hg be the minimally
significant difference between the treatment and control groups . We want to detect this
difference with a probability (or power) of at least 90%, and a significance level, α, of 0.05
(Zα/2 = 1.96). If we have a power of 90%, then β = .1 and Zβ = 1.28. Finally, let
σc = σt = 15 It follows that,

n =
(Zα/2 + Zβ)2 (σ2

t + σ2
c )

2

δ2
=

(1.96 + 1.28)2 (152 + 152)2

102
≈ 47.23.

Thus, a sample size of approximately 48 people is needed for our test to have a power of
90%.

4.1.2 Limitations of the Frequentist Approach

The equation for calculating the sample size using the Frequentist approach is straight for-
ward and easy to use, which is why many clinicians use this method. It is, however, important
to indicate some of the limitations to using this method.

A major limitation to this approach is the inability to incorporate and allow past expe-
rience and information to inform our expectation of what will occur. Additionally, in this
approach we are estimating some values, like σc and σt, however our approach does not take
into account the uncertainty involved with estimating these values. Thus, our predictions
are less realistic.

Some limitations also arise from thinking of the unknown parameter as a fixed value.
Because of this, Frequentists cannot describe any uncertainty about our unknown parameter.
For example, while Bayesians can state that an interval contains an unknown parameter with
95% probability, Frequentists can only state that the parameter is either in the interval (100%
probability) or not (0%). Rather, they will use probability to state that, in the long run,
95% of such intervals will cover the parameter being estimated, and this statement will no
longer be relevant once the data is collected. Additionally, it is rare that exact fixed values
will apply to situations in which this hypothesis testing is being used for.

The Frequentist approach has a strong dependence on sample size. When sample sizes
are very large or small, we begin to run into problems. Holding everything the same, larger
sample sizes can detect small differences and can bias the p-values to reject the null hypothesis
which could be true. Similarly, when sample sizes are small, it becomes more difficult to
reject the null hypothesis and therefore it is difficult to detect small differences.
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In most situations, under the Frequentist approach, the null will be false because it is
rare that two means will be exactly equal, or that a value will be exactly zero. It becomes
pointless to test H0 because if the null is a fixed value, it will always be false.

Lastly, the Frequentist approach is not very flexible to possible changes that could occur
during a study. For example, it is statistically difficult to account for trials that needed to
be stopped early. [8]

4.2 Bayesian Sample Size Determination - Average Power Method

There are several different methods of determining sample size using the Bayesian approach.
Here we will use show how to use the Average Power method when our data follow a logistic
regression and when our data follow a Poisson distribution. Both methods will be comparing
the effects of two treatments, the newly developed treatment and an existing one. Then we
will review some of the limitations of the Bayesian approach.

4.2.1 Logistic Regression Sample Size Calculation

In this section we will cover how to calculate sample size for a logistic regression model.
In Bayesian sample size calculations, instead of a single hypothesized value for H0, we

allow H0 to include a range of values. This can be written as, H0= ∆ where ∆ ∈ [δU , δL].
The value δL is the threshold in which the new treatment would be considered inferior to the
control, and δU will be the threshold where the new treatment will be considered clinically
superior to the control.

Let Y be a categorical binary random variable where Yi = 1 if the disease progresses for
the ith patient and Yi = 0 if the disease does not, for i = 1, 2, . . . N . Then, Yi ∼ Bernoulli(πi)
where πi is the probability that the disease will progress, or πi = P (Yi = 1). A possible
model to estimate πi is the logistic regression,

logit(πi) = log

(
πi

1− πi

)
= β0 + β1xi, (2)

where xi is a binary categorical variable indicating if the patient was in the control (xi = 0)
or in the treatment group (xi = 1), β0 is how much effect the control has on the progression
of the disease, and β1 indicates how much the new treatment has an effect compared to the
control. Thus, if we wanted to calculate the effect of the new treatment, then we would look
at β0 + β1. Equation (2) can be used to find πi,

log

(
πi

1− πi

)
= β0 + β1xi

πi
1− πi

= e(β0+β1xi)

πi =
e(β0+β1xi)

1 + e(β0+β1xi)
. (3)

The value πi
1−πi is the odds of “success”, or odds of the disease progressing. This value is

used to calculate the odds ratio, or the progression of the disease given that a patient was
in the treatment or control. As stated above xi is an indicator variable, thus, for xi = 1
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oddstreatment =
πi

1− πi
= eβ0+β1 ,

and for xi = 0

oddscontrol =
πi

1− πi
= eβ0 .

Therefore, ∆, or the odds ratio of disease progression if in the treatment as opposed to the
control group, is

∆ =
eβ0+β1

eβ0
= eβ1 .

Thus, eβ1 has become our new ∆ from above and is our parameter of interest. If our odds
ratio ∆ = 1, that means there is no difference between treatment and control group. If
∆ > 1, then the odds of disease progression are ∆ times more likely in patients in the
treatment group. Conversely, if ∆ < 1 then the odds of disease progression are ∆ times less
likely in patients in the treatment group.

Figure 3: This figure shows the indifference zone (δL, δU), and the six possible outcomes for
a clinical trial.

To find the correct sample size will test different sample sizes and decide based on where
the 95% posterior confidence interval for ∆ is with respect to the indifference zone [Figure 3].
The values for β0 and β1 are fixed such that the control is accepted, treatment is accepted or
they are equivalent. Along with these β′is, the treatment each patient xi receives is also fixed,
for i = 1, 2, . . . N . These values are used to calculate πi using (3). With π̂i we can generate
random fake data values for Yij from the binomial distribution, for j = 1, 2, . . . , Nrep. The
prior, likelihood, and each generated data vector Yj = (Y1j, Y2j, . . . , YNj), can be plugged

12



into Baye’s Theorem (1) and we can find the posterior distribution for ∆. Lastly, using this
posterior distribution, we can construct a 95% credible interval for ∆ and see where in the
indifference graph it lies. This is repeated for the Nrep datasets, and we can compute the
probability for each of the six outcomes by changing β0 and β1. We see how many times
our confidence interval lies in the correct zone of our graph, and the proportion of times this
occurs is our power. Thus N is selected based on our desired power. For example, if we set
β1 = 0 we are stating that there is no difference between the control and treatment. Then,
we create our fake data, posterior, and confidence interval and choose a sample size such
that the 95% confidence interval falls outside the indifference zone 5% of the time. Thus, we
have chosen a sample size for a specific Type I error, α.

4.2.2 Poisson Sample Size Calculation

The following is a summary of Hand (2011).
We will now assume the data follow a Poisson distribution.

Definition 4.1 Let µ > 0. A random variable Y follows a Poisson distribution if the
probability mass function of Y is,

f(y|µ) =
e−µµy

y!
where y = 0, 1, 2, . . .

The Poisson Distribution is a probability distribution for the counts of events that occur
randomly in a given interval of time when the mean is µ [12].

Let Xi be the number of adverse events in ni patient time. Also let λi be the rate for
the events for population i, where 0 < λi < 1 and i = 1, 2, because we will be looking at two
different treatments groups. Then, Xi ∼ Poisson(niλi), where

P (Xi = xi|λi) =
(niλi)

xi

xi!
e−niλi where xi = 0, 1, 2, . . . and λi > 1.

We must first decide on and define our prior distribution for λi. There are many options
for prior distributions for λi, however the gamma distribution is chosen because it is the
conjugate prior, and, thus, will make calculations easier. Thus, the prior for λi will be,

f(λi|ai, bi) =
baii

Γ(ai)
λai−1e−biλi where ai, bi > 0,

or λi ∼ Gamma(ai, bi). It follows that, using (1), the posterior density of λi is,
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ξ(λi|xi) =
fn(xi|λi) ξ(λi)∫
fn(xi|λi) ξ(λi) dλi

∝ f(xi|λi)ξ(λi) (4)

∝ baii
Γ(ai)

λai−1e−biλi
e−niλi(niλi)

xi

xi!

∝ λxi+ai−1e−λ(ni+bi) (5)

∝ (ni + bi)
(ai+xi)

Γ(ai + xi)
λxi+ai−1e−λ(ni+bi), (6)

and λi|xi ∼ Gamma(ai + xi, ni + bi). We are able to eliminate the constants during our
calculations, as seen in (4) and (5), because we know our resulting posterior distribution
must integrate to 1, and can thus add in the necessary constants, (6).

We have calculated our posterior distribution (6), however we don’t know what the values
ai and bi are. To determine these values we will use the Maximum Likelihood Estimation
Method, which is used to estimate unknown parameters. This method finds the values of our
unknown parameters that maximizes our likelihood function, because these values maximize
the likelihood of observing the data.

However, before we can calculate our likelihood function, we must first find the marginal
density of Xi. To find the marginal density of Xi, we integrate λi out of the joint density
of Xi and λi. We want to use the marginal density of Xi because λi is also an unknown
parameter and, thus, we don’t want our ai and bi to be in terms of λi. It follows that the
marginal density of Xi is,

m(xi|ai, bi) =

∫ ∞
0

P (Xi = xi|λi)f(λi|ai, bi) dλi

=

∫ ∞
0

baii
Γ(ai)

λai−1e−biλi
e−niλi(niλi)

xi

xi!
dλi

=
baii n

xi
i

Γ(ai)Γ(xi + 1)

∫ ∞
0

λxi+ai−1e−λ(ni+bi) dλi

=
baii n

xi
i

Γ(ai)Γ(xi + 1)

Γ(ai + xi)

(ni + bi)(ai+xi)

∫ ∞
0

(ni + bi)
(ai+xi)

Γ(ai + xi)
λxi+ai−1e−λ(ni+bi) dλi

=
Γ(ai + xi)

Γ(ai)(xi + 1)

(
bi

ni + bi

)ai ( ni
ni + bi

)xi
.

Given k independent trials with xij events, where i = 1, 2 and j = 1, 2, . . . , k, we can
now calculate the marginal likelihood,
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M(ai, bi) = m(xi1, xi2, . . . , xin|ai, bi)
= m(xi1|ai, bi)× · · · ×m(xin|ai, bi)

=
k∏
j=1

m(xij|ai, bi).

Instead of evaluating this product, it is common to use the log of the likelihood function
to make calculations easier. As stated above, the marginal maximum likelihood estimators
for ai and bi are the maximum values of the marginal likelihood, however the program used
to carry out this method minimizes rather than maximizes a given function. For that reason,
we must find the negative log of the marginal likelihood,

L(ai, bi) =
k∑
j=1

− log [m(xij|ai, bi)]

= − log

[
k∏
j=1

m(xij|ai, bi)

]

= −
k∑
j=1

log [m(xij|ai, bi)]

= −
k∑
j=1

log

[
Γ(ai + xi)

Γ(ai)(xi + 1)

(
bi

ni + bi

)ai ( ni
ni + bi

)xij]

= −
k∑
j=1

[log(Γ(ai + xi))− log(Γ(ai))− log(xi + 1) + ai log(bi)

− ai log(ni + bi) + xij log(ni)− xij log(ni + bi)]. (7)

Finally, using the equation above, we can use R or other mathematical programs to find
the marginal maximum likelihood estimators, or best values for âi and b̂i such that,

(âi, b̂i) = arg min{L(ai, bi)|xi1, . . . , xk}.

We now have all the necessary information to calculate our sample size.
When conducting Phase 2 clinical trials, we are interested in comparing the difference

between two treatments. Let λ be the rate for the placebo or control group, then let λθ
be the rate for the treatment group. It follows that if θ > 1, then our treatment is worse
than the control since there is a higher rate of adverse events, if θ = 1 then the two are
equal, and if θ < 1 then our treatment is better than the control. The variable θ serves the
same function as δ used in the logistic regression model, it represents the difference in the
two groups. In this method of determining sample size, we are looking to find the smallest
sample size n, given our parameter of interest θ, such that,

E{I[P (θ > θ0|x1, . . . xn) > 1− α]} ≥ 1− β. (8)

15



This equation is the expectation, or expected probability, that we will reject the null
hypothesis. The function I() is an indicator function, a function that equals either 1 or 0
based on certain criteria. Here, I() is 1 if we reject our null hypothesis, and 0 if we fail to
reject our null hypothesis.

Similar to the logistic regression sample size calculation done above, this calculation is
also simulation based. First, we must select a value for θ assuming that the alternative
hypothesis is true, and denote that value as θ∗. Using our value for θ∗ and prior distribution
for λ, (6), we generate fake data for our control and treatment group, where x1 ∼ Poisson(nλ)
and x2 ∼ Poisson(nλθ∗). We then use the Monte Carlo simulation to produce a posterior
probability P (θ > θ0|xi). The Monte Carlo simulation method randomly samples from our
generated data and calculates the proportion of times θ > θ0|xi. To use this method priors
must be determined for all parameters. Recall that λ ∼ Gamma(ai, bi), and we will select a
non-informative prior for θ, θ ∼ Gamma(0.01, 0.01).

Figure 4: This figure shows the difference between an informative and non-informative
gamma prior.

This gamma distribution has a mean of 1 and variance of 10. From the graph [4] we see
that there is a lot of weight at zero however the rest of the prior is relatively flat, indicating
that we do not have a lot of information about our parameter because the probability of any
value above 0 occurring is relatively equal. Comparing it to a more informative prior, it is
easier to see why this gamma distribution doesn’t provide much information.

Using the posterior probability, those with P (θ > θ0|x1, . . . , xn) > 1 − α are assigned a
value of 1, and others a 0 in a vector created, v. Taking the average over vector v we have
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an estimate of the average power. This process is repeated for different selected values of n,
and then a spline fit is used to find the sample size n that satisfies equation 8.

4.2.3 Example

In this example we will be looking at thromboembolisms, the formation of a clot in a blood
vessel that is released and plugs another blood vessel. We are specifically looking at this
occurrence in the mitral valve, which is between the left atrium and left ventricle in the
heart. CarboMedics mitral valves can be used to replace damaged mitral valves. The study
done was a case series, a study that follows a group of patients who have a similar diagnosis
and are undergoing the same treatment. We will only be looking at the data for the first
four series completed.

Using the data given in Table 2, we can optimize the marginal log-likelihood (7) to deter-
mine the MMLEs. Thus, the priors are λ1 ∼ Gamma(0.68, 4.22) and λ2 ∼ Gamma(1.75, 8.72).
Note that Time (n) are expressed in 0.1*patient*years.

First Four Seres
Events (x) Time (n)

16 43.1
12 58
0 67.7
6 80

Table 2: Thromboembolisms Data

We will now go over a calculation of the average power sample-size determination. We
would like to find the smallest sample size such that we can compare old and new Car-
boMedics mitral valves. If the new mitral valves are better than the old, then θ < 1. Thus,
the following are our hypotheses,

H0 : θ = 1 and Ha : θ < 1.

The following will be our prior distributions for the clinical trials,

θ ∼ Gamma(0.01, 0.01),

λ ∼ Gamma(0.68, 4.22).

Let θ∗ = .8, a possible value for theta assuming the alternative hypothesis is true. Lastly,
we choose a power of 80%, this is a common power to choose because it is strong, but doesn’t
require as big of a sample size for a power of 90% or 99%. Now, we can use simulation
methods to test the average power of several sample sizes, n, and will select the smallest n
for which we get an average power of 80%. Using R code we find that the smallest sample
size with a power of 80% is n ≈ 188.2 person years.
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Figure 5: The graph resulting from simulations showing the power on the y-axis, and
person×years×0.1 on the x-axis.

4.2.4 Limitations to the Bayesian Approach

The greatest limitation to using the Bayesian approach is having to design a prior distribution
for all unknown parameters. Using different priors can produce different results, meaning
that choosing the incorrect prior can compromise all analysis of results. Similarly, because
there are no set steps on how to create a prior, the one chosen and used by a researcher
could be considered unfit by another researcher. Thus, although the Bayesian approach is
useful in it’s ability to incorporate preexisting information, the process of actually creating a
distribution from that preexisting data can be difficult and could result in incorrect results.

There are times when many priors might be necessary, like when using a hierarchical
model, which makes not only choosing priors more labor intensive, but can also make analysis
computationally extensive. With more complex models, calculations are not only difficult,
but the difficulty can give room to more possible errors. There are, however, methods and
techniques being formulated to assist with these calculations. For example, the Markov
Chain Monte Carlo algorithm is a commonly used method.

5 Bayesian Adaptive Clinical Trials

Adaptive clinical trials are characterized by the adaptive features incorporated in their de-
sign. These adaptive features are planned changes in the design of the trial that occur at
interim points and are guided by the acquired data thus far. Interim analysis is the analysis
of data while the study is still in progress. It is important that any changes that happen
during a clinical trial are planned before any data are collected. Unplanned changes are ques-
tioned because they may introduce additional bias and compromise the legitimacy of results.
It is also important that changes made during a clinical trial are based on information from
the specific study, and not solely on external events. Some possible design modifications
that may be included in the design are dosage levels, total sample size of the study including
early termination, schedule of patient evaluation for data collection, etc.

There are clear advantages to adaptive experimental designs, and the most significant
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is that the allowance of mid-study adjustments decrease the time and resources needed to
determine the efficacy or futility of a treatment. Currently, it can take about 10 years,
and millions of dollars to bring a new drug into the market, however the amount of drug
development failures far outnumber the amount of successes. Thus, the costs of failed drug
development is far greater. Adaptive designs allow researchers to terminate unsuccessful
candidates earlier, while spending less money than required for other experimental designs.
Researchers can have predetermined stopping rules to protect patients from dangerous or
pointless treatments. Usual stopping rules include analysis that confirms superiority: there is
a clear benefit for the experimental group, inferiority: there is clear harm to an experimental
group, or futility, where no difference is seen. These are usually predefined statistically.
Additionally, adaptive clinical trials may reach a similar conclusion as non-adaptive clinical
trials but more efficiently, and may provide a better understanding of the drug being tested.
For example, dosages may be adjusted during a study, rather than having to design and
conduct a separate study for another dosage level.

There are also, however, disadvantages to the use of this experimental design. A major
concern is the abuse of the decreased amount of resources needed and speed of these studies,
as well as a lack of understanding of these new techniques. The worry is that researchers
will conduct statistically unsound adaptive studies to gain fast results, which could produce
incorrect results. The interim changes can introduce bias which can lead to false conclusions.
Similarly, the conduct flaws could also potentially end up hurting the participants or future
patients. The misuse of adaptive clinical trials can also waste additional resources because
trials that had flawed data would need to be conducted again. [3] [14]

5.1 Adaptive Clinical Trial with Poisson Outcomes

There are many different types of adaptive clinical trials, here we will be focusing on trials
that allow for sample size adjustments and early termination in Phase II Trials. The following
will be a continuation of a summary of Hand (2011).

Similar to the example in Section 4.2.3, count data of negative events will be used and
the data will follow a Poisson distribution. Thus the greater number of events indicates a
lack of efficacy in the treatment. Let yi be the number of occurrences of the event of interest
for the ith patient such that yi ∼ Poisson(λ) where λ represents the mean number of adverse
events for the ith patient. The parameter λ is a function of both the time each participant
was in the study and event rate θ.

This Phase II study will have two stages. After the first stage, the data will be analyzed to
determine possible changes in the second stage. The design will be outlined in the following
way; a max number, or threshold, of events will be predetermined for the first and second
trials as a way to measure efficacy and if the trial should be continued.

More formally stated, let r1 be the threshold number of events for the first stage, and r
the threshold number of events across the two stages. Then, r1 will determine if the trial
should continue to the second stage, and r will determine the efficiency of the treatment
after both stages. The first stage of this Phase II clinical trail could conclude in one of two
ways,

1. if s1 =
∑n1

i=1 yi ≥ r1 then the trial is stopped and we conclude that the treatment
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wasn’t effective,

2. if s1 =
∑n1

i=1 yi < r1 we would continue on to stage 2 of the treatment,

where s1 is the observed number of events over a period of patient time t1 and n1 is the
number of patients in the first stage. If the clinical trial continues on to the second stage,
n2 patients are enrolled. Then, again, the two possible conclusions are,

1. if s =
∑n

i=1 yi ≥ r then the trial is stopped and we conclude that the treatment wasn’t
effective,

2. otherwise we continue on to Phase III,

where s = s1 +s2 is the total number of observed events over time t = t1 +t2, and n = n1 +n2

is the total sample size across both stages.
In a two stage Phase II adaptive clinical trial, we can specify two rather than one prior for

θ, a design prior and an analysis prior. The analysis prior is used in the actual analysis of the
data, and reflects the amount of uncertainty about the treatment and some prior knowledge.
The analysis prior is usually noninformative to allow the data to provide the most influence
on the posterior distribution. On the other hand, the design prior is more informative
and incorporates more prior knowledge. This prior is used to calculate the prior predictive
distribution of the data, and is usually centered around the alternative hypothesis value(s).
The design prior is used to calculate a sample size that would result in a large posterior
probability of rejecting the null hypothesis, under the assumption that the alternative is
true. Care must be taken when creating the design prior because they are very influential
on the sample sizes. If the design prior strongly supports the alternative hypothesis, r and
t will be smaller. And vice versa, the less support the design has for the alternative, the
greater r and t will be.

Just as above, we will use the conjugate gamma distribution to make calculations simpler.
A more informative gamma will be used for the design prior, ξD(θ) with the parameters
(aD, bD), and a noninformative gamma will be used for the analysis prior, ξA(θ) with the
parameters (aA, bA). The analysis prior will be centered around the placebo, or control
treatment, rate (θ0). Thus, S1 ∼ Poisson(t1θ) where

f(s1|t1) =
(t1θ)

s1

(s1)!
e(−t1θ) for s1 = 1, 2, . . . ,∞.

The variable S1 is the number of observed events in the first stage.
Using this equation we can calculate the respective posterior distributions for the analysis

prior. The calculations will be similar to (6) and will yield another gamma distribution;
θ|S1 ∼ Gamma(s1 + aA, t1 + bA). Using the design prior, the prior predictive density of S1

can be calculated. Note that this is similar to finding the marginal density of S1,
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mD(s1) =

∫ ∞
0

ξD(θ)f(s1|θ) dθ

=

∫ ∞
0

(bD)aD

Γ(aD)
θaD−1e−θbD

e−t1θ(t1θ)
s1

s1!
dθ

=
(bD)aD(t1)s1

Γ(aD)Γ(s1 + 1)

∫ ∞
0

θs1+aD−1e−θ(t1+bD) dθ

=
(bD)aD(t1)s1

Γ(aD)Γ(s1 + 1)

Γ(aD + s1)

(t1 + bD)(aD+s1)

∫ ∞
0

(t1 + bD)(aD+s1)

Γ(aD + s1)
θs1+aD−1e−θ(t1+bD) dθ

=
Γ(aD + s1)

Γ(aD)(s1 + 1)

(
bD

t1 + bD

)aD ( t1
t1 + bD

)s1
where ξD(θ) is the design prior and f(s1|θ) is the Poisson likelihood of S1.

The above are all used during the first stage of the clinical trial. Suppose that the first
stage has ended, therefore s1 and t1 are known. We have determined that we may continue
on to the second stage of the clinical trial, or s1 < r1. We can update our Poisson probability
mass function using the new data,

f(s|S1 = s1) =
((t− t1)θ)(s−s1)

(s− s1)!
e−(t−t1)θ for s = s1, (s1 + 1), . . . ,∞. (9)

as well as our analysis prior to a gamma with the parameters s1 + aA and t1 + bA. Note
that the gamma distribution is the calculated posterior distribution for the original analysis
prior. The posterior distribution for the second stage analysis prior is a gamma distribution
with parameters s + aA and t + bA. The prior predictive distribution of S using the design
prior is

mD(s) =

∫ ∞
0

ξD(θ|s1)f(s|θ, s1) dθ

=
Γ(aD + s)

Γ(aD + s1)(s− s1)!

(bD + t1)(s1+aD)(t− t1)(s−s1)

(n+ bD)(s+aD)
.

where ξD(θ|s1) is the improved design prior and f(s|θ, s1) is the likelihood of the second
stage sampling distribution (9).

We have derived all of the necessary equations needed to carry out the analysis once
data is collected, however before the first stage of this clinical trial begins, we must find t1,
patient time, and r1, the first stage threshold. To find t1, we will find the smallest patient
time such that for all t̃1 ≥ t1

PD[F (θA; aA + s1, bA + t̃1) ≥ λ1] ≥ γ1. (10)
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The function PD is the predictive density calculated above, and F (·) is the distribution
function for the posterior distributions for the first stage. Let λ1,γ1 ∈ (0, 1), where λ1 is
comparable to a confidence level, and γ1 is comparable to power. This equation is looking
at the predicted probability that the probability of θA being outside the confidence level λ1

is greater than or equal to γ1. We can see that (10) bears a resemblance to (8).
Once we have determined t1, r1 can be found by maximizing

F (θA; aA + s1, bA + t1) ≥ λ1

over S1, or r1 = s∗1 + 1 where

s∗1 = max(s1 ∈ 0, 1, 2, . . . ,∞ : F (θA; aA + s1, bA + t1) ≥ λ1).

Once the values for these parameters are found, the first stage of the clinical trial may begin.
At the end of the first stage, the observed number of events s1 will be known, and calculations
to determine whether we should continue with the second stage can be computed.

Similar to t1 and r1, to find the t, the total patient time, involves finding the smallest t,
for all t̃ ≥ t such that

PD[F (θA; aA + s− s1, bA + t̃− t1) ≥ λ2] ≥ γ2 (11)

and r is found by maximizing

s∗ = max(s1 ∈ 0, 1, 2, . . . ,∞ : F (θA; aA + s− s1, bA + t− t1) ≥ λ2)

when r = s∗ + 1 and t is known. Depending on the calculated r and t values, the second
stage of the clinical trial may now begin.

5.2 Example

In this example we will not analyze any data, but simulate how we would find the desired
sample size and threshold values.

Primary humoral immunodeficiency is a life threatening condition that results from im-
paired antibody production because of a defect in the number or function of B-cells or
antibody-mediated immunity. Individuals with this disease often have serious upper and
lower respiratory bacterial infections. To treat this disease, Intravenous Immune Globulin
is commonly used. It is a blood product with blood plasma that contain antibodies. We
would like to demonstrate the effectiveness of this treatment. The FDA recommends the
study have a significance level of 0.01 that shows a serious infection rate of less than 1 per
person-year in adults. Using these guidelines, our adaptive two stage Phase II design will
have the following hypotheses,

H0 : θ0 = 1,

HA : θa = 0.5.

First we must define our design and analysis priors. Instead of just using one, we will
demonstrate the effect of several on our parameter estimation calculations. In order to make
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Figure 6: This graph shows the possible design priors that will be used in our calculations

sure the design prior is informative, the variance will be kept small and fixed, bD = 1000.
Although this design prior does support the alternative hypothesis, it does not do so very
strongly as to let our conclusions be more influenced by the data. The first stage parameter
values must be estimated first, and we will let λ1 = .99, our confidence level, and γ1 = .8 be
our power for our calculations.

aA = 0.04, bA = 0.01 aA = 0.4, bA = 0.1

aD t1 r1 t1 r1

525 34.4 23 36 24
550 39.4 27 41 28
575 44.2 31 55.8 32
600 51.1 37 53 38
625 59.8 44 61.3 45

Table 3: Calculated first stage sample sizes for different analysis and design priors, for
bD = 1000, λ1 = .99, and γ1 = .8

From [Table 3], we can see that increasing aD increases the sample size needed. This makes
sense because if we compare the graphs of the different design priors, [Figure 6], we see that
increasing aD moves the mean closer to θ = 1, and it will require a greater sample size to
detect a smaller difference between the two treatments.

Given these values for the first stage parameters, we will calculate our second stage
parameter values for various values of s1 and for the various priors shown in [Table 3]. This
will allow us to see the effect that the first stage values have on the second stage of our
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clinical trial. Table 4 shows the total sample size t and threshold r.

aA = 0.04, bA = 0.01 aA = 0.4, bA = 0.1

99% CI 99% CI

aD s1 t1 r1 Lower Upper s1 t1 r1 Lower Upper
22 39.4 27 0.299 0.945 23 41 28 0.305 0.939
23 39.4 27 0.318 0.977 24 41 28 0.323 0.970

550 24 39.4 27 0.336 1.009 25 41 28 0.341 1.000
25 39.4 27 0.355 1.041 26 41 28 0.359 1.031
26 46.7 33 0.374 1.073 27 48.2 34 0.377 1.061

27 44.3 31 0.349 0.982 28 45.8 32 0.355 0.977
575 28 44.3 31 0.367 1.010 29 45.8 32 0.371 1.004

29 44.3 31 0.384 1.038 30 45.8 32 0.388 1.031
30 52.7 38 0.401 1.066 31 54.2 39 0.404 1.058

33 51.5 37 0.390 0.989 34 53 38 0.393 0.983
600 34 51.5 37 0.405 1.012 35 53 38 0.408 1.006

35 51.5 37 0.420 1.036 36 53 38 0.423 1.029
36 61 45 0.435 1.059 37 62.5 46 0.438 1.052

Table 4: This table shows the stage two sample sizes and thresholds, as well as the 99%
confidence intervals on θ, for bD = 1000, λ1 = .99, and γ1 = .8

We see that for aA = 0.04, bA = 0.01, and aD = 550, that for s1 ≤ 25, the sample size t
is equal to the first stage sample size t, and the total threshold r is equal to the first stage
threshold r1. This indicates that the clinical trial should terminate after the first stage. The
reason why we would terminate early even though s1 < r1 is because we have significant
evidence that supports the alternative hypothesis, and the second stage of the clinical trial
is not needed. On the other hand, looking at ad = 575, for s1 ≥ 30, the second stage of the
clinical trial will continue with the indicated r and t values.

6 Conclusion

Although many methods for sample size determination exist, we can see that the Bayesian
methods provide more flexibility and variety in the clinical trial design process. This ap-
proach allows the incorporation of information that is already known, as well as the uncer-
tainty of that information. Even if no information exists, the Bayesian method should still be
used because no values are being estimated, and the information from the study conducted
can be later used to form a prior distribution. Additionally, converting from a Frequentist
inference to Bayesian can be difficult, thus sticking to Bayesian will allow the results of one
study to be made into a prior for the next.
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We can also see that useful components of the Frequentist approach, like significance
level and power, can be incorporated in our analysis. Additionally, with the incorporation of
adaptive elements, the trial can be adjusted based on information that may not have been
completely known before the trial began. And the added ability to terminate trials early not
only saves time but also resources. The greatest reservation to using this approach is having
to determine a prior distributions, however as Bayesian methods continue to become more
common, more methods will be produced to help with this process.
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