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Abstract

The purpose of this paper is to explore the theory behind expression parsing which will then be applied

for use in function evaluation. This theory driven function evaluator will then be used to calculate results

of complex-valued functions, specifically, complex mappings. After calculating the values of a complex

mapping, the domain of the mapping can then be colored according to each point’s image location in the

complex-plane, which will be represented by a 12-part color wheel. The resulting coloring helps visualize

the way in which a complex mapping reshapes the entire complex domain. A basic understanding of

complex numbers and programming is recommended, but not required.

Introduction

Expression parsing is an important area of study for computer scientists and modern mathematicians alike.

Convincing a computer to evaluate a classically written out equation or function can be challenging, since

computers don’t inherently comprehend language or symbols. Instead, interpretations of those characters

are remembered in the memory so that they can be understood in their most basic form. To fully parse an

expression, the computer must have an interpretation for every acceptable character, where we accept any

character that one might find in an equation or function. Once we parse an expression into a computer, it

can be evaluated. For our purposes, we will be concerned only with mathematical expressions.

As humans, we can look at an expression non-linearly and evaluate it based on classical order of operations,

essentially parsing and evaluating all in one step. However, since computers have no way of knowing what

expression was inputted without looking at each individual character, a program must parse expressions

linearly before moving onto evaluation. Thus, to evaluate a parsed expression on the computer, we will need

to use methods that are counter-intuitive and would be cumbersome if used when evaluating expressions by

hand. One of the most common methods for expression parsing is the Shunting Yard Algorithm, or SYA. To
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properly understand the SYA, we must first understand postfix and infix notation of expressions [6].

As an application of expression parsing, we can use these methods to evaluate complex-valued functions.

The results of these complex calculations will then be interpreted as colors, and used to visualize the effects

of a particular complex mapping on the domain itself. Frank Farris, in his review of a complex analysis

book, describes this method in detail, and provides a few examples [3].

1 Overview of Expression Parsing

Before we can begin parsing an expression, we must understand a few basic theories that we will build our

application upon. Namely, we will discuss postfix notation, tokens, tokenization, stacks, arrays, parsing, and

finally the SYA. Tokenization and the SYA will arrange tokens into postfix notation, using stacks to parse

a function and arrays to output it the resulting expression.

1.1 Infix and Postfix Expressions

Our first building block will be the idea of Postfix, or Reverse Polish, Notation. To understand what Postfix

really means, we have to first look at the way we traditionally represent equations. Infix notation is the

classical way of representing expressions.

Definition 1.1 (Infix Notation) Functions are written such that each operator appears in-between its

operands. For example: “2 · 2− 3”.

Alternatively, we are interested in Postfix notation.

Definition 1.2 (Postfix Notation) Functions are written such that each operator appears after its operands.

For example: “2 2 · 3 −”.

Postfix notation is a standard way of representing expressions, but since we’re accustomed to seeing them

written out in infix notation, this style can be hard for humans to interpret. When the expressions become

more complex they will be more difficult, as we might have something like “531 ·+2+”, which can’t be easily

interpreted as individual expressions, just based on pattern recognition. With this particular expression, the

infix equivalent would be “5 + 3 · 1 + 2”, or “((5 + (3 · 1)) + 2)”, which can be interpreted by humans much

more quickly than its postfix equivalent. So why would we ever care about postfix, since it seems to be a

less intuitive way of representing expressions? Well, the biggest reason is that computers have no inherent

understanding of the order of operations. The only way to properly preserve an infix expression’s order

of operations would be to place parentheses around every sub-expression so that the computer understood
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when and what to evaluate, as seen above. Placing the heavy burden of proper parenthesis entirely on

the user is poor design, and doesn’t make a particularly robust algorithm. Postfix notation requires no

parentheses, because the order of operations is written directly into the notation when understood literally.

When evaluating a postfix expression, the computer can simply read through the expression and evaluate

whenever it reaches an operator. If we were to evaluate our example operator by operator, we would follow

the steps outlined in Postfix Array 1.

2 2 · 3 −

2 2 · 3 −

4 3 −

4 3 −

1

Figure 1: Postfix Evaluation

Postfix is all well and good; but without an algorithm for its creation, we will have nothing for the

computer to evaluate, regardless of its notation.

1.2 Tokenization

With evaluation in mind, we must utilize tokens so that we can represent a given equation within our

application.

Definition 1.3 (Token) A token is a string of characters that, when analyzed together, have a unique,

pre-defined meaning.

We can now think of an expression as a string of tokens, or as a chain of boxcars all linked to one another,

each containing a valuable piece of the given equation. The process of breaking an equation up into its

individual tokens is called Tokenization. When we tokenize an expression, we are simply checking to see if a

given character or group of characters exists in a pre-defined list of tokens. If the token doesn’t exist in our

list, we can choose to ignore said token, or we can attempt to broaden the scope of the individual token to

include surrounding characters before determining whether or not we have a valid token. For example, if we

have some expression f(x) = sin(xˆ2), we tokenize the right side into 6 tokens: ‘sin ’, ‘(’ , ‘x’, ‘ˆ’, ‘2’, and

‘)’. We can see that each individual token plays an important role in the overall definition of our function,

and also that if we had simply created a token for every character, we would be left with a token “s,” a

token “i,” and a token “n,” which would not help us at all in the evaluation of this expression. Once we
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have successfully tokenized an expression, we can use an algorithm to shunt each token to its proper place,

based on the precedence table found in Table 3. However, before getting to the algorithm itself, we could

benefit from a general understanding of parsing.

1.3 Parsing

When representing a function in a computer-friendly manner, we have to preserve the syntactical relationships

between tokens. This method of preservation and storage is called Parsing. Based on Harvey Abramson’s

definition found in [1], we define Parsing below.

Definition 1.4 (Parsing) Parsing is the process by which a string of tokens is interpreted by a computer

such that the syntactical relationships between them are preserved.

We can utilize a tree data-structure when understanding Parsing, creating a binary tree that wholly represents

our tokenized input. For instance, given an expression “2 · 2 − 3”, we would have a parse tree like the one

found in Figure 2.

−

3

·

22

Figure 2: Parse Tree for “2 · 2− 3”

This tree dutifully represents our entire expression, regardless of any notational representations. Each

left or right child-node represents the first or second operand respectively, with their parent being some

operation. Representing our equation this way, we can create expressions in Infix and Postfix notation

easily, based on when we consider the children of a parent node. We can use different tree traversal methods

to create different notational representations. If we want infix notation, we can traverse the tree by taking

the left child of every node until we reach a leaf. In Figure 2, this would be equivalent to reaching the

left-most “2,” outputting it, then we would output the other child of the ·, which is to say the other two,

followed by the operator itself. The resulting output is “2 2 ·”, which is the postfix representation of “2 · 2.”

Once we are at a leaf, we output that leaf, followed by its parent, followed by its sibling. We can then treat

that parent as our new left-most leaf, and repeat the process. If we want postfix notation instead of infix

notation, we can output the second child before the parent. Regardless, we can clearly see the way in which

each token relates to the others. Luckily, for our application, we won’t have to represent our equations in

this way. Instead, we can use two different, more rigid data-structures, and a convenient algorithm.
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1.4 Stacks and Arrays

First, a formal definition of stacks.

Definition 1.5 (Stack) A stack is a linked-list data structure that preserves order, and adheres to the first

in-last out paradigm.

To better illustrate the concept of a stack, imagine a stack of dining chairs. Since each chair is stacked on

top of another, removing any but the top chair would be difficult. Suppose we have three chairs, one colored

red, another blue, and the last green. If we place the red chair on the ground, we have essentially placed

it on top of an empty stack. If we then stack the green and blue chairs on top of the red chair, we get a

different top to our stack. This is important, because if we now want to use the blue chair, we can simply

remove it from the top and use it. But if we wanted to use the green or red chair, we would first have to

remove the blue chair and either use it or set it aside, before being able to reach the green chair below it.

To use the red chair, we would repeat the process, popping the top chair off the stack until we get to the

chair we care about. Stacks in the context of data structures are equivalent to these stacks of chairs, where

we can only access the top, but each chair or bit of information is its own unique portion of the stack.

Arrays are a much simpler concept, conforming to the classic mathematical definition of matrices, except

that our cells can contain anything we want.

Now that we understand the stack data structure, we can look at how we will utilize it to evaluate an

expression. Since a stack can hold any number of tokens, we could theoretically use one single stack that

holds our entire expression and use this for evaluation, but we would have difficulty maintaining syntactical

relationships. Instead, we can use two unique stacks, one that holds operations and one that holds numbers.

Unfortunately, as discussed previously, the computer doesn’t inherently understand whether a token is a

number or operator, so we will have to interpret each token before we can push it onto the appropriate

stack. Fortunately for us, most modern day programming languages come with some amount of built-

in interpretation that makes translation from a character or token to a number simple, by automatically

parsing entire numbers, leaving behind only the operators. This automatic parsing matters to us, because

without it, we would have to read numbers like we read symbols. That is to say, we would parse the number

312 as 3 separate characters, and would have to ensure it was turned into the token 312, and not 3 tokens 3,1,

and 2. When tokenizing operators, we must store them as text, because mathematical operations happen

behind the scenes, so we can’t store an actual operation per se. This becomes more apparent when we

include operators that don’t have explicit symbols such as trigonometric functions, because one token must

include multiple letters. However, since we know the only remaining tokens in our expression are operators,
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then assuming we have tokenized them correctly (i.e. pulling out the entirety of “sin ” and not individual

letters), we can push them all onto the operator stack. Now that we have our two stacks established, we can

look specifically at how to parse an expression using the SYA.

2 Infix-Postfix Conversion Techniques

When parsing an expression for conversion we will have two stacks: an operator stack, and a numerical

stack. Since we must evaluate an expression based on order of operations, we require an operator precedence

table so the computer will know when to add operators to the stack, and not to. Refer to Table 3 for

the precedence table, based on David Guichard’s notes on data structures [4]. Using the two stacks and

precedence table, we can easily convert an infix expression to a postfix expression.

2.1 On-the-fly Evaluation

To convert from infix to postfix notation, we require a precedence table that will tell the program which

operators can be pushed on top of the operator stack, depending on the stack’s current contents. If an

incoming operator has a lower precedence, i.e. false on the Precedence Table in Table 3, then we must

evaluate our stacks until we can push our new operator.

on stack

incoming

+ − · / ˆ (

+ F F F F F T

− F F F F F T

· T T F F F T

/ T T F F F T

ˆ T T F F T T

( T T T T T T

) F F F F F T

Figure 3: Precedence Table for Binary Operators

If we’re given an expression in infix notation, we have to find a way of interpreting this input and

converting it into postfix notation, so that we can avoid having order of operations. Given a simple expression,

“(3 − 1) · 2”, we can place each token onto either a number or an operator stack. We begin with a left
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3

1

(a) Number Stack

−
(

(b) Operator Stack

Figure 4: Number and Operator Stacks

2

(a) Number Stack (b) Operator Stack

Figure 5: Number and Operator Stacks

parenthesis, which we know is technically an operator, so we place it on the top of our empty operator stack.

Our input is now “3 − 1) · 2”, and we have a 3 at the front of our input, so we know we must push 3 onto

our number stack. Following the 3, we have a −, which we push onto the operator stack, because of its

precedence over ‘(‘, and then we push 1 onto the number stack. Our stacks now look like those in Figure 4.

Now our input is “) · 2”, and we’re met with a right parenthesis. We know that in infix notation, a right

parenthesis symbols the end of a block of evaluations that are to be completed before anything else. We

need to adhere to this fact, so we don’t push the right parenthesis onto our stack, and instead evaluate our

current stack. We see that our number stack contains “3” and “1′′, so we pop both of these off of the top,

and pop the top operator, which is −. We know this means to evaluate “3 1 −”, and push the resulting 2

onto our number stack. Our stack now looks like Figure 5, and our remaining input is “·2”. We can now

push the · onto our operator stack, and the 2 onto our number stack. Our input is now blank, and our stacks

look like Figure 6.

Since our input is blank, we know it’s time to finish evaluating the expression based on the remaining

tokens in our stacks. Since our operator stack’s top element is now a ‘·’, we know to pop the top 2 numbers

from our number stack, 2 and 2, and evaluate 2 2 ·. This evaluation results in a 4, which is placed back onto

our number stack. Our stacks now look like Figure 7.

4

(a) Number Stack (b) Operator Stack

Figure 7: Number and Operator Stacks

2

2

(a) Number Stack

·

(b) Operator Stack

Figure 6: Number and Operator Stacks
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Since the operator stack is empty, we look at the number stack and notice that it contains a single

number, 4, which we now know to be the result of our expression. If we were left with multiple numbers on

the number stack, we would know there was an input error. Similarly, if we had a single number left on the

number stack with a binary operator left on the operator stack, we would know an input error occurred. The

algorithm described above is known as the Shunting Yard Algorithm, because the algorithm handles tokens

the same way a railroad shunting yard handles incoming trains. Both assign meaning to each individual

car or token, then place it onto the proper track or stack based on its assigned meaning and the yard’s

contents. However, note that during the process we evaluated the contents of our operator and number

stack, replacing values on the number stack with the result of an evaluated sub-expressions. If we are faced

with an expression containing variables, we can’t possibly ask the computer to evaluate the result of “x+2”,

and therefore must use a different strategy.

2.2 Conversion of Variables

We can see in the previous example we evaluated our expression as necessary to preserve the order of

operations, but if our expression contains variables, this method breaks down. To get around this problem,

we can output a given sub-expression, instead of attempting to evaluate it. By outputting sub-expressions in

this way, we can store the function in a computer-friendly format without compromising accuracy or syntax.

Another point to consider, is that by parsing variables into our application, we can drastically cut down on

computing time, because we aren’t required to re-parse our expression for every new value of x. We can now

use the SYA on a simple function, f(x) = x · 2 − 3. Figures 8a, 8b, 8c, and 8d illustrate the way in which

the string “x · 2− 3” can be turned into a postfix equation array.
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−

Incoming

2

x

Number Stack

·

Operator Stack
Output Array

(a) First Output Step

Incoming
Number Stack

Operator Stack

2 x ·

num var bop

Output Array

(b) First Output Step Complete

end

Incoming

3

Number Stack

−

Operator Stack

2 x ·

num var bop

Output Array

(c) Second Output Step

end

Incoming
Number Stack Operator Stack

2 x · 3 −

num var bop num bop

Output Array

(d) Second Output Step Completed

This string of characters is thus stored in our application as an array representing the inputted expression.

Our array represents this function in Postfix notation, because the computer can evaluate the expression

literally and linearly based on a postfix representation. Now that we can convert an equation from human

format to computer format, we can look at ways of using these representations to evaluate functions of

variables within the computer.

3 Evaluating Functions

Now that we have a way to represent expressions within a software application, we can use our previously

established algorithms to evaluate them. We can eventually use these same techniques to calculate functions

of variables.

3.1 Numerical Expression Evaluation

Suppose we have an expression, say “2 · 2− 3” that we want to represent programmatically. We would begin

by using the SYA to create a postfix expression. This expression is relatively simple, and doesn’t require

many steps, the first of which can be seen in Figure 9.
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2

2

(a) Number Stack

·

(b) Operator Stack

Figure 9: Number and Operator Stacks

However, an astute observer might note that our stacks do not contain the entire expression currently.

We still have “−3” left of our expression that isn’t currently accounted for. This is because according to the

Precedence Table in Table 3, we cannot push a “−” onto a “·”, which means we have to flush our stacks until

“−” has a higher precedence than whatever exists on the stack. In this case, we will evaluate the current

contents of our stacks, and treat the result as a new number. This is to say we will now have stacks and

output that look like those found in Figure 10.

4

(a) Number Stack (b) Operator Stack

3 −

(c) Input

Figure 10: Number and Operator Stacks with Input

The algorithm is now faced with a singularly populated number stack and an empty operator stack,

which means we can simply shove everything else onto our stacks. We now reach the end of our input, and

have 2 numbers with a binary operator. So we pop both numbers, 3 followed by 4, and our operator, −, and

know to evaluate “4 3 −” or 4− 3, which leaves us with a final answer of 1, which is now the only element

on any stack, as illustrated in Figure 11.

1

(a) Number Stack (b) Operator Stack (c) Input

Figure 11: Number and Operator Stacks with Input

This application of the SYA works well for evaluating purely numerical expressions, but we can’t always

evaluate “on-the-fly”. Thus we have to use an output based model of the SYA, instead of an evaluation based

model. Below is a re-work of the above example, using output instead of evaluation for stack de-population.

2

2

(a) Number Stack

·

(b) Operator Stack

Figure 12: Number and Operator Stacks
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If we want to store the expression in its entirity, we can’t simply evaluate 2 · 2 and shove the value back

onto the stack, because we would lose part of the expression. If we place each token into an array, in postfix

notation, we can preserve our expression for later evaluation. In this case, we would pop both of our 2’s,

and the ·, and place them into the first 3 cells of an array, which will look like Figure 13. We then push the

remaining “+ 2” onto their appropriate stacks, before reaching the end of our input, at which point we pop

them and place them into the array.

(a) Number Stack (b) Operator Stack

− 3

(c) Input

2 2 ·

(d) Output

Figure 13: Number, Operator Stacks, Input & Output

We now push our input onto stacks, reach the end of our input, pop everything off of our stacks, and

place the now parsed input into the array. This results in the following postfix expression as an array that

looks like the one in Figure 14

2 2 · 3 −

Figure 14: Postfix Array

While this array can be interpreted easily by a human, who would note that it contains 3 numbers with

2 binary operators, and likely knows what each symbol implies. Unfortunately, computers don’t have any

inherent interpretation of these characters, so providing flags or character classes to go along with each token

would be useful. With this in mind, we can create an array with 2 rows, and keep track of what each symbol

in each position represents. The resulting array will look like the one found in Figure 15, where num stands

for numbers, and bop holds the place of binary operators.

2 2 · 3 −

num num bop num bop

Figure 15: Postfix Array

3.2 Accounting for Variables

We have now completed examples of the SYA using numbers, but what if we want to store a function that

uses variables instead of literals. With our Array model of equation storage, there is practically no difference
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between a variable and a number. However, we want to keep track of which position in the array is a

pre-defined number and which is supposed to be a variable. Using the idea of a 2-dimensional array, we can

add new flags varX or varY to ensure we know precisely where our equation has variables. Now, suppose

we are given an expression, say “xˆ2− yˆ2”. We can place all of “x ˆ2” onto stacks before being forced to

shunt this subexpression to our array as seen in Figure 17. We can then push the remaining input onto each

token’s respective stack, not needing to flush the stacks. After reaching the end of our input, we will have

stacks and a postfix array that look like those in Figure 16.

2

y

(a) Number Stack

∧

−

(b) Operator Stack

x 2 ∧

(c) Output

Figure 16: Number, Operator Stacks, & Output

We then reach the end of the expression, and output the stacks to our array, which will now look like

Figure 18.

x 2 ˆ

varX num bop

Figure 17: Partial Postfix Array

x 2 ∧ y 2 ∧ −

varX num bop varY num bop bop

Figure 18: Complete Postfix Array

This is now the entire expression converted from infix to postfix while accounting for the use of variables.

This method will be used for our purposes; however, there are other ways we can represent an expression

within a computer. We can instead use a relatively basic binary tree to represent our entire function, or a

parse tree, like the one found in Figure 2. Using the previous expression, “xˆ2− yˆ2”, we can create a parse

tree where each node represents a token of the expression. With this model, we can store flags like in the

array model, but we also have much more flexibility for storing syntactical information. Since this method

of expression parsing is simply a new model of storage, we can use the SYA to help us create our tree. We

therefore proceed exactly as with the previous example, but when prompted to flush the stacks, instead of
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outputting to a postfix array, we output to a binary tree. The first output would then look like the tree in

Figure 19, with empty stacks and the remaining input.

∧

2x

(a) Parse Tree for “xˆ2”

− y ∧ 2

(b) Remaining Input as Array

Figure 19: Parse Tree & Input

We now continue with the SYA, placing an indicator or index Tn back onto the number stack so that we

can preserve order of operations, and keep track of sub-trees. With the indicator in place, we run the rest

of the input through the algorithm without having to flush the stacks. Our stacks and tree will look like

Figure 20.

2

y

T1

(a) Number Stack

∧

−

(b) Operator Stack

∧

2x

(c) Partial Parse Tree, T1

Figure 20: Number, Operator Stacks, & Parse Tree

Now that we’ve reached the end of our input, we flush our stacks to our storage model, but we now must

create a tree for each sub-expression. That is to say, we pop the ∧, the 2, and the y from our stacks, and

place them into tree T2, which we place onto the number stack. We now have 2 “numbers” on our number

stack, and one remaining operator, so we create another tree using T1, T2, and −. The process will result in

empty stacks, and 3 sub-trees, looking like those in Figure 21.

∧

2x

(a) Parse Tree, T1

−

T2T1

(b) Parse Tree, T3

∧

2y

(c) Parse Tree, T2

Figure 21: Three Parse Trees

We can combine the trees to create on large parse tree, as seen in Figure 22, or leave the sub-trees as-is,

since we aren’t losing or gaining any information either way.
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−

∧

2x

∧

2y

Figure 22: Concatenated Parse Tree

These two methods both have their merits, but as stated earlier, we will be mainly focusing on a postfix

array model of storage. With that in mind, we will now look our the main motivation for storing expressions

in this form: function evaluation.

3.3 Function Evaluation

By storing a postfix array within a computer’s memory, we’re giving it the ability to read through the array

and calculate the result relatively quickly. If we have variables in the postfix array, we have to replace them

before we can evaluate the stored expression. However, what if we want to plot or visualize a function

in some way? We’ll need to replace the expression’s variables hundreds, thousands, even millions of times

depending on the complexity of our equation and the domain. When we take our postfix array, replace the

varX and varY slots with specific values, evaluate the expression, and receive a result, we’re left with an

array containing a single element: the result. However, if we have to evaluate our postfix expression millions

of times, erasing it on the first run won’t get us very far. Instead, we are forced to copy the array every time

we want to evaluate the expression at for a specific value of x or y. This allows us to parallelize the process

of calculation though, which can drastically speed up total time required to plot or visualize a function. The

entire process in code would look something like the code found in Figure 23.
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Parse Expression

For x = 1 .. n

For y = 1 .. k

tempArray = PostfixArray

Evaluate tempArray

Plot Result

.

.

.

End For

End For

Figure 23: Pseudo-Code for Repeated Evaluation

When actually evaluating a given expression, we can linearly proceed through the associated postfix array

with substituted variable values until we reach our first bop flag. When we run into this flag, we grab the

preceding two numbers j1 and j2, that are guaranteed to exist by the SYA, or else the algorithm would have

failed. We then note the definition of whatever binary operator token is in that slot, and evaluate j1bopj2,

placing the result back into the array, replacing the exact 3 slots we just vacated with our 1 result. This

ensures we don’t lose any of the syntactical relationships previously analyzed. Figure 24 shows how this

process works on a small scale.

j1 j2 bop etc

num num bop etc

j1bopj2 etc

num etc

Figure 24: Postfix Array Evaluation

We can now evaluate a given function of variables as many times as needed to accurately visualize or

plot it. For our purposes, we will be looking at ways to visualize the complex plane, and functions of the

form φ : C→ C.
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4 Complex Mapping

Any given complex number z is made up of a real part and an imaginary part, which is to say that any

complex number z = a+ bi. We can then consider the complex plane, made of a real axis and an imaginary

axis, where any given z can be plotted to the point (a, b). Based on this understanding, we can look at the

way in which a function f (z) : C→ C maps a section of the complex plane.

4.1 Mapping a Point

Even though each individual complex number z is made up of a real half and an imaginary half, when we

use a function to map the points, we must map the entire number z to an entirely new complex number c1.

We now have a point (a, b) in the domain of f(z), and associated point (u, v) in the co-domain of f . This

is to say, our function f maps the point (a, b) to the point (u, v), both in the complex plane. For example,

if we have some function f(z) = z2, we would have f(a + bi) = (a + bi)2. If we expand this equation and

reform it into its real and imaginary parts, we get f(a + bi) = (a2 − b2) + (2ab)i = f(z). To see how this

function maps the point (1, 1), which is to say f(1 + i), see figures 25a and 25b.

(a) 1 + i represented in the complex plane (b) f(1 + i) represented in the complex plane

Figure 25: Mapping a Point

Now that we’ve mapped a single point using a complex function, we should look at what happens to

multiple points. Since our mapping is essentially a function of two variables, we can look at f(a, b) for

a number of points to try and understand how exactly the mapping manifests itself in the plane. This

technique is similar to graphing a few values for some function f(x) to understand its effect on x. If we look

at figures 26a and 26b, we can see how this mapping moves these particular points around the plane, but it

doesn’t give us a particularly good understanding of the entire function.
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(a) Three points represented in the complex plane (b) f(a, b) on 3 points represented in the complex plane

Figure 26: Three arbitrary points mapped by f(a, b) = (a+ bi)2

We need a better way of representing our mapping, because simply mapping point by point will likely

not reveal much about the way our function reshapes the domain. With this in mind let’s look at the most

common method of representing these complex functions within the complex plane.

4.2 Domain Coloring

Instead of thinking about the complex plane as strictly points in a two-dimensional space, we can instead

think of the plane as a color wheel, where each point has an associated color value. Based on Frank A.

Farris’ model of complex visualization, which appears in his review of Tristan Needham’s Visual Complex

Analysis, one can visualize a complex-valued function in the plane by computing the value of f(a, b) for

each point in the domain. The resulting complex point (u, v) = f(a, b) will have an associated color value,

based on the color wheel found in Figure 27.

Figure 27: Complex Color Wheel

In Figure 27, we have placed red along the first cube-root of unity, with green and blue comprising

the other two cube-roots. While this is just one particular model and selection of colors, having the three
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primary computer colors lie on the third roots of unity adds a nice mathematical touch to the color wheel.

This approach also allows for a more careful analysis of where these third roots are mapped under our

function. However, the main purpose is to illustrate the effects of a complex-valued function on the complex

plane. Let’s work through an example of this model. If we were to map the point (1, 1) using our function

f(z) = z2, we must first split this function into its real mapping and its imaginary mapping. Since we know

previously that these two halves are (a2 − b2) and (2ab)i, we have U(a, b) = (a2 − b2) and V (a, b) = (2ab).

If we now map the point (1, 1), we have U(1, 1) = (1− 1) = 0 and V (1, 1) = (2 · 1 · 1) = 2. We now see that

the point (1, 1) maps to the point (0, 2), so we would color the point (1, 1) light green, because its image lies

directly on the positive imaginary axis. See Figure 28b and Figure 28c for an illustration of the concept.

(a) (1, 0) in the Complex Plane

(b) f(1, 0) Plotted on Color Wheel

(c) (1, 0) Colored According to
f(1, 0)

Figure 28: Basic Domain Coloring

This method of complex visualization will be used for our purposes due to its relative simplicity, but there

are other methods. The other most common method is to map colors from the domain to the co-domain,

and plot the co-domain. This particular visualization model, known as color mapping, has some theoretical

and computational problems, but produces a uniquely different effect, and so should be considered.

4.3 Mapping Colors

Instead of mapping a point, and coloring the original point based on the computed point’s value, we can

color the destination based on the original. That is to say, (u, v) = f(a, b) is colored with (a, b)’s color.

Figure 29 shows this model in action.
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(a) (1, 0) on the Color Wheel (b) f(1, 0) Colored By (1, 0)

Figure 29: Mapping a Color

For our purposes we will choose to use the domain coloring method, because direct color mapping creates

many problems associated with color theory that are not easily addressed in this scope. Due to the fact that

complex functions are not inherently invertible, which is to say that some points in the co-domain will be

have multiple pre-images in the domain, there’s no way to guarantee we won’t map two colors to the same

point. One can see how this would create problems for a color mapping model of visualization, because if

we have multiple points mapping to the same place, what color do we make the destination? That is to say,

if we have some f(a1, b1) = (u, v) = f(a2, b2), what color do we assign to the point (u, v)? There are a few

different methods to solve the problem, including nearest-neighbor coloring and weighted average coloring.

However, our problems don’t stop here, because complex functions also don’t aren’t one-to-one necessarily.

This means we might have points in the image that have no pre-image, and would thus be blank if we

were mapping colors. This is why nearest-neighbor coloring schemes become important, because to get an

accurate representation of a function’s effect on the complex plane we need to have a cohesive visualization,

not something that looks like spray paint. Using nearest-neighbor coloring along with weighted averages

based on various factors (number of pre-images, color neighborhood, pre-image color frequency, etc), one can

create a complex function visualizer based on color mapping. Similar approaches are used in topographical

color mappings, as can be seen in Dave Hale’s Image-guided blended neighbor interpolation ??. Since color

theory adds one too many extra layers of complexity to this particular application, we will take a more

detailed look at Domain Coloring.

5 Software Based Complex Visualization

We will now put together all the concepts previously covered into a cohesive, example-driven, walk-through

of how we can create an application to color the domain of a complex function.
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5.1 Parsing User-Input to Postfix Array

When presented with input from the user, our application will begin by using the SYA, while simultaneously

interpreting characters into tokens. This can be achieved by examining each character of the input, and

comparing it with a table of acceptable tokens. If we are presented with a character that doesn’t exist within

our dictionary of acceptable mathematical inputs, we can include the next character in our interpretation.

This is to say we would interpret “sinx” beginning with “s,” noticing “s” is not an acceptable character, and

attempting to interpret “si”, which is also not included in our dictionary. We then reach “n”, and interpret

“sin” appropriately as an entire token itself, which we push onto the operator stack as a unary operator.

We now have an input of “(x)” and can use the SYA in the way we are familiar to complete the process.

However, since looking at f(z) = sin z adds too much complexity to our calculations, we will look at the

more simplistic example, “f(z) = z2 = (x + yi)2”, which can be represented by the real-valued mapping

“u(x, y) = x2 − y2” and the complex valued mapping “v(x, y) = 2xy”. We can use u and v to map every

point in our domain, and color the point based on its mapping. Before we can do that though, we have to

parse our two equations. Having previously worked through similar examples, we won’t spend too much time

on the algorithm. Needless to say, we can store the resulting postfix expression arrays as separate entities

within the application. We now have two arrays that look like those found in Figure 30.

a 2 ∧ b 2 ∧ −

varX num bop varY num bop bop

(a) u(x, y) Postfix Array

2 x · y ·

num varX bop varY bop

(b) v(x, y) Postfix Array

Figure 30: Postfix Arrays for “User” Input

Now that we have the expressions stored within our application, we can evaluate them based using

repeated substitution of variables to produce plots.

5.2 Evaluating Equation Arrays

Because our method for evaluating a postfix array involves the collapsing of cells, imagining how one might

substitute a new x or y value into the array can be difficult. In fact, so difficult that the easier solution

is to not pursue that method of evaluation. Instead, within the memory of our application, we create a

temporary copy of each array with the value for x and y substituted for the variables themselves. This way,

we can do the actual evaluation of our arrays in the way we are accustomed, without compromising the

original function. For our application, we’re going to loop through every individual point of the domain,

based on individual pixels’ (x, y) coordinates on the screen. We will map the pixel values (P x, P y) from
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P x = 0 . . . Image Width and P y = 0 . . . Image Height to a square domain, such that the maximum height

and width are equal, and the minimum height and width are equal to the negative of the maximum. For

example, we can map the points (0, 0) . . . (600, 600) to a portion of the complex plane such that |y| ≤ 5 and

|x| ≤ 5, for every complex number z = x + y · i, represented in the plane as (x, y). This is to say that

we will map our set of points (0, 0) . . . (600, 600), where each (x, y) is integer valued, to the set of points

(0, 0) . . . (±5,±5) where every (x, y) is real-valued. So, to evaluate our equations u(x, y) = x2 − y2 and

v(x, y) = 2xy, we begin by creating a temporary copy of both equation arrays. We can then evaluate each

copy based on the mapping of our current P x and P y positions. The results will be in the complex plane,

but not necessarily within our domain, which we can quickly see since u(5, 0) = 25 > 5. Unfortunately,

computers don’t have a particularly great understanding of the complex plane, which is to say we will have

to map our results to a more image-friendly format.

5.3 Result Mapping and Domain Coloring

Every point (P x, P y) will be mapped to some point (x, y) in the complex plane. This point will be exactly√
x2 + y2 units away from the origin, and will be θ = arctan y, x radians from the real number line, with.

We can thus represent the complex plane using polar coordinates, where every point can be represented as

(r, θ) instead of (x, y). This becomes of use to use when we want to use the color-wheel model for complex

visualization, because now we can easily map from a point to the color wheel and back again. With this as

our goal, we can use the Hue, Saturation, Brightness color model for our image. This particular model differs

greatly from the classical ordered triple R,G,B, but is also itself an ordered triple. The first argument, the

Hue, determines an angle around a cylinder, while the Saturation determines the radius of the point, and

the Brightness determines the height. Saturation ranges from full color to full white, and brightness ranges

from full darkness to none. Figure ?? shows how this color model can be represented, though since as all

colors get darker they begin to look the same, it is represented as a cone rather than a cylinder. [5]
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Figure 31: HSB Cone

Using this model for coloring a point, we can determine the Hue based on our θ value, with Saturation

and Brightness based on r. We can divide our color-wheel into 3 sections, an inner wheel, a middle wheel,

and an outer wheel. This way, we fade from 0% saturation to 100% saturation from the origin to r/3, stay

at 100% saturation and brightness for the middle 3rd, and then fade from 100% brightness to 0% at the edge

of our domain. Thus we can have a mapping from the complex plane to the complex plane to the complex

color wheel, all while keeping track of which point in the domain we mapped. We can then color our original

(P x, P y) point with whatever color is associated with θ, which will be rounded to the nearest 12th root

of unity; which is to say we are looking at 12 chunks of color rather than a true continuum. Thus, we are

coloring the entire domain of our function based on each point’s image, which is where the method gets its

name. Since each point in the domain will have its own color, we don’t have to worry about collisions, and

we don’t have to worry about color blending, because there will be no empty pixels.

5.4 Results of Domain Coloring

The resulting color patters based on visualizations of complex-valued functions can be aesthetically pleasing,

but also can provide valuable insight into the behavior of a given function. For example, we know there is

a complex asymptote anywhere we find a black hole, because as points get farther from the origin they get

darker. Similarly, we know where zeros exist based on white holes, because the closer a point is to the origin,

the white it gets. We also track where each 12th root of unity ends up, which can be useful for function

analysis, where there are more than just real square-roots of 1. Frank Farris offers some intricate examples
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of domain coloring, like providing the domain coloring for f(z) = (z2 − i)/(2z2 + 2i), which can be seen in

Figure 32.

Figure 32: Domain Coloring of f(z) = (z2 − i)/(2z2 + 2i)

We can look at a more simple example, like f(z) = z2, which we have broken down before. We can

now look at the way in which the entire domain is mapped by this function. Intuitively, we can imagine

this mapping might warp the domain in a parabolic way; however, since we’re using a polar model of

representation for the complex plane, we don’t actually see anything that looks parabolic. Instead, the color

wheel is inverted upon itself, such that we have our 12 colors repeated twice around what our circle. We

also have a larger number of points trending towards 0, which is to say the white center of our color wheel

expands to enclose more of the entire wheel. We also head towards infinity much faster, as is indicated by

the decreased radius of our circle. Figures 33a and 33b show the original color wheel and the color wheel

mapped by f(z) = z2 respectively. We can see why this function maps our domain in this way by looking at

the representation of our mapping f(z) in polar coordinates. By substituting and converting from Cartesian

coordinates to Polar, we can see that f(z) has polar representation f(θ) = 2θ and f(r) = r2. We can now

intuit our result in Figure 33b, where we see that we have each 12th root of unity reflected across the origin,

which could be intuited from the fact that f(θ) = 2θ. We can also see that the interior wheel, where points

are trending towards zero, is larger, due to the fact that k2 < k when |k| < 1. Similarly, our color wheel has

a smaller radius, because for all k > 1, k2 > k, which is to say everything trends towards infinity even faster

than previously, reflected in the fact that our wheel becomes darker faster relative to the original [2].
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(a) f(z) = z (b) f(z) = z2

Figure 33: Domain Coloring of f(z) = z2

This application of complex analysis and computer algorithms can hopefully help mathematicians more

easily comprehend complex mappings. Having a piece of software create visualizations based on user input

allows for a more interactive learning environment compared to text on paper or screen, thus making this

type of application important.

6 Conclusions

Many of the books and articles I referenced included theory sections, but lacked any concrete application.

Similarly, many of the applications lacked any significant theory, which means that most gaps between theory

and application had to be bridged in this paper. Due to the limitations of time and medium, the application

I created to accompany this paper lacks some desired functionality, though still works as intended. Creating

a complete mathematical evaluator by hand quickly becomes tedious, and accounting for every operator be-

comes difficult when there isn’t an equivalent expression within the programming. Most common operations

and syntax should be acceptable, but some escaped interpretation within the program. Another problem

associated with my application is that I’ve had to interface a standalone applet with a web-page handling

user input, which makes for some difficulties in communication and data storage. Finding the proper way

to interpret user input in the web page before transferring the equation array to the standalone application

is difficult, but not impossible. Many pre-existing, robust libraries exist that provide expression parsing

functionality, in practically every programming language imaginable. Unfortunately, none of these libraries

were easily cannibalized, so writing an expression parser within the web page would be highly unfeasible.

However, using a library we could convert user inputted equations into a postfix array with flags, and send

the resulting array to the applet. Another piece of functionality that would be nice to include is the ability

to parse equations of the form f(z), but expanding f(z) into g(a, b) = f(z) is a difficult programming chal-
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lenge when not mathematically impossible. With a deeper understanding of complex analysis, accounting

for these impossible scenarios within an application would be possible, as would the expansion of complex-

valued functions. However, these are all things left undone in this project. Fortunately, we’ve outlined all

the theory to create a complex-valued function visualizer based on the domain coloring paradigm, and I’ve

built a minimally functional application as a proof of that concept.

7 Code Appendix

static Token[] equationU;

static Token[] equationV;

int[] colorFreq;

PImage wheel;

PImage myImage;

int underCount = 0;

int tempWidth = 0;

int temptempHeight = 0;

static float maxmapX = -100000000;

static float maxmapY = -100000000;

static float minmapX = 100000000;

static float minmapY = 100000000;

final static int VAR_X = 10;

final static int VAR_Y = 11;

final static int NUM = 1;

final static int BIN_OP = 2;

final static int UN_OP = 3;

final static int CONDENSED = -1;

final static int EMPTY = 0;

static int curX = 0;

static int curY = 0;

int eqUSize = 7;

int eqVSize = 5;

float compX = 0.0;
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float compY = 0.0;

Token[] tempU = new Token[100];

Token[] tempV = new Token[100];

boolean testFlag = true;

static float lowHue = -10000;

static float lowSat = -10000;

static float lowBrt = -10000;

static float hiHue = 10000;

static float hiSat = 10000;

static float hiBrt = 10000;

static float maxD = -10;

static int domain = 5;void setup()

size(600, 600);

int tempWidth = width;

int tempHeight = height;

colorFreq = new int[tempWidth*tempHeight];

equationU = new Token[100];

equationV = new Token[100];

for (int i = 0; i < 100; i++)

{

equationU[i] = new Token();

equationV[i] = new Token();

}

colorMode(HSB, 360, 1, 1);

for (int kol = 0; kol < (tempWidth*tempHeight); kol++)

{

colorFreq[kol] = 0;

}

background(0);

equationU[0] = new Token("x", VAR_X);

equationU[1] = new Token("2", NUM);
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equationU[2] = new Token("^", BIN_OP);

equationU[3] = new Token("y", VAR_Y);

equationU[4] = new Token("2", NUM);

equationU[5] = new Token("^", BIN_OP);

equationU[6] = new Token("-", BIN_OP);

equationV[0] = new Token("2", NUM);

equationV[1] = new Token("x", VAR_X);

equationV[2] = new Token("*", BIN_OP);

equationV[3] = new Token("y", VAR_Y);

equationV[4] = new Token("*", BIN_OP);

int temp1size = 0;

while (equationU[temp1size].flag != 0)

{

temp1size++;

}

eqUSize = temp1size;

int temp2size = 0;

while (equationV[temp2size].flag != 0)

{

temp2size++;

}

eqVSize = temp2size;

println(eqUSize);

println(eqVSize); myImage = createImage(600, 600, RGB);

myImage.loadPixels();

for (int loopX = 0; loopX < tempWidth; loopX++)

{

for (int loopY = 0; loopY < tempHeight; loopY++)

{

int l = loopX + loopY * tempWidth;

myImage.pixels[l] = color(0, 0, 0, 100);
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float evalX = map(loopX, 0, tempWidth, -domain, domain);

float evalY = map(loopY, 0, tempWidth, -domain, domain);

for (int reset = 0; reset < 100; reset++)

{

tempU[reset] = new Token();

tempV[reset] = new Token();

}

for (int reset = 0; reset < 100; reset++)

{

tempU[reset] = new Token(equationU[reset]);

tempV[reset] = new Token(equationV[reset]);

}

float tempcompX = evalEqn(tempU, evalX, evalY);

float tempcompY = evalEqn(tempV, evalX, evalY);

if (tempcompX > maxmapX)

{

maxmapX = tempcompX;

}

if (tempcompX < minmapX)

{

minmapX = tempcompX;

}

if (tempcompY > maxmapY)

{

maxmapY = tempcompY;

}

if (tempcompY < minmapY)

{

minmapY = tempcompY;

}

float tempD = sqrt(tempcompY*tempcompY + tempcompX * tempcompX);

if (tempD > maxD)

{
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maxD = tempD;

}

}

}

myImage.updatePixels();

println("SETUP COMPLETE");

myImage.loadPixels();

image(myImage, 0, 0);

println("myImage created");

while (curX < 600)

{

for (curY = 0; curY < 600; curY++)

{

for (int reset = 0; reset < 100; reset++)

{

tempU[reset] = new Token();

tempV[reset] = new Token();

}

for (int temp = 0; temp < eqUSize; temp++)

{

tempU[temp] = new Token(equationU[temp]);

}

for (int temp2 = 0; temp2 < eqVSize; temp2++)

{

tempV[temp2] = new Token(equationV[temp2]);

}

float mapY = map(curY, 0, tempHeight, -domain, domain);

float mapX = map(curX, 0, tempWidth, -domain, domain);
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compX = evalEqn(tempU, mapX, mapY);

compY = evalEqn(tempV, mapX, mapY);

float newmapX = map(compX, -domain, domain, 0, tempWidth);

float newmapY = map(compY, -domain, domain, 0, tempHeight);

float arg2 = PI+(-1*atan2(compY, compX));

float arg = round(arg2/(PI/6.0))*(PI/6.0);

float radius = sqrt(compX * compX + compY * compY);

float diameter = map(sqrt(compX * compX + compY * compY), 0, domain, 0, tempWidth);

int pixelTo = 0;

int pixelFrom = 0;

pixelFrom = max(0, min(round(curX + curY*tempWidth), tempWidth*tempHeight-1));

int temppixTo = 0;

temppixTo = (int)((newmapX + newmapY * tempWidth));

boolean firstFlag = (boolean)(temppixTo < (tempWidth * tempHeight));

boolean secondFlag = (boolean)(temppixTo > 0);

boolean changePix = (boolean)(firstFlag && secondFlag);

changePix = true;

if (changePix == true)

{

myImage.loadPixels();

colorFreq[pixelFrom]++;

float myHue = (degrees(arg)+180)%360;

myImage.pixels[pixelFrom] = color(myHue, ((3*diameter)/(tempWidth)),

1-pow((diameter/(tempWidth)),2));
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}

myImage.updatePixels();

}

curX++;

}

if (curX >= 600)

{

myImage.updatePixels();

myImage.loadPixels();

image(myImage, 0, 0);

}

void draw(){}

float evalEqn(Token[] equation, float x, float y)

boolean evalFlag = true;

int i = 0;

int flag = equation[i].flag;

while (flag != EMPTY)

{

if (flag == (VAR_X))

{

equation[i].token = ""+x;

equation[i].flag = NUM;

}

if (flag == (VAR_Y))

{

equation[i].token = ""+y;

equation[i].flag = NUM;

}

i++;

if (equation[i] == null)

{

flag = EMPTY;

}
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else

{

flag = equation[i].flag;

}

}

while (evalFlag)

{

evalFlag = false;

i = 0;

flag = equation[i].flag;

while (flag != EMPTY)

{

int j = 1;

int k = 1;

if (flag == (NUM))

{

}

else if (flag == (UN_OP))

{

while (equation[i-j].flag == CONDENSED) {

j++;

};

equation[i].token = ""+evalUN(equation[i].token, float(equation[i-j].token));

equation[i].flag = NUM;

equation[i-j].token = ""+0;

equation[i-j].flag = CONDENSED;

evalFlag = true;

}

else if (flag == (BIN_OP))

{

while (equation[i-j].flag == CONDENSED) {

j++;

};
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while (equation[i-j-k].flag == CONDENSED) {

k++;

};

String operator = (String)equation[i].token;

float in2 = float(equation[i-j].token);

float in1 = float(equation[i-j-k].token);

float returned = evalBin(operator, in1, in2);

equation[i].token = ""+returned;

equation[i].flag = NUM;

equation[i-j].token = ""+0;

equation[i-j-k].token = ""+0;

equation[i-j].flag = CONDENSED;

equation[i-j-k].flag = CONDENSED;

evalFlag = true;

}

i++;

if (equation[i] == null)

{

flag = EMPTY;

}

else

{

flag = equation[i].flag;

}

}

}

int result_ind = 0;

while ( (equation[result_ind].flag!=EMPTY) && ((equation[result_ind].flag!=NUM)))

{

result_ind++;

}

float toReturn = float(equation[result_ind].token);

return toReturn;

33



float evalUN(String OP, float Value)

float toReturn = 0.0;

if (OP.equals("-"))

{

toReturn = ((-1)*Value);

}

if (OP.equals("sin"))

{

toReturn = sin(Value);

}

if (OP.equals("tan"))

{

toReturn = tan(Value);

}

if (OP.equals("cos"))

{

toReturn = cos(Value);

}

else

{

toReturn = Value;

}

return toReturn;

float evalBin(String OP, float in1, float in2)

float toReturn = 0.0;

if (OP.equals("^"))

{

toReturn = pow(in1, in2);

}

else if (OP.equals("+"))

{

toReturn = (in1+in2);

}
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else if (OP.equals("-"))

{

toReturn = (in1 - in2);

}

else if (OP.equals("*"))

{

toReturn = (in1 * in2);

}

else if (OP.equals("/"))

{

toReturn = ((in1*1.0) / in2);

}

else

{

toReturn = (-1.0);

}

return toReturn;

}public class Token

public String token;

public int flag;

public Token()

{

token = "";

flag = 0;

}

public Token(String in1, int in2)

{

token = in1;

flag = in2;

}

public Token(Token inToken)

{

token = inToken.token;
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flag = inToken.flag;

}

}
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