
Trigonometry in the Hyperbolic Plane

Tiffani Traver

May 16, 2014

Abstract

The primary objective of this paper is to discuss trigonometry in the context of hyperbolic geometry.
This paper will be using the Poincaré model. In order to accomplish this, the paper is going to explore
the hyperbolic trigonometric functions and how they relate to the traditional circular trigonometric
functions. In particular, the angle of parallelism in hyperbolic geometry will be introduced, which
provides a direct link between the circular and hyperbolic functions. Using this connection, triangles,
circles, and quadrilaterals in the hyperbolic plane will be explored. The paper is also going to look at the
ways in which familiar formulas in Euclidean geometry correspond to analogous formulas in hyperbolic
geometry. While hyperbolic geometry is the main focus, the paper will briefly discuss spherical geometry
and will show how many of the formulas we consider from hyperbolic and Euclidean geometry also
correspond to analogous formulas in the spherical plane.

1 Introduction

The axiomatic method is a method of proof that starts with definitions, axioms, and postulates and uses them
to logically deduce consequences, which are called theorems, propositions or corollaries [4]. This method
of organization and logical structure is still used in all of modern mathematics. One of the earliest, and
perhaps most important, examples of the axiomatic method was contained in Euclid’s well-known book, The
Elements, which starts with his famous set of five postulates. From these postulates, he goes on to deduce
most of the mathematics known at that time.

Euclid’s original postulates are shown in Table 1 [9]. As one could imagine, Euclid’s original wording can
be difficult to understand. Since Euclid’s initial introduction, the axioms have been reworded. An equivalent,
more modern, wording of the postulates is also shown in Table 1 [4]. For our discussion, the most important
of these axioms is the fifth one, also known as the Euclidean Parallel Postulate.

For over a thousand years, Euclid’s Elements was the most important and most frequently studied
mathematical text and so his postulates continued to be the foundation of nearly all mathematical knowledge.
But from the very beginning his fifth postulate was controversial. The first four postulates appeared self-
evidently true; however, the fifth postulate was thought to be redundant and it was thought that it could
be proven from the first four. In other words, there was question as to whether it was necessary to assume
the fifth postulate or could it be derived as a consequence of the other four. Why was the fifth postulate so
controversial?

In Marvin Jay Greenberg’s book Euclidean and Non-Euclidean Geometries, a detailed history of the
Euclidean Parallel Postulate is given, including a large portion dedicated to the many attempts to prove the
fifth postulate. According to Greenberg, it was difficult to accept the postulate because “we cannot verify
empirically whether two drawn lines meet since we can draw only segments, not complete lines,” whereas
the other four postulates seemed reasonable from experience working with compasses and straightedges [5].
Many famous mathematicians, such as Proclus and Adrien-Marie Legendre, thought they had discovered
correct proofs. However, all such attempts proved unsuccessful and ended in failure as holes and gaps were
found in their reasoning.

Although the mathematicians were unable to prove the fifth postulate, the efforts of mathematicians such
as Bolyai, Lobachevsky, and Gauss with respect to the fifth postulate were rewarded. Their “consideration
of alternatives to Euclid’s parallel postulate resulted in the development of non-Euclidean geometries” [5].
One of these non-Euclidean geometries is now called hyperbolic and is the main subject of this paper. We will

1



Original Postulate Reworded Postulate

I. To draw a straight line from any point to For every point P and for every point Q
any point. not equal to P , there exists a unique

line ` that passes through P and Q.

II. To produce a finite straight line continuously For every segment AB and for every
in a straight line. segment CD, there exists a unique point

E such that B is between A and E
and segment CD is congruent to segment BE.

III. To describe a circle with any center For every point O and every point A
and distance. not equal to O, there exists a circle with

center O and radius OA.

IV. That all right angles are equal to one All right angles are congruent to each other.
another.

V. That if a straight line falling on two straight For every line ` and for every point
lines makes the interior angles on the same P that does not lie on `, there
side less than two right angles, the straight exists a unique line m through P
lines, if produced indefinitely, will meet on that is parallel to `.
that side on which the angles are less than
two right angles.

Table 1: Euclid’s five postulates.

not have the time or space for a detailed development of hyperbolic geometry, so we will start by describing
two models of it: the Poincaré model and the Klein model. The Klein model, though it is easier to describe,
is ultimately harder to use; so our main focus will be on the Poincaré model.

Our primary objective is to discuss trigonometry in the context of hyperbolic geometry. So we will need to
consider the hyperbolic trigonometric functions and how they relate to the traditional circular trigonometric
functions. In particular, we will introduce the angle of parallelism in hyperbolic geometry, which provides
a direct link between the circular and hyperbolic functions. Then, we will use this connection to explore
triangles, circles, and quadrilaterals in hyperbolic geometry and how familiar formulas in Euclidean geometry
correspond to analogous formulas in hyperbolic geometry.

In fact, besides hyperbolic geometry, there is a second non-Euclidean geometry that can be characterized
by the behavior of parallel lines: elliptic geometry. The three types of plane geometry can be described
as those having constant curvature; either negative (hyperbolic), positive (spherical), or zero (Euclidean).
Spherical geometry is intimately related to elliptic geometry and we will show how many of the formulas we
consider from Euclidean and hyperbolic geometry also correspond to analogous formulas in spherical geom-
etry. For example, there are three different versions of the Pythagorean Theorem; one each for hyperbolic,
Euclidean, and spherical right triangles.

2 Models of the Hyperbolic Plane

Hyperbolic geometry is a non-Euclidean geometry in which the parallel postulate from Euclidean geometry
(refer to Chapter 4) is replaced. As a result, in hyperbolic geometry, there is more than one line through a
certain point that does not intersect another given line. Since the hyperbolic plane is a plane with constant
negative curvature, the fact that two parallel lines exist to a given line visually makes sense. This curvature
results in shapes in the hyperbolic plane differing from what we are used to seeing in the Euclidean plane.
For example, in Figure 6 we can see different forms of a triangle in the hyperbolic plane. These triangles
are different than typical triangles we are used to seeing in the Euclidean plane. Luckily, there are different
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models that help us visualize the hyperbolic plane.
In this section, we will cover two of the main models of hyperbolic geometry, namely the Poincaré and

Klein models. For each model, we will define points, lines, and betweenness, along with distance and angle
measures. It is important to note that, unless otherwise specified, we will be working in the Poincaré model.

2.1 Poincaré Model

The Poincaré Model is a disc model used in hyperbolic geometry. In other words, the Poincaré Model is a
way to visualize a hyperbolic plane by using a unit disc (a disc of radius 1). While some Euclidean concepts,
such as angle congruences, transfer over to the hyperbolic plane, we will see that things such as lines are
defined differently.

2.1.1 Points, Lines, and Betweenness

Consider a unit circle γ in the Euclidean plane.

Definition 2.1. In the hyperbolic plane, points are defined as the points interior to γ.

O

R

`

m

P

Q

A
B

C

γ

δ

r = 1

Figure 1: Poincaré Model for hyperbolic geometry
where P and Q are hyperbolic points and ` and m
are hyperbolic lines.

In other words, all hyperbolic points are in the
set {(x, y)|x2 + y2 < 1}. In Figure 1, P and Q are
examples of hyperbolic points whereas R is not a
point in the hyperbolic plane since it lies outside
the unit disc γ.

Definition 2.2. Lines of the hyperbolic plane are
the diameters of γ and arcs of circles that are per-
pendicular to γ.

Note that in Figure 1, ` is a diameter of γ, hence
` is a line in the hyperbolic plane. Similarly, circle δ
is perpendicular to γ and therefore, m is considered
a line in the hyperbolic plane. In this case, we were
given the fact that circle δ is orthogonal to circle
γ but this will not always be known. In order to
determine when a circle is perpendicular to γ in the
Poincaré model, we need to define the inverse of a
point.

Definition 2.3. Let γ be a circle of radius r with
center O. For any point P 6= O the inverse P ′ of P

with respect to γ is the unique point P ′ on ray
−−→
OP

such that (OP )(OP ′) = r2.

Since we are working the the Poincaré model, the radius r is always equal to 1. This modifies the
definition above; two points P and P ′ are inverses if (OP )(OP ′) = 1. Refering to Figure 2, point P has
inverse P ′. The following proposition allows us to determine if a circle is orthogonal to γ or not.

Proposition 2.4. Let P be any point that does not lie on circle γ and that does not coincide with the center
O of γ, and let δ be a circle through P . Then δ cuts γ orthogonally if and only if δ passes through the inverse
point P ′ of P with respect to γ.

This is to say that if P , a point in the circle γ not equal to the origin O, and it’s inverse P ′, a point
outside the circle γ, lie on the same circle δ, then δ is orthogonal to γ and hence the sector of δ that lies
inside of γ is a line in the Poincaré model [1]. This is shown in Figure 2. We conclude this collection of
definitions with the notion of betweenness.

Definition 2.5. Let A, B, and C be on an open arc m coming from an orthogonal circle δ with center R.

We define B to be between A and C if
−−→
RB is between

−→
RA and

−→
RC.

Betweenness is one of the several things that is defined the same in both the Euclidean and hyperbolic
planes.
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Figure 2: The inverse of a point. In particular, point P ′ is the inverse of point P . As a result, we conclude
that circle δ is perpendicular to circle γ.
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(a) Cross-ratio of four distinct points.

P Q
O

B
x

(b) Poincaré distance from the origin.

Figure 3: Poincaré distance.

2.1.2 Poincaré Distance

In the hyperbolic plane, distance from one point to another is different than what we call distance in the
Euclidean plane. In order to determine the distance, we must first define cross-ratio.

Definition 2.6. If P, Q, A, and B are distinct points in R2, then their cross-ratio is

[P,Q,A,B] =
PB ·QA
PA ·QB

where PB, QA, PA, and QB are the Euclidean lengths of those segments.

Example 2.7. Referring to Figure 3a, suppose PB = 1, QA = 3/2, PA = 1/2, and QB = 1. We then have

[P,Q,A,B] =
PB ·QA
PA ·QB

=
3/2

1/2

= 3.
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The cross-ratio of four distinct points is important when we want to find the Poincaré length of a line
segment.

Definition 2.8. If P, Q, A, and B are distinct points in R2, then in hyperbolic geometry, the Poincaré
length d(A,B) is defined as

d(A,B) = | ln([P,Q,A,B])|.

We can interpret this formula for the Poincaré distance in an interesting way by applying it to the
diameter of a circle. Consider Figure 3b. If we let that be a circle of radius 1 with center O, then d(B,O) =
| ln([P,Q,O,B])|. We then have

d(B,O) =

∣∣∣∣ ln(PB ·QOPO ·QB

)∣∣∣∣.
Note that we are denoting the Euclidean distance from the origin O to the point B as x. Similarly, since
this is a circle of radius 1, we know that the Euclidean distance from P to Q is 2. We can see that the
Euclidean length of PB is (1 + x) and that of QO is 1. Hence, PB ·QO = (1 + x). Similarly, we find that
PO ·QB = (1− x). Therefore,

d(B,O) =

∣∣∣∣ ln(1 + x

1− x

)∣∣∣∣.
This yields the following theorem:

Theorem 2.9. If a point B inside the unit disc is at a Euclidean distance x from the origin O, then the
Poincaré length from B to O is given by

d(B,O) =

∣∣∣∣ ln(1 + x

1− x

)∣∣∣∣.
Note, the Euclidean distance x = OB can never be equal to 1 because B is a point in the Poincaré model

and thus is inside the unit circle. However, as x approaches 1, the Poincaré length from B to O is going off
to infinity.

2.1.3 Angles

Another similarity between the Euclidean and hyperbolic planes is angle congruence. This has the same
meaning in both planes. For the Poincaré model, since lines can be circular arcs, we need to define how to
find the measure of an angle.

In the hyperbolic plane, the way we find the degrees in an angle is conformal to the Euclidean plane. In
the Poincaré model, we have three cases to consider:

• Case 1: where two circular arcs intersect

• Case 2: where one circular arc intersects an ordinary ray

• Case 3: where two ordinary rays intersect

Note that an ordinary ray, is a ray as we think of it in the Euclidean plane. More formally, an ordinary
ray is a line that starts at a point and goes off in a certain direction to infinity.

Consider case 1. If two circular arcs intersect at a point A, the number of degrees in the angle they make
is the number of degrees in the angle between their tangent rays at A. Refer to Figure 4a.

For case 2, suppose one circular arc intersects an ordinary ray at a point A, the number of degrees in the
angle they make is the number of degrees in the angle between the tangent ray of the circular arc at A and
the ordinary ray at A. Refer to Figure 4b.

Lastly, for case 3, the angle between two ordinary rays that intersect at a point A is interpreted the same
as the degrees of an angle in the Euclidean plane. Refer to Figure 4c.
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A

(a) Case 1: two circular arcs

A

Ordinary
Ray

(b) Case 2: one circular arc and one
ordinary ray

A

(c) Case 3: two ordinary rays

Figure 4: Degrees of an angle in the Poincaré model.
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Figure 5: Klein model for hyperbolic geometry where P and Q are points and ` and m are lines.

2.2 Klein Model

The Klein Model (also known as the Beltrami-Klein Model) is a disc model of hyperbolic geometry via
projective geometry. This model is a projective model because it is derived using stereographic projection
[8]. Within this model, there is a fixed circle κ in a Euclidean plane. This model is very similar to the
Poincaré model defined in Section 2.1. Recall, in the Poincaré model, circle γ has radius 1 because it is a
unit disc model. Here, circle κ in the Klein model does not have a fixed radius. We will see in Section 2.2.1
that definitions of points and lines also differ between the two models.

2.2.1 Points and Lines

Let κ be a circle in the Euclidean plane with center O and radius OR, see Figure 5.

Definition 2.10. In the hyperbolic plane, points are defined as all points X such that OX < OR.

In Figure 5, P and Q are examples of points in the Klein model. In contrast, point R is not considered
to be a point because OR = OR thus OR ≮ OR. This idea of points in the Klein model is very similar to
points in the Poincaré model. The difference in definitions is because the radius OR in the Klein model is
not fixed to 1. The main distinction between the two models is how lines are defined.

Definition 2.11. Lines of the hyperbolic plane are chords inside circle κ excluding their endpoints.

Comparing Definitions 2.2 and 2.11, we can see that in the Klein model, rather than lines being arcs of
circles orthogonal to γ, lines are the chords within the circle κ. Note that the set of chords of κ also includes
diameters of κ. Thus, in Figure 5, ` and m are lines in the Klein model.
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Figure 6: Examples of hyperbolic triangles in the Poincaré model.
(taken from http://euler.slu.edu/escher/index.php/Hyperbolic_Geometry)

As mentioned in Section 2.1.1, betweenness in the hyperbolic plane is the same as in the Euclidean plane
and thus betweenness in the Klein model is defined the same as betweenness in the Poincaré model (refer to
Definition 2.5).

2.2.2 Distance in the Klein Model

Finding a distance between two points in the Klein model differs from that in the Poincaré model but in
both cases, we use the cross-ratio (refer to Definition 2.6).

Definition 2.12. Let A and B be two points in circle κ and P and Q be the endpoints of the chord AB.
Then, the Klein distance dk(A,B) between points A and B is

dk(A,B) =
| ln([P,Q,B,A])|

2
.

We see that the Klein distance is the Poincaré distance divided by 2.

2.2.3 Angle Measurements in the Klein Model

As mentioned in Section 2.1.3, finding the measurement of an angle in the hyperbolic plane is conformal to
the Euclidean plane. In the Poincaré model, we had to consider three cases, however, for the Klein model
it is much more complicated. The Klein model is only conformal at the origin [8]. As a result, finding
the measurement of angles at the origin is the same as finding them in the Euclidean plane. The difficulty
begins when an angle is not at the origin. In Section 5, we introduce an isomorphism between the Klein
and Poincaré models. This isomorphism allows us to map lines and points from the Klein model into the
Poincaré model. Hence, to ease the process of measuring an angle in the Klein model, we will map that
angle into the Poincaré model and then measure it there.

3 Hyperbolic Trigonometry

Trigonometry is the study of the relationships between the angles and the sides of a triangle [6]. Before
digging deeper, we will cover the general notation that will be used. For 4ABC with sides a, b, and c, we
will use the notation a = BC, b=AC, and c = AB for the lengths of the sides. That is to say that ∠A is
opposite side a, ∠B is opposite side b, and ∠C is opposite side c.

In the Euclidean plane, the idea of similar triangles was used to help define the sine, cosine, and tangent
of an acute angle in a right triangle. From these definitions, we were able to extend the same ideas to find the
cosecant, secant, and cotangent of such an angle. For example, in the Euclidean plane, given a right triangle
ABC where ∠C is the right angle, we define cos(A) as the ratio of the adjacent side to the hypotenuse. In
other words, cos(A) = b/c.

In the hyperbolic plane, triangles come in all different forms. Some examples are shown in Figure 6. As
a result, the Euclidean ratios no longer hold true in all cases and hence, we define trigonometric functions
differently in the hyperbolic plane. For the circular functions, their definitions are in terms of their Taylor
series expansions:
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sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
cosx =

∞∑
n=0

(−1)n
x2n

(2n)!

(and tanx = sinx/ cosx, etc.). Trigonometry in the hyperbolic plane not only involves the circular functions
but also the hyperbolic functions defined by

sinhx =
ex − e−x

2
coshx =

ex + e−x

2
(1)

(and tanhx = sinhx/ coshx, etc.). Similar to the circular functions, these hyperbolic functions can also be
defined using the Taylor series:

sinhx =

∞∑
n=0

x2n+1

(2n+ 1)!
coshx =

∞∑
n=0

x2n

(2n)!
. (2)

By comparing the Taylor series expansions for the circular functions and the hyperbolic functions, we can see
that the hyperbolic functions are the circular functions without the coefficients (−1)n. The name “hyperbolic
functions” comes from the hyperbolic

cosh2 x− sinh2 x =
e2x + 2 + e−2x

4
− e2x − 2 + e−2x

4
= 1, (3)

from which the parametric equations x = cosh θ and y = sinh θ give one part of the hyperbola x2 − y2 = 1
in the Cartesian plane [6]. It is important not to confuse θ in this sense with θ in the Euclidean plane. Here
(refer to Figure 8), θ geometrically represents twice the area bounded by the hyperbola, x-axis, and the line
joining the origin to the point (cosh θ, sinh θ). By examining the unit hyperbola in the next section, we will
have a better idea of what θ is in the hyperbolic sense. In contrast to the hyperbolic θ, in the Euclidean
plane, θ can be used to represent the angle.

3.1 Unit Circle and Unit Hyperbola

As we have seen, the circular and hyperbolic trigonometric functions differ. In this section, we will see that

x

y

−1 1

−1

1

θ
r

(cos π4 , sin
π
4 )

Figure 7: Unit circle in the Euclidean plane.

there is an interesting similarity between the two when
considering the area of a sector of a unit circle and the
area between the x-axis and a hyperbolic sector drawn to
the parabola y =

√
x2 − 1, both in the Euclidean plane.

Consider the unit circle. Note that a point on the unit
circle has coordinates (cos θ, sin θ). The following example
illustrates the method of finding the area of a sector of
the unit circle.

Example 3.1. For the example, refer to Figure 7. We
want to find the area of the sector formed when θ = π/4
of the unit circle. The arc length of a circle is θ · r. So,
for this example,

arc length = π/4 · 1 = π/4.

The area of a sector of a circle is (arc length · r/2). We
then have,

Sector Area = π/4 · 1/2 = π/8.

Hence, when θ = π/4 the area of the sector of the unit circle is π/8.
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x2 − y2 = 1

Asymptote y = x

Asymptote y = −x
(cosh θ, sinh θ)

P

Q

R
x

y

−1 1 2

−1

1

2

A

Figure 8: Unit hyperbola in the Euclidean plane. The area of the shaded region A is θ/2.

Since the unit circle has a radius of 1, the formula for the area of a sector of the unit circle is θ/2, as
shown in Example 3.1.

Now, rather than using the unit circle, we are going to use the curve x2− y2 = 1, which is called the unit
hyperbola. We are interested in the area bounded by this curve, a hyperbolic sector to the curve, and the
x-axis.

This area of interest is shown in Figure 8 and is the shaded region labeled A. To find this area, note
that we will take the area of 4PQR and subtract the area under the curve x2 − y2 = 1 from x = cosh 0 to
x = cosh θ. We then have

Area =
sinh θ · cosh θ

2
−
∫ cosh θ

cosh 0

√
x2 − 1 dx.

We then substitute θ = cosh−1(x) which implies x = cosh θ and hence dx = sinh θ dθ. Applying equation
(1), we have

Area =
sinh θ · cosh θ

2
−
∫ θ

0

sinh2 θ dθ

=
2 · sinh θ · cosh θ

4
−
∫ θ

0

e2θ − 2 + e−2θ

4
dθ

=
sinh(2θ)

4
−
(

sinh(2θ)− 2θ

4

)∣∣∣∣θ
0

=
θ

2
.

The similarity is that the area we found with respect to the unit circle is the same as the area we found
with respect to the unit hyperbola. Both areas are equal to θ/2.
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d XY
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`

Figure 9: The angle of parallelism is α.

4 The Angle of Parallelism

While the result in Section 3.1 provides an interesting similarity between the unit circle and the unit hyper-
bola, the angle of parallelism provides a direct link between the circular and hyperbolic functions. In this
section, we will present a theorem that allows us to directly solve for the angle of parallelism.

Recall that in the hyperbolic plane, the parallel postulate from the Euclidean plane is replaced with the
Hyperbolic Parallel Postulate.

The Euclidean Parallel Postulate. For every line ` and for every point P that does not lie on `, there
exists a unique line m through P that is parallel to `.

This Euclidean Postulate establishes the uniqueness of parallel lines. This part of the postulate differs in
the hyperbolic plane [2].

The Hyperbolic Parallel Postulate. Given any line ` and any point P not on `, there exist more than
one line M such that P is on M and M is parallel to `.

As a result of the existence of more than one parallel line in the hyperbolic plane, the following theorem
holds.

Theorem 4.1. Given any line ` and any point P not on `, there exist limiting parallel rays
−−→
PX and

−−→
PY .

This is shown in Figure 9. The important thing to remember about these two limiting parallel rays is
that they are situated such that they are symmetric about the perpendicular line PQ to `, where Q lies on
line `. It can be shown that ∠XPQ ∼= ∠Y PQ. From this congruence relation, we conclude that either of
these angles can be called the angle of parallelism for P with respect to ` [6].

Theorem 4.2. Let α be the angle of parallelism for P with respect to ` and d be the Euclidean distance from
P to Q, where PQ is perpendicular to `. We then have, the formula of Bolyai-Lobachevsky:

tan

(
α

2

)
= e−d. (4)

Proof. Consider Figure 10a. We have a circular arc that contains points P and R. With Q being the origin
of the unit disc, we can draw a triangle in the Euclidean sense, namely 4QPR. This triangle is shown in
Figure 10b. Note that S is the point of intersection between QR and the tangent line to the circular arc at
point P .

Recall that d =
∣∣ ln((1 + x)/(1− x))

∣∣. Note, −d =
∣∣ ln((1− x)/(1 + x))

∣∣. Hence,

e−d =

(
1− x
1 + x

)
.

We then have, ∠SPR = (1/2)P̂R and ∠SRP = (1/2)P̂R thus, ∠SPR ∼= ∠SRP ∼= β. Then, using 4QPR,

π = π/2 + α+ 2β

π/4− β = α/2.
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x

(0, 0) (1, 0)

α
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β
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Figure 10: Proof of the Bolyai-Lobachevsky formula. Note that the triangle in (b) is the same triangle
4PQR shown in (a).

Recall that

tan(θ − γ) =
tan(θ)− tan(γ)

1 + tan(θ) tan(γ)
.

Applying this formula, we have

tan(α/2) = tan(π/4− β)

=
1− tan(β)

1 + tan(β)

=
1− x
1 + x

.

Therefore,

e−d =
1− x
1 + x

= tan

(
α

2

)
.

To see how to apply Formula (4), we will do an example.

Example 4.3. Suppose that we want to find the distance d when α = π/3 in Figure 9. We then have,

tan

(
π/3

2

)
= tan

(
π

6

)
=

√
3

3
= e−d.

Therefore,

−d = ln

(√
3

3

)
d = −(1/2 · ln(3)− ln(3))

≈ .55.

This means that if α = π/3 then the distance d from point P to Q is approximately .55.
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It is important to note that in formula (4), the angle of parallelism α is dependent on the Euclidean
distance d. If we look closer at formula (4), in particular as the Euclidean distance d goes to 0, then we have

lim
d→0

e−d = lim
d→0

tan

(
αd
2

)
1 = lim

d→0
tan

(
αd
2

)
.

This implies that as d→ 0, αd → π/2. In other words, as the distance d between points P and Q in Figure 9
goes to 0, the angle of parallelism α is getting closer to π/2 = 90◦. Therefore, parallel lines in the hyperbolic
plane are looking like parallel lines in the Euclidean plane. We can also transfer this idea to hyperbolic
triangles and say that if the sides of the triangle are sufficiently small, then the triangle looks like a regular
Euclidean triangle. We will see this in more detail in Section 5.

In contrast, if we look at formula (4) as d goes to ∞, then we see that αd → 0. So, as the Euclidean

distance d between points P and Q in Figure 9 gets infinitely large, the limiting parallel ray
−−→
PX essentially

aligns with line PQ.

4.1 Alternative Forms of the Bolyai-Lobachevsky Formula

The Bolyai-Loabachevsky formula is “certainly one of the most remarkable formulas in all of mathematics.”
[6] This formula relates the angle of parallelism to distance. By simply rewriting the formula in a different
way, we are able to also provide a link between hyperbolic and circular functions. In this section, we are
going to establish that this relationship exists by considering the sine, cosine, and tangent of the angle of
parallelism.

Note that Lobachevsky denoted α as Π(d). From now on, we will use this notation because it makes it
clear that the angle of parallelism relies on the hyperbolic distance d. By manipulating equation (4), we find
that the radian measure of the angle of parallelism becomes

Π(d) = 2 · arctan
(
e−d
)
.

Theorem 4.4. Let Π(x) be the angle of parallelism and x be the hyperbolic distance. Then,

sin(Π(x)) = sech (x) = 1/ cosh(x), (5)

cos(Π(x)) = tanh(x), (6)

tan(Π(x)) = csch (x) = 1/ sinh(x). (7)

Proof. Note, we will use double angle formulas and substitution. If we let y = arctan
(
e−x

)
, then tan(y) =

e−x. So, sec2(y) = tan2(y) + 1 becomes sec2(y) = e−2x + 1. We then have

1

sec2(y)
=

1

e−2x + 1

cos(y) =
1

(e−2x + 1)1/2
.

Similarly, we have

sin(y) = tan(y) cos(y)

sin(y) =
e−x

(e−2x + 1)1/2
.

Now, note that the double angle formula for sine is sin(2y) = 2 · sin(y) · cos(y). Therefore, since Π(x) =
2 · arctan

(
e−x

)
= 2 · y, we have

12



sin(Π(x)) = sin(2 · y)

= 2 sin(y) cos(y)

= 2 · e−x

(e−2x + 1)1/2
· 1

(e−2x + 1)1/2

=
2

ex + e−x

= sech (x).

Since 1/ cosh(x) = sech (x), this proves equation (5). Recall that the double angle formula for cosine is
cos(2y) = cos2(y)− sin2(y). Then,

cos(Π(x)) = cos(2 · y)

= cos2(y)− sin2(y)

=
1

(e−2x + 1)
− e−2x

(e−2x + 1)

=
ex − e−x

ex + e−x

=
sinh(x)

cosh(x)

= tanh(x).

This proves equation (6). Lastly,

tan(Π(x)) =
sin(Π(x))

cos(Π(x))

=
sech (x)

tanh(x)

= csch (x).

Since 1/ sinh(x) = csch (x), this proves equation (7).

We conclude that the function Π provides a link between the hyperbolic and the circular functions.

5 Hyperbolic Identities

In the Euclidean plane, there are many trigonometric identities. These identities are equations that hold
for all angles. In the hyperbolic plane, there are corresponding trigonometric identities that involve both
circular and hyperbolic functions. In this section, we will establish an isomorphism between the Klein model
and the Poincaré model. This isomorphism will help with our proof of a few hyperbolic identities.

While preference for the Klein or Poincaré model varies, there is a helpful isomorphism between the two
that preserves the incidence, betweenness, and congruence axioms. A one-to-one correspondence can be set
up between the “points” and “lines” in one model to the “points” and “lines” in the other [6].To establish
the isomorphism between the Klein and Poincaré models, we will start with the Klein model. That means
we have a circle κ with center O and radius r. In the Euclidean three dimensional space, consider a sphere,
also with radius r, sitting on the Klein model such that it is tangent to the origin O. For a visual aid, refer
to Figure 11. We then project the entire Klein model upward onto the lower hemisphere of the sphere. This
will cause all of the chords in the Klein model to become arcs of circles that are orthogonal to the equator
of the sphere. In Figure 11, we can see an example of this projection. The chord PR is projected upward
and becomes the arc P ′R′. We now connect the north pole of the sphere to each point on the arcs of circles
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that were created by the chords of the Klein model and project them onto the original plane. In the figure,
this creates the line P̂ R̂. The projection of the equator, using the same process, will create a circle larger
than the original circle κ. The projection of the lower hemisphere will land inside this new circle. The new,
larger circle creates the Poincaré model. By doing this transformation successively, the original chords and
points of the Klein model will be mapped one-to-one onto the ‘lines’ and points in the Poincaré model.

N

R̂

R′

P̂

P′

Q̂

Q′

P

R
Q

Figure 11: Isomorphism between the Klein and Poincaré models

In general, this shows that an isomorphism between the planes exists. Using equations (8) and (9), we
will be more specific and define an isomorphism F . Let κ with center O be a circle of radius 1 and B be a
point within the circle. Recall,

ed(O,B) =
1 +OB

1−OB
.

Note, for brevity, let x = d(O,B) and t = OB in this formula above. Then,

sinhx =
2t

1− t2
and coshx =

1 + t2

1− t2 ,
(8)

so that

tanhx =
2t

1 + t2
. (9)

Let F (t) = (2t)/(1 + t2). We claim that F is the above isomorphism. Recall the definition of the inverse
of a point in the hyperbolic plane, Definition 2.3. By Proposition 2.4, if a point in the Poincaré model lies
on an orthogonal arc in the Poincaré model, then we can conclude that the corresponding inverse point lies
also on the circle containing the arc but outside of the Poincaré model. Now, consider Figure 12.

We will start by showing that F is this isomorphism when considering a point that bisects the chord,
which is point A. We will then show that this isomorphism holds for any point along the chord. First, let
the distance from point O to point B be equal to t. Since Q is the inverse of B, we know that the distance
from O to Q is 1/t. Similarly, the distance from O to P is the average of the distances from O to B and O
to Q. Therefore, OP = (1/t+ t)/2 = (1 + t2)/2t. Now, we want to show that the distance from point O to
point A is equal to 2t/(1 + t2). To show this, note that we have similar triangles 4OSP and 4OAS. We
then have

OA

OQ
=
OQ

OP
.
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O

Q

R

S

D

P

A

C
G

B E

Figure 12: Isomorphism F from the Poincaré model to the Klein model

And hence, OA ·OP = 1. We can conclude that A and P are inverses. Therefore, OA = 2t/(1 + t2), which
is what we wanted to show.

Now, we want to show that this relationship holds for any point on the chord RS. Let OG = s. Similar
to the argument above, since D is the inverse of G, we know that OD = 1/s. The distance OE is the average
of the distances OG and OD. Therefore, OE = (1/s+ s)/2 = (1 + s2)/2s. Again, we have similar triangles
4OAC and 4OEP . We then have

OC

OA
=
OP

OE
.

Since we have established that points A and P are inverses, we know OA · OP = 1. Hence, OC · OE =
OA ·OP = 1. We can conclude that C and E are inverses. Therefore, OC = 2s/(1 + s2), which is what we
wanted.

Thus, F is the isomorphism from the Poincaré model to the Klein model. This isomorphism will be
helpful when trying to prove Theorem 5.1 in Section 5.1.

5.1 Right Triangle Trigonometric Identities

In the Euclidean plane, there are certain identities that can only be applied to a triangle containing a right
angle. Similarly, in the hyperbolic plane, some identities only hold for right triangles. In this section, we
present a theorem that contains three identities in which the triangle must contain a right angle in order for
the identities to be applied.

Theorem 5.1. Given any right triangle 4ABC, with ∠C being the right angle, in the hyperbolic plane. Let
a, b, and c denote the hyperbolic lengths of the corresponding sides. Then

sinA =
sinh a

sinh c
and cosA =

tanh b

tanh c ,
(10)

cosh c = cosh a · cosh b = cotA · cotB, (11)

cosh a =
cosA

sinB
. (12)

15



Proof. We will show that formulas (11) and (12) follow from formula (10). Then we will prove formula (10).
Recall the identities sin2A+ cos2A = 1 and cosh2 a− sinh2 a = 1. We then have

1 = sin2A+ cos2A

1 =
sinh2 a

sinh2 c
+

tanh2 b

tanh2 c

sinh2 c = sinh2 a+ cosh2 c · tanh2 b

1 + sinh2 c = 1 + sinh2 a+ cosh2 c · sinh2 b

cosh2 b

cosh2 c = cosh2 a+ cosh2 c · sinh2 b

cosh2 b

cosh2 c · (cosh2 b− sinh2 b) = cosh2 a · cosh2 b

cosh c = cosh a · cosh b.

This gives the first equality in formula (11). Now, applying formula (10) to B instead of A, we have

sinB =
sinh b

sinh c
.

Therefore,

cosA

sinB
=

tanh b

tanh c
· sinh c

sinh b

=
cosh c

cosh b
= cosh a.

This gives us formula (12). We will use this formula to get the second equality in (11). Note, cosh b =
cosB/ sinA. We then have

cosh c = cosh a · cosh b.

=
cosA

sinB
· cosB

sinA
= cotA · cotB.

We conclude that formulas (11) and (12) follow from (10). Now, we need to prove formula (10). We will
proceed under the assumption that vertex A of the right triangle coincides with the center O of the circle
κ in the Poincaré model. Refer to Figure 13. The points B′ and C ′ are the images of B and C under the

isomorphism F . Let B′′ be the point of intersection between
−−→
OB and the orthogonal circle κ1 that contains

the Poincaré line
←→
BC. Note, we will use the same notation as earlier by letting x = d(O,B) and t = OB.

From the Euclidean triangle 4AB′C ′, we have

cosA =
OC ′

OB′
.

Recall that formula (9) says that the hyperbolic tangent of the Poincaré length OB is equal to the Euclidean
length OB′. Hence,

cosA =
OC ′

OB′
=

tanh b

tanh c

which is the second formula in (10). Now, we need to prove the first formula. By Proposition 2.4, B′′ is the
inverse of B in κ, so that

BB′′ = OB′′ −OB =
1

t
− t =

1− t2

t
.
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κ κ1

O = A O1C ′C
C ′′

B′′

G

B

B1

B′
α

α

Figure 13: This figure is used in the proof of Theorem 5.1, equation (10). Let κ be a Poincaré circle with
center O = A and circle κ1 be a circle perpendicular to κ with origin O1. Note that, B and B′′ are inverses
as well as C and C ′′.

Using equation (8), we then have

BB′′ =
2

sinh c
and CC ′′ =

2

sinh b
.

Now, let B1 be the midpoint of BB′′. Note B1 is also the foot of the perpendicular from the center O1

of κ1 to BB′′. Let
−−→
BG be the tangent ray to κ1 at point B. Therefore, ∠O1BG is a right angle and

∠O1B1B ∼= ∠GBO1. Then, ∠BO1B1
∼= ∠GBB1 = α, because both of these angles are compliments of

∠B1BO1. Hence,

sinB =
BB1

O1B

=
BB′′

2
· 1

O1C

=
BB′′

CC ′′

=
2

sinh c
· sinh b

2

=
sinh b

sinh c
.

Since ∠B is an arbitrary acute angle in a right triangle, we can interchange A and B to get the first formula
in (10).

Formula (12) and the second equality in formula (11) do not have Euclidean counterparts but formulas
(10) and the first equality in (11) do. First, we will look at the first equality in formula (11) and we will
show the correspondence to the Pythagorean theorem in the Euclidean plane. Note that if we use the Taylor
series expansions from equation (2), the formula becomes
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cosh c = cosh a · cosh b
∞∑
n=0

c2n

(2n)!
=

∞∑
n=0

a2n + b2n

(2n)!

1 +
1

2
c2 + · · · = 1 +

1

2
(a2 + b2) + · · · .

If we assume triangle 4ABC is sufficiently small, we can ignore the higher-order terms and thus,

c2 ≈ a2 + b2.

Similarly, under the same assumption, formula (10) becomes

sinA ≈ a

c
and cosA ≈ b

c
.

Hence, formula (10) corresponds to the Euclidean ratios of a triangle’s sides.
In both of these cases, we have are working under the assumption that a triangle is “sufficiently small.”

We will explore through example when a triangle fits in this category.

Example 5.2. For this example, we are going to be using equation (11) and the Euclidean Pythagorean
Theorem. Let triangle 4ABC be a right triangle with a = 1 and b = 2. We want to find the length of side
c. In the hyperbolic plane,

cosh c = cosh a · cosh b

= cosh 1 · cosh 2

= 5.8.

Therefore, c ≈ 2.45. Whereas, in the Euclidean plane, a2 + b2 = c2 and hence c ≈ 2.24. We conclude
from this example that a triangle of this size is sufficiently small enough for the two formulas to be good
approximations for each other.

As a counterexample, we are going to look at a slightly larger triangle in which the two formulas are not
good estimates of each other.

Example 5.3. Let triangle 4ABC be a right triangle with sides a = 4 and b = 8. In the hyperbolic plane,
we have

cosh c = cosh a · cosh b

= cosh 4 · cosh 8

= 40702.35.

Therefore, c ≈ 11.31. Whereas, in the Euclidean plane we find that c ≈ 8.94. Comparing these two values for
c, we can see that the formulas are beginning to separate themselves and that this triangle is not sufficiently
small.

Table 2 shows a few more examples of the difference between the hyperbolic length c and the Euclidean
length c for a given right triangle with sides of length a and b. Looking at the last column which shows the
difference between the two values for c, we can see that as the triangle is getting bigger, the difference is
getting larger. Therefore, in order for the hyperbolic identities to break down into the Euclidean identities,
we need the triangle to be sufficiently small.

5.2 Trigonometric Identities for any Triangle

While Theorem 5.1 presents identities for a hyperbolic right triangle, we also have identities that can be
applied to any given triangle in the hyperbolic plane.
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Hyperbolic Euclidean Difference
a = 4, b = 1 c = 4.45 c = 4.12 .33
a = 5, b = 2 c = 6.33 c = 5.36 .97
a = 6, b = 3 c = 8.31 c = 6.71 1.6
a = 13, b = 10 c = 22.3 c = 16.4 5.9
a = 25, b = 30 c = 54 c = 39.05 14.95
a = 40, b = 50 c = 89.3 c = 64 25.3
a = 55, b = 70 c = 124.3 c = 89 35.3

Table 2: A table comparing the hyperbolic length c to the Euclidean length c for a given right triangle with
sides a and b.

A C

B

D

x

b1 b2

c a

(a) Equation (13)

A C

B

D

Ex

y

b1 b2

c
a1

a2

(b) Equation (14)

A C

B

F

z

b

c1

c2

a

α

β

(c) Equation (15)

Figure 14: This figure is used in the proof of Theorem 5.4. In each case, we have a triangle 4ABC and we
drop at least one perpendicular from a vertex to the opposite side in order to prove equations (13), (14),
and (15).

Theorem 5.4. For any triangle 4ABC in the hyperbolic plane,

cosh c = cosh a · cosh b− sinh a · sinh b · cosC (13)

sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
(14)

cosh c =
cosA · cosB + cosC

sinA · sinB
. (15)

Proof. Refer to Figure 14. Before we begin, recall that

cos(x± y) = cosx · cos y ∓ sinx · sin y (16)

and

cosh(x± y) = coshx · cosh y ± sinhx · sinh y. (17)

Now, we will start with the proof of equation (13). Given a hyperbolic triangle 4ABC, we will drop a
perpendicular from B to AC, namely BD in Figure 14a. Let the length of BD = x and b = b1 + b2. Using
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equations (10), (11), and (17), we then have

cosh c = cosh b1 · coshx

= cosh(b− b2) · coshx

= (cosh b · cosh b2 − sinh b · sinh b2) · coshx

= cosh b · cosh a− sinh b · sinh a · cosh a · sinh b2
cosh b2 · sinh a

= cosh b · cosh a− sinh b · sinh a · tanh b2
tanh a

= cosh a · cosh b− sinh a · sinh b · cosC.

This proves equation (13). We use a similar triangle for the proof of equation (14), except we are also going
to drop a perpendicular from A to BC, AE in Figure 14b, of length y. Using equation (10), we have

sinA

sinh a
=

1

sinh a
· sinhx

sinh c
=

sinhx

sinh a
· 1

sinh c
=

sinC

sinh c
.

Similarly,
sinC

sinh c
=

1

sinh c
· sinh y

sinh b
=

sinh y

sinh c
· 1

sinh b
=

sinB

sinh b
.

Therefore, we have equation (14). Lastly, we will use Figure 14c to prove equation (15). In this case, we
are going to drop a perpendicular from C to AB and call the length z. This is going to divide ∠C into two
parts, namely ∠α and ∠β. Using equations (10), (12), and (16), we have

cosh c = cosh(c1 + c2) = cosh c1 · cosh c2 + sinh c1 · sinh c2

=
cosα

sinA
· cosβ

sinB
+ sinh b · sinα · sinh a · sinβ

=
cosα · cosβ + sinα · sinβ · sinh2 z

sinA · sinB

=
(cos(α+ β) + sinα · sinβ) + (sinα · sinβ · sinh2 z)

sinA · sinB

=
cosC + sinα · sinβ (1 + sinh2 z)

sinA · sinB

=
cosC + (sinα · cosh z) · (sinβ · cosh z)

sinA · sinB

=
cosC + cosA · cosB

sinA · sinB
.

Therefore, we have equation (15). It is important that we note for this proof, we are working under the
assumption that the dropped perpendiculars fall within the hyperbolic triangle 4ABC. Without this as-
sumption, we could show in a proof that is generally the same as above that when the dropped perpendicular
falls outside of the 4ABC the equations (13), (14), and (15) still hold.

In the same way that equation (10) and the first part of formula (11) in Theorem 5.1 corresponded
to known Euclidean identities, equations (13) and (14) also have corresponding identities in the Euclidean
plane. Formula (13) is the hyperbolic law of cosines and thus relates to the Euclidean law of cosines. Likewise,
formula (14) is the hyperbolic law of sines and is analogous to the Euclidean law of sines. Similar to the
discussion at the end of Section 5.1, we can see the relationships between these hyperbolic and Euclidean
identities by applying them to a sufficiently small triangle. By doing this, the hyperbolic identities essentially
reduce to their Euclidean counterparts.
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O

a r

π
2

p
2n

Figure 15: Derivation for the formula of the circumference of a circle. Note, a is the length of the perpen-
dicular from the origin O to a side of the n-gon, p is the sum of the lengths of the sides of the n-gon, and r
is the radius of the circle and the n-gon.

6 Circumference and Area of a Circle

In Sections 5.1 and 5.2, we presented a few hyperbolic identities for triangles that, when the triangle is
sufficiently small, reduce to their corresponding Euclidean identities. In this section, we are going to consider
another common geometric shape in the hyperbolic plane, a circle. Similar to triangles, we will see that when
the radius of the circle is small enough, the formulas for the circumference and area of a circle in the hyperbolic
plane reduce to the Euclidean formulas [6].

6.1 Circumference of a Hyperbolic Circle

Before we begin working in the hyperbolic plane, recall how the formula for the circumference of a Euclidean
circle, C = 2πr, is derived in the Euclidean plane. Let pn be the perimeter of a regular n-gon drawn inside
of a circle. Figure 15 shows this scenario for the hyperbolic plane but if we replace the Poincaré lines of
the n-gon with Euclidean lines, then the figure can be applied to the Euclidean scenario. Note, as n → ∞,
the n-gon increases to fill the circle. Therefore, we define the circumference C as C = limn→∞ pn. Using
something like Figure 15 in the Euclidean plane and Euclidean trigonometry, we have

pn = r · 2n · sin
(
π

n

)
= r · 2n ·

[
π

n
− 1

3!

(
π

n

)3

+
1

5!

(
π

n

)5

− · · ·
]

= 2πr − 2rπ2

n2

[
π

3!
− 1

5!

(
π3

n2

)
+ · · ·

]
.

Hence,
C = lim

n→∞
pn = 2πr.

We will use this same idea to prove formula (18) in the following theorem.

Theorem 6.1. (Gauss) In the hyperbolic plane, the circumference C of a circle of radius r is given by

C = 2π sinh r. (18)

21



Proof. Since we are now working in the hyperbolic plane, we use formula (10) and Figure 15 to find that

sinh

(
pn
2n

)
= sinh r · sinh

(
π

n

)
,

which by series expansion becomes

pn
2n

[
1 +

1

3!

(
pn
2n

)2

+
1

5!

(
pn
2n

)4

+ · · ·
]

=
π

n
· sinh r

[
1− 1

3!

(
π

n

)2

+
1

5!

(
π

n

)4

− · · ·
]
.

Multiplying both sides by 2n, we then have

pn

[
1 +

1

3!

(
pn
2n

)2

+
1

5!

(
pn
2n

)4

+ · · ·
]

= 2π · sinh r

[
1− 1

3!

(
π

n

)2

+
1

5!

(
π

n

)4

− · · ·
]
.

Therefore,

lim
n→∞

pn

[
1 +

1

3!

(
pn
2n

)2

+
1

5!

(
pn
2n

)4

+ · · ·
]

= lim
n→∞

2π · sinh r

[
1− 1

3!

(
π

n

)2

+
1

5!

(
π

n

)4

− · · ·
]

C = lim
n→∞

pn = 2π sinh r.

Formula (18) is similar to the Euclidean formula for the circumference of a circle. If we let r approach 0
in formula (18), then it resembles the Euclidean formula C = 2πr.

Example 6.2. In this example, we are going to look at how small the radius r must be in order for the
Euclidean circumference to be a relatively good approximation for the hyperbolic circumference.

First, suppose we are given a hyperbolic circle κ such that the radius r = 2. We then have

Ch = 2π sinh(2)

≈ 2π · (3.63)

≈ 22.79.

Note, the Euclidean circumference of κ is

Ce = 2π · (2)

≈ 12.57.

This shows that if the radius of the hyperbolic circle is 2, the Euclidean circumference is nearly half the hy-
perbolic circumference and thus is not a good approximation. In contrast, suppose we are given a hyperbolic
circle γ such that the radius r = 1. We then have

Ch = 2π sinh(1)

≈ 2π · (1.18)

≈ 7.38.

Note, the Euclidean circumference of γ is

Ce = 2π · (1)

≈ 6.28.

Comparing these two values for the circumference of circle γ, we can see that if the radius is 1, the hyperbolic
circumference is approximately the Euclidean circumference. We can conclude that a circle of radius 2 is too
large for the formula of the hyperbolic circumference to reduce to the Euclidean version. Whereas, a circle
of radius 1 has a hyperbolic circumference that is approximately equal to the Euclidean circumference. To
emphasize this concept, if we looked at a circle of radius < 1, we would see that Ch and Ce would be even
closer in value.
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Theorem 6.1 provides the link used to write the law of sines in a form valid in neutral geometry. This
form of the law of sines is described in Corollary 6.3.

Corollary 6.3. (J. Bolyai) The sines of the angles of a triangle are to one another as the circumference of
the circles whose radii are equal to the opposite sides.

Bolyai denoted the circumference of a circle of radius r by ◦r [6]. Hence, this result can be written as

◦a : ◦b : ◦c = sinA : sinB : sinC. (19)

Proof. To show how this holds in the hyperbolic plane, looking at formula (14), if we divide everything by
2π, we then have

sinA

2π · sinh a
=

sinB

2π · sinh b
=

sinC

2π · sinh c
.

By applying Theorem 6.1, this implies that

sinA

◦a
=

sinB

◦b
=

sinC

◦c
.

Therefore, we have equation (19). Hence, Corollary 6.3 holds in hyperbolic geometry. A similar argument
concludes that it also holds in the Euclidean and spherical planes. We can conclude that the version of the
law of sines described in Corollary 6.3 is valid in neutral geometry.

6.2 Area of a Hyperbolic Circle

Next, we will introduce the definition of the defect of a triangle and two theorems which will lead to the
formula for the area of a hyperbolic circle.

Definition 6.4. Given a triangle 4ABC, the defect, denoted δ(ABC), is defined as the difference between
180◦ and the angle sum of 4ABC:

δ(ABC) = 180◦ − (∠A)◦ − (∠B)◦ − (∠C)◦.

(It is important to note that the defect of a triangle can also be measured in radians.)

Theorem 6.5. In hyperbolic geometry, the area of triangle 4ABC is

Area(4ABC) = δ(ABC).

Let K = Area(4ABC) in radians. If4ABC is a right triangle where ∠C = π/2, then K = π/2−(A+B).
Using this formula for K where 4ABC is a right triangle, we have a formula that relates the area to the
side lengths a and b, namely formula (20).

Theorem 6.6. Given a right triangle 4ABC with area K, we have

tan
K

2
= tanh

a

2
· tanh

b

2
. (20)

Like most of the other theorems we have discussed, this theorem has a corresponding formula in the
Euclidean plane. That is, for Euclidean geometry, formula (20) becomes K/2 = a/2 · b/2 [6].

Recall, the formula for the area of a circle in the Euclidean plane is A = πr2. Similar to the derivation
of the circumference in the Euclidean plane, we will use Figure 15. Note, the triangle area is 1/2 · p/n · a
and hence, the n-gon area is 1/2 · pa = a/2 · p. Recall that p is the perimeter of the n-gon, therefore as
n→∞ we have p→ 2πr. Similarly, as n→∞ we also have that a→ r. Substituting these into the area of
the polygon, we have as n→∞, the area goes to r/2 · 2πr = πr2. Keeping this derivation in mind, we now
present the formula for the area of a hyperbolic circle.

Theorem 6.7. The area of a circle of radius r is 4π sinh2(r/2) = 2π(cosh r − 1).
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Proof. Let A be the area of a circle and let Kn be the area of the inscribed n-gon. We then have

A = lim
n→∞

Kn.

Applying formula (20) and using Figure 15, we have

tan
K/2n

2
= tanh

p/2n

2
· tanh

a

2

4n tan
K

4n
= 4n tanh

p

4n
· tanh

a

2
.

Note, due to the continuity of tangent and hyperbolic tangent and since

4n tan
K

4n
= K +

K

3
· K

4n

2

+ · · · ,

4n tanh
p

4n
= p− p

3
· p

4n

2
+ · · · ,

we have

lim
n→∞

(
4n tan

Kn

4n

)
= lim

n→∞

(
4n tanh

pn
4n
· tanh

an
2

)
lim
n→∞

Kn = lim
n→∞

pn · lim
n→∞

tanh
an
2
.

Using similar logic to the Euclidean case presented above, as n → ∞, we have pn → C and an → r. From
equation (18) in Theorem 6.1, we have

A = 2π sinh r · tanh
r

2
.

Applying the identities

tanh
r

2
=

sinh r

cosh r + 1
,

sinh2 r = cosh2 r − 1,

2 sinh2 r

2
= cosh r − 1,

we have

A =
2π sinh2 r

cosh r + 1
=

2π(cosh2 r − 1)

cosh r + 1
=

2π(cosh r − 1)(cosh r + 1)

cosh r + 1
= 2π(cosh r − 1).

This gives one version of the formula presented in Theorem 6.7. Applying the last identity above, we
obtain the other formula:

A = 2π(cosh r − 1) = 2π

(
2 sinh2 r

2

)
= 4π sinh2 r

2
.

7 Saccheri and Lambert Quadrilaterals

In section 6, we discussed different formulas in regards to hyperbolic circles. In this section, we will explore
Saccheri and Lambert quadrilaterals. Recall, the definitions of such quadrilaterals.

Definition 7.1. A Saccheri quadrilateral is a quadrilateral �ABCD such that ∠A and ∠B are right angles
and AD ∼= BC.
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(a) A Saccheri quadrilateral.

A B

CD

θ

(b) A Lambert quadrilateral.

Figure 16: Quadrilaterals in the hyperbolic plane.

It is important to note that we are not assuming anything about the angles ∠C and ∠D. Referring to
Figure 16a, side AB will be called the base, sides AD and BC will be called the legs, and side CD will be
called the summit. Similarly, angles ∠C and ∠D will be called summit angles.

Definition 7.2. A Lambert quadrilateral is a quadrilateral that has at least three right angles.

Similar to the Saccheri quadrilateral, we are not assuming anything about angle ∠D in the Lambert
quadrilateral shown in Figure 16b. However, it should be noted that the measure of angle ∠D varies
depending on the geometry in which the quadrilateral is contained. If the Lambert quadrilateral is in the
Euclidean plane, ∠D = 90◦, if it is in the hyperbolic plane, ∠D < 180◦, and if it is in the spherical plane,
∠D > 180◦.

Besides the definitions above, we also need to recall a few properties about geometry in the hyperbolic
plane. In the hyperbolic plane, the following properties hold: the angle sum of every triangle is < 180◦, the
summit angles of all Saccheri quadrilaterals are acute, the fourth angle of every Lambert quadrilateral is
acute, and rectangles do not exist [6].

7.1 Saccheri Quadrilaterals

In this section, we are going to consider the Saccheri quadrilateral shown in Figure 17 with base of length b,
legs of length a, and summit of length c.

Theorem 7.3. For a Saccheri quadrilateral,

sinh
c

2
= cosh a · sinh

b

2
.

Furthermore, since cosh2 a = 1 + sinh2 a > 1, we conclude that sinh(c/2) > sinh(b/2) and hence, c > b.

Proof. Refer to Figure 17. Let θ = ∠DAC and d = AC. Applying equation (15), we have

cosh c = cosh a cosh d− sinh a sinh d cos θ.

Since d does not show up in our desired equation, we want to ultimately eliminate it. By using equations
(10) and (11), we are able to do so. Note,

cos θ = sin

(
π

2
− θ
)

=
sinh a

sinh d
.

This implies that

sinh d =
sinh a

cos θ
.
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Figure 17: Saccheri quadrilateral used in the proof of Theorem 7.3.

Similarly, we have
cosh d = cosh a cosh b.

Therefore,

cosh c = cosh a(cosh a cosh b)− sinh a

(
sinh a

cos θ

)
cos θ

= cosh2 a cosh b− sinh2 a

= cosh2 a cosh b− (cosh2 a− 1)

= cosh2 a(cosh b− 1) + 1

cosh c− 1 = cosh2 a(cosh b− 1)

Recall the identity from the proof of Theorem 6.7, 2 sinh2(x/2) = coshx− 1. We then have

2 sinh2 c

2
= cosh2 a

(
2 sinh2 b

2

)
.

Dividing both sides by two and taking the square root yields the desired result.

7.2 Lambert Quadrilaterals

Lambert quadrilaterals are closely related to Saccheri quadrilaterals. More specifically, a Saccheri quadrilat-
eral is two Lambert quadrilaterals [7].

Theorem 7.4. A Lambert quadrilateral is one-half of a Saccheri quadrilateral.

As a result of this relationship between these two quadrilaterals, we have the corresponding theorem to
Theorem 7.3 for Lambert quadrilaterals.

Theorem 7.5. Given a Lambert quadrilateral �ABCD where ∠D is the acute angle, if c is the length of a
side adjacent to ∠D, b is the length of a side opposite ∠D, and a is the length of the other adjacent side,
then

sinh c = cosh a sinh b.

Proof. This directly follows from Theorem 7.4 and Theorem 7.3.

8 Notes on Spherical Trigonometry

Many of the theorems presented above for the hyperbolic plane were analogous to a formula in the Euclidean
plane such as the law of cosines, law of sines, and the Pythagorean theorem. In this section, we will see that
these formulas also have a counterpart in the spherical plane.
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Figure 18: Spherical plane: the surface of a sphere with radius r. Note, P and Q are spherical points and
` = PQ and m = NQ are spherical lines.

Spherical geometry is geometry that takes place on the surface of a sphere, as shown in Figure 18. In
the spherical plane, points are defined as what we know to be a point in the Euclidean plane. For example,
in Figure 18, P and Q are spherical points. Lines, however, are arcs of great circles [10]. A great circle on
a sphere is any circle whose origin coincides with the origin of the sphere. Another way to interpret lines is
the shortest distance between two points along the sphere. For example, in Figure 18, ` and m are spherical
lines. Another important concept is the length of a line. In the spherical plane, the length of a line a = AB
is equal to the size of angle ∠AOB in radians, where O is the origin of the sphere. For example, in Figure 18,
the length of ` is equal to the radian measure of angle ∠POQ. Lastly, similar to hyperbolic geometry, the
Euclidean parallel postulate doesn’t hold in spherical geometry. In the spherical plane, there are no parallel
lines at all [3].

8.1 Spherical Triangles

Before taking a closer look at triangles in spherical geometry and the theorems that relate, we need to define
an angle measure in the spherical plane. In the spherical plane, the angle measure is determined by the
measure of the angle created at the origin of the sphere by the two great circles containing the arcs that
make the angle of interest. For example, in Figure 18 the measure of angle ∠PQN is determined by the
measure of the angle created by the great circle that creates the equator of the sphere and the great circle
containing line m.

An example of a spherical triangle is shown in Figure 19. In this figure, we have a sphere with radius
r = 1 and origin O and we have a spherical right triangle 4ABC where angle ∠BCA is a right angle. Let
angles ∠BOA = θ and ∠COA = δ and ∠BOC = α. Thus, the lengths of the side a = α, b = δ, and
c = θ. We then construct the point C ′ by dropping a perpendicular from B to OC. Note that B and C ′

orthogonally project onto the same point, namely A′. We can also conclude that angles ∠BAC and ∠BA′C ′

are congruent. Now, we can look at the four Euclidean triangles that we have created inside this sphere.
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Figure 19: A sphere with radius r = 1 and origin O. A spherical right triangle 4ABC on the surface of
the sphere where angle ∠BCA is a right angle. Construct the point C ′ by dropping a perpendicular from B
to OC. Note that B and C ′ orthogonally project onto the same point, namely A′, and angles ∠BAC and
∠BA′C ′ are congruent.

To start, consider 4BOC ′. We have sinα = BC ′/OB and thus

sinα = BC ′. (21)

Similarly, we have
cosα = OC ′. (22)

From 4BOA′. we have
sin θ = BA′ (23)

and
cos θ = OA′. (24)

These above equations will become important when we prove Theorems 8.1 and 8.2.

8.1.1 Trigonometry and the Ratio of Sides

As we noted above, for a right triangle in the Euclidean plane, the sine of an angle can be interpreted as the
ratio of the opposite side to the hypotenuse. There are also relationships between the other trigonometric
functions and the sides of a triangle in the Euclidean plane. For the hyperbolic plane, formula (10) is the
same idea. In the spherical plane, we also have the spherical analogue of formula (10).

Theorem 8.1. Let triangle 4ABC be a spherical right triangle with the right angle at ∠C . Then,

sinA =
sin a

sin c
cosA =

tan b

tan c
. (25)
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Proof. Consider triangle 4BA′C ′ in Figure 19. Using equations (21) and (22), we obtain the first part of
equation (25). Note,

sinA ∼= sinA′

=
BC ′

BA′

=
sinα

sin θ

=
sin a

sin c
.

Using 4OA′C ′, we have

sin δ =
C ′A′

cosα

and thus C ′A′ = sin b cos a. We will use this result and equations (23) and (24) to obtain the second equation
in (25). We have

cosA ∼= cosA′

=
C ′A′

BA′

=
sin b cos a

sin c

=
tan b cos b cos c

tan c cos c

=
tan b

tan c
.

8.1.2 Pythagorean Theorem

Theorem 8.2. Let triangle 4ABC be a spherical right triangle with the right angle at ∠C and let the sphere
have radius r. Then,

cos
c

r
= cos

a

r
cos

b

r
.

It is important to note that we will only be working with spheres of radius r = 1 and thus, Theorem 8.2
becomes

cos c = cos a cos b, (26)

which is the equation we will prove.

Proof. Note, we will be using Figure 19 and equations (22) and (24). Consider triangle 4OC ′A′. We have

cos δ =
OA′

OC ′
=

cos θ

cosα

cos b =
cos c

cos a

Hence, cos c = cos a cos b.
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Figure 20: Spherical triangle 4ABC used in the proof of Theorems 8.3 and 8.4.

8.1.3 Law of Cosines

Theorem 8.3. Let triangle 4ABC be a spherical triangle. Then,

cos c = cos a cos b+ sin a sin b cosC.

Proof. Before we begin, we need to recall the identity cos(x+ y) = cos s cos y + sinx sin y. Now, we will be
using this identity, Figure 20, and equations (25) and (26). Let BD = x be the perpendicular dropped from
B to AC. We then have

cos c = cos b1 cosx

= cos(b− b2) cosx

= (cos b cos b2 + sin b sin b2) · cosx

= cos a cos b+ sin b sinh b2
cos a

cos b2

= cos a cos b+ sin b sin a · tan b2
tan a

= cos a cos b+ sin a sin b cosC.

8.1.4 Law of Sines

Theorem 8.4. Let triangle 4ABC be a spherical triangle. Then,

sinA

sin a
=

sinB

sin b
=

sinC

sin c
.

Proof. Note, we will be using Figure 20. Let BD = x be the perpendicular dropped from B to AC. Applying
Theorem 8.1 to triangles 4ABD and 4CBD we have

sinA =
sinx

sin c

and

sinC =
sinx

sin a
.
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Therefore, solving both equations for sinx we obtain sinA sin c = sin a sinC and hence

sinA

sin a
=

sinC

sin c
.

If we drop another perpendicular from A to BC and go through similar steps, we find that

sinB

sin b
=

sinC

sin c

and thus we have the desired equation.

8.2 Circumference and Area of a Circle

The formulas for circumference and area of a circle of radius r are very similar to the formulas used in the
hyperbolic plane.

Theorem 8.5. A circle in the spherical plane with radius r has circumference C = 2π sin r.

Theorem 8.6. A circle in the spherical plane with radius r has area A = 4π sin2(r/2).

Rather than using the hyperbolic sine function as we did when working in the hyperbolic plane, here we
are using the circular sine function. Other than this difference, the formulas for circumference and area in
the hyperbolic and spherical planes are the same.

9 Conclusion

Euclid’s book, The Elements, made large waves in all of mathematics. In particular, it changed the field
of geometry. At the time, Euclidean geometry was the only geometry known. The discovery of hyperbolic
geometry has impacted a variety of fields. It is not only used in mathematics but also in physics and even
astrophysics. In all of these fields, models of the hyperbolic plane prove helpful. In this paper, we introduced
the Poincaré and Klein models but there are many others out there. Through the use of these models, we
can see how Euclidean geometry and hyperbolic geometry relate to each other.

Through the use of the Poincaré model, we were able to explore the similarities and differences between
hyperbolic and Euclidean shapes. In particular, for triangles we explored the relationship between the
angles and sides and saw how well-known Euclidean formulas had analogous formulas in the hyperbolic
plane. Similarly, we looked at the formulas for the area and circumference of a circle in both the hyperbolic
and Euclidean plane. We also noted that the hyperbolic equations began to resemble the Euclidean equations
as the shapes got smaller and smaller.

While spherical geometry was briefly discussed, this area could be pursued further. Interesting results
could be found by examining the spherical formulas in comparison to the Euclidean and hyperbolic formulas.
We showed that there is a form of the Law of Sines for neutral geometry. By studying the three planes
together, it is possible that other interesting formulas also hold in neutral geometry. In conclusion, it is
intriguing to study non-Euclidean geometry and see how closely hyperbolic geometry is related to Euclidean
geometry.
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