BBMB Majors' Handbook 2019-20

Table of Contents

I. Requirements & Curriculum p. 2-3
 A. Guidelines for First- and Second-year students
 B. Required courses
 C. Electives
 D. Summary of Senior Year Requirements

II. Research and Thesis p. 4-5

III. Senior Requirements: Details, Advice & Timeline p. 5-9
 A. Degree candidacy declaration
 B. Senior Major Exams (Orals and Writtens)
 C. Senior Research, Thesis, and Seminar
 D. Honors in Major Study

IV. Study Abroad p. 10-11

V. Post-Graduation Plans p. 11-13

Appendix A: BBMB course descriptions p. 13-14

Appendix B: Research Internships p. 14-17
 Examples of recent BBMB senior research p. 17

BBMB Program Learning Goals

Students graduating from Whitman College with a BBMB major will:

• integrate concepts from biology, chemistry, and physics to understand the structure and function of biological molecules and their interactions in cells and organisms

• read and critique the molecular life science literature

• perform experiments to address research questions in the molecular life sciences

• effectively communicate science orally and in writing
I. Requirements & Curriculum
The BBMB major at Whitman College:
The molecular life sciences have roots in the core disciplines of biology, chemistry, and physics. Since 1991, the Whitman College curriculum has included a rigorous course of study in the molecular life sciences. Originally, this was a combined major in biology and chemistry. With the addition of biophysics to the curriculum in 2002, we crafted BBMB as a new interdisciplinary program. Introductory courses in biology, chemistry, math, and physics, taken in the freshman and sophomore years, provide the foundation for the major (see section Ib, on the following page). The junior and senior year includes the core courses of biochemistry, biophysics, and molecular biology, along with electives in the area of interest for each student. The major concludes with senior research, a required thesis, and a senior seminar that provides a forum for seniors to present their senior research projects to faculty and students.

A. Guidelines for First- and Second-Year students interested in BBMB:
As an interdisciplinary program that draws on three different areas of science – Chemistry, Biology, and Physics - BBMB is a highly structured major with lots of requirements. The advanced classes in BBMB have introductory prerequisites in math, physics, chemistry, and/or biology, and to complete the BBMB major in 4 years, you must complete those prerequisites in your first 2.5 years at Whitman. The purpose of this info sheet is to spell those introductory/prerequisite requirements out. Regardless of what major you choose, remember to consult the College Catalog (“course catalog”) for requirements of any major program, general education (“distribution”) requirements, and information on individual classes. The course catalog is The Ultimate Advisor: it knows everything you really need to know to graduate, and all of the information in it is accurate. Consult it frequently to map out your course of study for graduation and to choose your classes.

Pre-major advice in a nutshell:
The key to completing Whitman’s BBMB major in 4 years is to complete the classes listed below by the end of the first semester of your junior year (or before you go abroad - whichever comes first).

Classes you must complete by the end of the first semester of your junior year
Math 125, 126, and 225 (Calculus I, II, and III)
- If you had calculus in high school you may be able to leapfrog 1 or 2 semesters of calculus by passing a placement exam offered by the Math Department. See the Math Dept. website for more info on that exam.

Physics 145 or 155, and Physics 156, with laboratories
- You must start physics in either your 1st or 2nd year to complete the BBMB major.
- You can take either Physics 145 (fall) or Physics 155 (spring). However, you must take Physics 156, which is offered only in the fall. This is because Physics 156 is a prerequisite for BBMB 324 (Biophysics).

Chemistry 125 & 126; or Chem 140, plus associated laboratories, and Chemistry 245, 246, 251 & 252
(Chemistry offers a placement exam for this class. For more info on that, see the Chemistry Dept. Website. If you don’t go abroad Jr. year, it’s feasible - though not recommended - to take Chemistry 140 as a sophomore year and still complete a BBMB major.

- Biology 111 (Biological Principles, with lab) and Biology 205 (Genetics, without lab).
- For Chem 125/126 it is best to start chemistry right away in the 1st year, because it is a prerequisite for Biology and other Chemistry classes.
- Chem 140 is a more advanced, faster-moving version of intro chemistry. Chemistry offers a placement exam for this class. For more info on that, see the Chemistry Dept. Website. If you don’t go abroad Jr. year, it’s feasible - though not recommended - to take Chemistry 140 as a sophomore year and still complete a BBMB major.

- Chemistry 245, 246, 251, and 252 Both semesters of organic chemistry and labs should be completed within your first 3 years at Whitman.

Biology 111 (Biological Principles, with lab) and Biology 205 (Genetics, without lab).
- Chemistry is a prerequisite for these classes. Many BBMB majors start biology classes in their 2nd year.
- Genetics Lab (Biol 206) is separate from Genetics class and is not intended for BBMB majors.
B. Required courses for the BBMB major:

- Biology: 111, 205 Mathematics 125, 126, 225
- Chemistry: 125, 135, 126, 136, OR 140; 245, 251, 246, 252
- Physics: 155, 156; or 145, 156
- Upper-level "core" required classes: BBMB 324, 334 (lab), 325, 335 (lab), 326, 336 (lab)
- Senior year thesis and seminar classes: A total of three credits of BBMB 490 (Thesis), plus BBMB 400 (Senior Seminar; spring only). December grads: you must enroll in BBMB 400 in your final spring semester at Whitman, whether or not you have completed your senior research. BBMB 490 credits should be taken during your senior year, regardless of when you do your thesis research.
- 7 credits of electives: Any 200-level-or-above classes offered by BBMB, Chemistry, Biology, Math, Computer Science, or Physics (see below).

➢ Full course descriptions for BBMB required courses are listed in the college course catalog and in Appendix A at the end of this handbook.

C. Elective courses in the BBMB major:

At least seven additional credits are required from biology, BBMB, chemistry, physics, math, or computer science courses numbered 200 or above. The P-D-F grade option is not allowed for any BBMB, biology, chemistry, or physics course that applies to the BBMB major. [Exceptions: Biology 206 may not be used to fulfill BBMB elective credit requirements. Only 1 credit of Chemistry 401 or 402 or Mathematics 299 may count towards the BBMB major; up to 2 credits of independent projects (Biology/BBMB 481, 482, Chem 390, 451, 452, Computer Sci 481 and 482, or Physics 483, 484) can count towards the BBMB major]

Elective courses are sometimes offered by new or visiting faculty, and those may not make it into the course catalog in time for spring pre-registration. Check updated online course information and pay attention to list-serve and email announcements about new classes in these departments.

Study abroad courses can also be used as electives to fulfill major requirements. Before going abroad, discuss elective possibilities with your academic advisor or the BBMB program director; provide catalog descriptions of on specific study-abroad courses in question, when you do so. [See pages 9-10 of this handbook for more information on study abroad.]

D. Summary of senior year requirements:

BBMB majors must complete a research project, write a research thesis describing the work and present it as a seminar to the department. Thesis and seminar are required senior year capstone courses for which you receive credit (BBMB490, BBMB400). Also all BBMB seniors also must pass a senior assessment containing both oral and written components. The oral component consists of a one-hour question/answer discussion with two or more participating faculty. The written component consists of the senior thesis.

Details on the senior research & thesis requirements, and on oral and written assessments, are provided in the following sections.
II. Research & Thesis (BBMB 490)

All BBMB students must do a research project that can serve as the basis for the senior thesis. Projects typically involve laboratory work, but can involve clinical or epidemiologic research, or, in rare cases, review and critique of data from the literature, as long as it's done to assess an hypothesis in the molecular life sciences. Your research project does not need to be biochemical or molecular: most research in Biology or Chemistry can be used for a BBMB senior thesis. If you aren’t sure about whether a research opportunity is BBMB thesis-worthy, discuss it with your advisor.

The Whitman BBMB program is very flexible with regard to the research requirement: there is no set minimum number of hours for an acceptable research project, and the projects can (hypothetically) be done at any time between the sophomore year and the end of senior year at Whitman. They can be done on- or off-campus, part-time or full-time, during a summer, or during the academic year. The important thing is to take part in a supervised research project for which you obtain and/or analyze data, and then to communicate your results in your senior thesis and seminar.

Once you find a potential thesis project, it should be approved for use as a thesis project by a BBMB "thesis advisor" - preferably before the end of your junior year. If you do research with a Whitman prof, they will likely serve as your thesis advisor. If you line up a project somewhere else, discuss it with Biology, Chemistry, Physics, or BBMB faculty whose research or teaching interests are most-closely related to your project, and see if they are willing to serve as your on-campus thesis advisor during your senior year.

- Hey juniors! Each Fall, BBMB faculty hold an info session on research and thesis. Go to it!
- Near the end of your junior year, you will be asked by the BBMB program director to provide information on your plans for thesis research.

Thesis and seminar credit, and your thesis advisor

Students get credit for research data analysis, thesis writing, and research seminar presentation during their senior year. For this, you must register for a total of 3 credits of BBMB 490 during your senior year, and take the BBMB 400 seminar in your final spring semester at Whitman. The 490 credits can be split between fall and spring, or they can all be taken in the spring of senior year. Even if you do your research prior to your senior year (e.g., during junior year, or a previous summer), you must register for BBMB 490 during your senior year, because technically, BBMB490 is for thesis work, not for the work you do in the laboratory.

Registration for a section of BBMB 490 will require consent from your thesis advisor: a Whitman BBMB, Chemistry, Biology, or Physics faculty member who has agreed to serve that role. They will work with you throughout your senior year to guide you through your thesis writing and your senior seminar presentation. For thesis credit, your research advisor must approve your research project and agree to serve as advisor for it, and they will provide consent for you to register for their section of BBMB490. After that, you'll work with them to prepare your senior seminar (to be presented in BBMB 400 in spring of your senior year), and to complete your thesis (due on the last day of classes of your senior year).

- If you do not identify a thesis advisor and project by August of your senior year, you will be assigned to a Biology or BBMB faculty member for your senior thesis.
- December grads must remember to take BBMB400 in their last spring semester at Whitman - even if their research and thesis won't be complete until the following fall semester.
- December grads must arrange w/ the BBMB Director to give their senior research presentation near the end of their final fall semester, if they do not present in BBMB400 the previous spring.
Finding a research gig: What to do and when to do it

You should start thinking about finding a research project in the late fall of your junior year, at the latest. You can work in a lab at Whitman (or elsewhere in Walla Walla) during your senior year, or do a summer research internship at Whitman or off campus such as at a university, research institute, hospital, biotech company, or government laboratory. Many summer positions carry stipends and involve 8 - 10 weeks of full-time work - but shorter internships, or part-time, unpaid laboratory projects are also totally acceptable. And the research need not be done in the senior year; some students write their theses on research done in sophomore or junior summers, or during study abroad (this can be done if you keep records of all of your laboratory data and methods). As stated above, BBMB is very flexible with regard to the research requirement.

There are lots of ways to find a thesis project. You can find internship possibilities online, work with a professor at Whitman, find a spot at a university, hospital, government agency, or biotech company near home, or do research during study abroad. Pay attention to the frequent notifications posted on the BBMB and Biology list-serves. Many students find opportunities at other universities through word-of-mouth or personal connections. More details are provided below, in section III.

Once you find a potential research project, you need to identify a Whitman faculty who can approve the project, and then serve as a thesis advisor. It's best to do this in spring of your junior year. However, if you run into difficulties or change projects, you can finalize advisor arrangements any time before the end of add/drop period September of your senior year (that's the deadline for finalizing your BBMB490 registration). Your research advisor need not be one of the core BBMB profs - Chemistry and Biology faculty commonly serve as BBMB research advisors. Talk to faculty or look at their course offerings and web pages, and contact the professor(s) who have research expertise most closely related to your research project. [For example, if you do research in protein structure, Prof. Juers might be the best advisor; if you work in neurobiology it might be Prof. Withers; for gene regulation, it might be Prof. Vernon, etc..] Then, register for your advisor's section of BBMB 490 in your senior year.

Steps and a timeline you should follow to fulfill senior research and thesis requirements are provided below in section III. That section also includes information on honors criteria.

Juniors: Attend the Bio/BBMB research/thesis info session given each fall. Also, suggestions on where to hunt for summer research internships, and examples of recent BBMB senior research projects are provided in Appendix B.

Keep in mind: you don't need to land a competitive full-time internship - many Whitties find great research gigs on their own by contacting professors at universities or biotech companies. Talk to BBMB and Bio seniors about their research to get ideas

If you arrange a good internship early enough in your junior year, you can apply for funding from the Student Engagement Office. Their deadline is usually in late March.

III. Senior Year Requirements - Timeline and Details

Some of these requirements include forms that must be filled out by a particular deadline. Exact deadline dates can vary from year to year. Consult the Whitman Senior Handbook https://www.whitman.edu/registrar/services-for-students-and-alumni/senior-handbook#ade for updated info.

Pay attention to emails or list-serve postings from BBMB during your junior and (especially) senior years. Your graduation may depend on it!

A. Degree candidacy declaration

This form comes from the Registrar's office and must be completed by all seniors who wish to graduate. It is typically due in early November. Consult the current Whitman Senior Handbook for the exact date.
B. Senior Assessment – Oral and Written “exams”

1) Written: The senior thesis will serve as a written component of your senior assessment. Your thesis is supervised and graded by your thesis advisor, but an advanced draft of the thesis itself will be appraised by at least one other member of the BBMB faculty, chosen by your thesis advisor or the BBMB director.

In April of your senior year you will receive an email from the BBMB Director to upload a draft of your thesis on the BBMB Canvas site. Do this: it’s how we collect theses to determine if you pass your senior written exam. Pay attention to this and all other BBMB emails throughout your senior year!

2) Orals: YOUR ORAL EXAM WILL BE SCHEDULED FOR YOU and you will be informed of the date and time. Approximately 1/2 of senior orals will be scheduled for November and December in the fall semester; the rest will take place in January and February, starting immediately after winter break. You will be notified of the exact date at least 2 weeks before the date of your exam – but the info above is sufficient for you not to be caught off-guard.

Your oral exam will be conducted with 2 faculty members from the BBMB program. The purpose of the exam to gauge your grasp of fundamental biomolecular vocabulary and concepts covered in required courses, your ability to think on your feet, and your comfort discussing molecular life science. Questions will not be limited simply to material you covered in your classes; rather, they will try to address your integration of factual material and ideas in biochemistry, biophysics, and molecular biology, and their application in biological systems. Some questions will ask you to apply stuff you know to new scenarios. There is not a predetermined set of questions for these exams - each one is different. You may be asked to look at images or draw chemical structures or cartoons on the board, to propose experiments, or interpret data. Unlike written exams, there is opportunity for back-and-forth communication in these orals: you may ask for clarification of questions or simply say that you don’t know. The oral exam will last ~45-50 minutes. The faculty will then discuss your exam and determine whether the exam was a pass (or a fail), and will inform you of the result. If you do not pass the exam, you’ll be scheduled to take it again no sooner than 3 weeks after the first attempt.

Later in the year, faculty will consider your performance on your oral as one criterion when faculty discuss nominations for honors candidacy (see below).

Here is a general list of topics that are often included in oral exams

- Biological, Chemical, and Physical Foundations
 - Thermodynamics
 - Kinetics
 - Equilibria (especially acid-base)
 - Bonding, structure, reaction mechanisms
 - Cell structure, function, and communication

- Evolution
 - Gene and genome structure, expression, and regulation
 - Gene and genome mutation, inheritance, and evolution
 - Functions of macromolecules and biophysical principles in the development and physiology of organisms.

- Molecular Life Science Integration
 - Biomolecular Structure/Function Relationships
 - Catalysis
 - Bioenergetics and Metabolism
 - Signal Transduction

- Genome Maintenance and Expression
 - Gene regulation and relationship to biological processes
 - Relationships between genes, proteins, and evolution
 - Experimental methods

C. WHAT & WHEN - Steps you should take for Senior Research & Thesis:

All BBMB students must do a research project in chemistry, biology, biomedicine, or physics. The research need not be in a biochemistry or molecular biology lab - it just needs to be connectable, in one way or another, to molecular life sciences. This requirement is explained in detail above in section II of this handbook. The nuts and bolts of registering for research and thesis credit are described below, organized according to when you should do the various steps. Also, each fall there is a BBMB research/thesis information session for juniors. Go to that session in your junior year.
What to do: Attend the research info session in fall of your junior year. You should start thinking about finding a research project during your junior year. Students can work in a lab at Whitman (or elsewhere in Walla Walla) during the academic year, or do a summer research internship on or off campus, such as at a university, research institute, hospital, biotech company, or government laboratory. Many summer positions carry stipends and involve 8-10 weeks of full-time work. But shorter internships or part-time laboratory projects - paid or unpaid - are also totally acceptable! The research does not even need to be done in the senior year; some students write their theses on research done in sophomore or junior summers, or during study abroad (to do this you must keep records of your laboratory data and methods so you can work with them during your senior year). It is important that you have a full understanding of your project and its rationale, so projects completed before sophomore year usually aren't acceptable. Otherwise, as stated above, BBMB is very flexible with regard to the research requirement.

Once you find a potential research project, you need to identify a Whitman faculty who can approve the project for your thesis and serve as your research advisor. It's best to do this in winter or spring of your junior year. However, if you run into difficulties or change projects, you can finalize advisor arrangements any time before September of your senior year. Your research advisor need not be one of the core BBMB profs - Chemistry and Biology faculty commonly serve as BBMB research and thesis advisors. Talk to faculty or look at their course offerings and web pages, and contact the professor(s) who have research expertise most closely related to your research project. [For example, if you do research in protein structure, Prof. Juers might be the best advisor; if you work in neurobiology it might be Prof. Withers; for gene expression or genomics projects, it might be Prof. Vernon etc.]. Then, register for your advisor's section of BBMB 490 in your senior year.

Late fall/winter of your JUNIOR year is when you should start thinking about possible research projects. It is especially important to get an early start if you are interested in applying for summer research internships. Many deadlines for those are in mid-winter. On campus, BBMB majors may do research with any biology, chemistry, or physics prof who is willing to take them on for a project.

Required steps for JUNIORS: By the end of spring of your junior year, you should have a research advisor for your senior research project. These projects may involve laboratory work, clinical research, epidemiologic research, or review/critique of published work. Biological field research may also be suitable, if it has a physiological, evolutionary, or molecular component or relevance.

If you plan to do a summer research internship for your senior thesis, you must discuss the project with a Whitman faculty professor who can serve as your research advisor. Approach as many Whitman profs as you need to, to find the advisor who would be the best fit. Check out faculty websites to see what professors' areas of expertise are.

If seeking off-campus opportunities, it’s best to apply to several, and then seek approval from a research advisor later, once you get summer internship offers/acceptances. We encourage you to find an off-campus research gig, and don't want faculty approval to be a hindrance to the process. So apply first, and nail down a thesis advisor later. Note: If you wish to nab a grant from Whitman's Summer Internship Grant program, you need to find a potential research gig by late March. [See Appdx B and consult the Student Engagement Office for more info on Summer Internship Grants].

- **Near the end of your junior year,** you will be asked to provide information on your plans for thesis research. This request will be sent on the BBMB list-serve and will include instructions for what info to provide, and for uploading into your BBMB Cleo drop-box.
- **If you do not identify a thesis advisor and project by August of senior year,** you will be assigned to a Biology or BBMB faculty member for your senior thesis.
Required steps for SENIORS: You must register for a total of 3 credits of senior research/thesis in either the Fall OR Spring semester of your senior year. You get credit for thesis work by registering for BBMB 490. Even if you did your research as a junior, or in a previous summer, you still should register for 3 credits of BBMB490 during your senior year. Registration will require consent of your research advisor; enroll in his/her section. The three credits may be taken all in fall, all in spring, or divided up between Fall and Spring semesters. If you take all three credits in the Fall, you must complete the written, graded thesis in the Fall. Only do this if you are graduating in Dec. or are certain you will finish the thesis by the last day of classes in December. Recommended: 1 credit of 490 in the fall, and 2 in the spring, when you do most of your thesis writing.

You must have consent from your thesis advisor to register for this required class. So, if you didn't find a thesis advisor at the end of Junior year, get one right away at start of senior year.

Remember: if you do not identify a thesis advisor and project by August before the beginning of senior year, you will be assigned to a Biology or BBMB faculty member for your senior thesis.

BBMB 400 Senior Seminar
This class is held each spring, typically in a MW morning time slot. It's required for all BBMB seniors, or for juniors planning to graduate the following December. You must register for this class in your final spring semester at Whitman. (ie, December graduates graduating a semester early must enroll and attend the class in spring of their junior year - even if thesis work isn't ready for presentation.) The course is mainly devoted to student seminars describing senior research projects; literature presentations on recent research breakthroughs may be included as the schedule permits.

Your seminar date will be scheduled for you by the BBMB 400 instructor, and you will be informed of the date at least two weeks in advance. Students who completed their research over the summer will usually be scheduled earlier and those continuing the project during the spring semester will likely be scheduled later in the semester. Information on the length of the talks and grades will be provided on the BBMB 400 class syllabus. Work with your BBMB490 thesis advisor to organize and prepare your seminar presentation.

D. Honors in Major Study
In BBMB, honors is not something you have to think about or apply for. Nobody is to actively seek honors; honors will be awarded to students who meet the criteria listed below. Your job is to excel as a student, both with course work and (especially) research endeavors. Typically only one or two students per year earn honors in BBMB.

Honors criteria:
Commitment to research and excellence in the senior thesis are the chief criteria for honors in BBMB. To be considered an honors candidate, you must also achieve the grade minima and earn distinction on your oral and written senior assessments, as described below.

A. Honors at Whitman requires a GPA of at least 3.3 overall and 3.5 in the major. These are college requirements that apply to honors in all departments.

B. To qualify for honors, students must pass their senior exams with Distinction. The BBMB senior exam consists of written and oral components (see above). To qualify for honors you must get distinction on both components, as judged by all faculty involved with your oral exam and research/thesis appraisal. By mid-March you will be notified by your thesis advisor if you have been nominated for honors candidacy. For distinction on your written exam, consult with your
thesis advisor and submit a complete, high-quality draft of your thesis for appraisal by about April 20. Submit it to your thesis advisor and a second faculty reader selected by the BBMB Director. Then your thesis advisor, along with that 2nd faculty reader, will determine whether your research project, thesis progress, and thesis quality meet the criteria for honors. An outstanding thesis is one of the main criteria for honors in BBMB.

C. Support of your thesis advisor. *Most important*, to qualify for honors you must do an outstanding job with your senior research, thesis, and seminar. In BBMB, honors is not just based on grades and exams: it's reserved for students who demonstrate a sustained commitment to research during their time at Whitman, and excellence in the communication thereof. To earn honors, you must complete a research project of suitable scope according to criteria set by your thesis advisor, and excel throughout the year in the thesis writing process, according to the expectations of your advisor and other faculty involved in appraising your thesis progress and the thesis itself.

- *If your thesis advisor considers your thesis progress of honors caliber, s/he may discuss the possibility of honors with you during your senior year, and will more formally notify you of honors candidacy in March of your senior year after conferring with the BBMB faculty.*
- *Sustained commitment to research and excellence in the senior thesis are major criteria for honors in BBMB If you are nominated as a candidate for honors and are interested in pursuing it, you must have a high-quality draft of your thesis completed and submitted for appraisal by BBMB faculty by April 20.*

D. In addition to excelling in your orals and thesis work, you must get an A or A+ grade in the BBMB 400 senior seminar course. This grade in this class is based on the quality of your research presentation and on your participation in the form of attendance, questions, and discussion.

By about March 15th of your senior year, oral exams should be completed and you should have made significant progress on your thesis for the BBMB faculty to determine whether you are an honors candidate. At this point, based on these criteria, the BBMB faculty, in consultation with your thesis advisor, may nominate you for honors candidacy and will inform you of this status.

Thesis appraisal: Special rules for honors thesis: If you are a viable honors candidate, a penultimate draft of your thesis must be read and approved as honors caliber by one additional BBMB-associated faculty, in addition to your research advisor. By ~ April 20th you may be asked to distribute your thesis to a second faculty reader (“appraiser”) in the BBMB, Biology, Physics, or Chemistry program. Your draft thesis will be appraised to determine if it meets the criteria for honors - so if you have been nominated for honors, you should submit a complete and excellent draft at this step. After you get comments back, discuss suggested revisions with your advisor and finalize your thesis.

Complete honors theses must be submitted to the library by the last day of classes. Penrose has specific rules about honors thesis format and submission. In April of your final semester, check with Penrose about paper requirements, special formatting, electronic submission, and the exact due date for honors theses. Also, be sure to fill out the electronic submission/distribution form and get your thesis advisor's signature on it. Submit your completed thesis to your thesis advisor and to Penrose library by the deadline. Your thesis advisor will determine the final grade at semester's end.
IV. Study Abroad

Thinking of study abroad? BBMB majors can go for study abroad in the junior year, *if* all calculus, introductory physics, and organic chemistry requirements are completed before the semester abroad. When making plans to study abroad, note that it’s easier to find suitable electives than substitutes for core required upper-level courses and labs.

When Biophysics is offered in the fall semester, it’s possible to go abroad in either fall or spring of your junior year. What you choose to do will affect when you take your upper-level classes. To go abroad in the fall of junior year, BBMB majors should start the introductory physics sequence in spring of their first year. If you start physics in spring of your second year, you should go abroad in spring of junior year so that you are at Whitman to complete intro physics in the fall semester. An alternative is to take one or both semesters of calculus-level general physics at another institution over the summer.

Abroad in Fall

- Junior Fall: Abroad
- Junior Spring: BBMB 325, BBMB 335
- Senior Fall: BBMB 324, 334; 326, 336

Abroad in Spring

- Junior Fall: BBMB 324, 334, 325
- Junior Spring: Abroad
- Senior Fall: BBMB 326, 336
- Senior Spring: BBMB 335

If Biophysics is offered in the spring semester, then BBMB majors who wish to study abroad should do so in the fall, and take Biophysics after they return.

Depending on where you go for study abroad, it may be possible to find a class that can substitute for one of these upper-level core classes. Here's what to look for:

1) **Off-campus Biochemistry**: If you are looking for an off-campus (domestic or abroad) course to be the equivalent of BBMB325, it must include content on protein structure/function; enzyme kinetics and mechanisms of action; bioenergetics, and energy metabolism. Coverage of cell signal transduction is also desirable.

 An off-campus biochemistry lab (for BBMB335 equivalency) must include techniques for the purification and characterization of proteins.

2) **Off-campus Molecular Biology**: If you are looking for an off-campus (domestic or abroad) course to be the equivalent of BBMB326, it must include content on DNA/RNA structure/chemistry; molecular research techniques; and genome organization and expression. Importantly, there should be a lot of coverage of gene regulation mechanisms. Molecular lab is also required, so the class should have an associated lab component, or you'll need to find an additional Molecular/Cell lab class. A study-abroad molecular biology lab (for BBMB336 equivalency) must include some standard techniques of DNA manipulation and analysis [e.g., DNA isolation, PCR, agarose gel electrophoresis, molecular cloning] and some analysis of gene expression [e.g., RT-PCR, RNA blotting, reporter gene experiments, or transcriptome analysis]. It should also include genome database use and BLAST searches. If you can't find a such a lab abroad, you'll have to take BBMB 336, Biology 206, or another
suitable molecular/cellular lab after you return.

3)**Off-campus Biophysics and Biophysics Lab**: Consult with BBMB Prof. Doug Juers if you identify classes abroad that you think might fulfill the BBMB 324 and 334 requirements.

DIS (Danish Institute for Study Abroad) in Copenhagen, Denmark has a core program and courses in Biotechnology & Biomedicine. This program is designed for students exploring career opportunities within biotech research and/or biotech business development. The core course and study tours offer you insight into biotechnology-based methods for diagnosis and treatment of disease; an understanding of the dynamics of drug discovery and development; and an interdisciplinary perspective on how biotech research and biotech business work together. See http://www.dis.dk/

V. **Post – Graduation Plans**
Immediately after graduation, BBMB majors choose many different paths to future careers: immediate employment in academic, governmental, or biotech labs; assignments in the Peace Corps, Teach for America, Americorps or other volunteer/service organizations; post-graduate fellowships or internships; and graduate or professional education.

A. **JOB SEARCHING**
For academic research labs or biotech companies, you may find positions via direct inquiry to the institution or company (either specific lab/dept or to the HR dept). Also, job placement ads are available in professional journals, such as Science, Chemical and Engineering News, Physics Today.

B. **APPLYING TO GRADUATE SCHOOLS**
Graduate school focuses on research. Students interested in pursuing graduate study in the molecular and cellular life sciences or related fields should plan to submit applications by ~Dec. 1 for admission the following Fall. Refer to info on each individual grad program for exact due dates. A number of resources are available to help you with selecting and getting accepted into a graduate program. Early in the process you should talk with your adviser or another faculty member about your plans. This conversation can help sort out your interests and identify the types of program you may wish to consider. Talk with at least one faculty member whose expertise is in that area; he or she will be able to help you identify graduate programs that are strong in your area of interest and often can supplement written sources with personal knowledge about institutions and individual researchers.

There are several valuable references available on graduate programs. Keep in mind, however, that your graduate school experience is more a function of your laboratory, your graduate advisor, and your individual accomplishments, rather than the university program you are in.

- **Peterson's Guide to Graduate Programs** is issued in several volumes. All are available on-line at http://www.petersons.com/GradChannel/code/search.asp?path=gr_fas_grad. You can use it even if your name isn't Peterson. Each two-page listing describes such things as programs of study, facilities, costs, financial aid, community, application procedure, and faculty. Departments offering only a masters degree are included.
- **The ACS Directory of Graduate Research** is published every two years by the American Chemical Society. Ph.D.-granting departments in the U.S. and Canada are listed in sections on chemistry, biochemistry, medicinal chemistry, and pharmacology. For each department, there is a list of the faculty, their research interests, and their publications during the last two years. The directory is available online at http://dgr.rints.com/
Graduation Program Application requirements:

- **Research experience**: Grad school is research training, and you aren't going to get into a graduate program w/o prior research experience. Thanks to our rigorous BBMB thesis requirement, you'll have this covered - at least to a minimum level. More prestigious programs may prefer applicants with more prior research experience than is required for a Whitman thesis. Many Whitties find short-term research tech jobs after graduation that provide them w/ valuable experience and more knowledge about what they want to do.

- **Graduate Record Examination (GRE)**: Most graduate schools require that applicants take the GRE general test. (The subject GRE exam for Biochemistry, Cell, and Molecular Biology was discontinued in 2016.) The general tests are computer-based and may be offered year round at regional centers, but may be only available on a few specific dates in Walla Walla. Information on registration dates, costs, and test locations, are available at GRE.org. Note that registration deadlines are often ~6 weeks before the exam date. So plan ahead.

- **Letters of Reference**: Usually three evaluations will be required for each application from faculty members or research mentors who know your work well and, if possible, have taught you in recent or upper level courses. Many programs have evaluators submit letters electronically. Writing good evaluations is a demanding task. Consequently you should give those persons who will write on your behalf as much lead time as possible - at least 2-3 weeks for the first letter.

- **Visit to the school**: Most programs which invite you to interview will pay for your entire visit (airfare, lodging, meals). Scheduling visits during the academic year can be challenging, but it's important.

- **Financial considerations**: In graduate school, you are expected to do research full time, and most doctoral programs in the molecular life sciences will provide a stipend ($25,000+) and waive tuition. Accepted students may be expected to serve as a TA for undergraduate labs or classes.

C. POST-GRADUATE FELLOWSHIPS

National Science Foundation (NSF) graduate fellowships

NSF fellowships provide full support for three years of graduate study at any U.S. university. At the time of application, you must designate your first choice institution, but you are obligated to attend that institution. These are very prestigious, and therefore competitive awards. Consult with your academic advisor early in your senior year.

Postbaccalaureate Intramural Research Training Award (IRTA)

The IRTA program and the National Cancer Institute’s Cancer Research Training Award (CRTA) provide opportunities for recent college graduates to spend a year engaged in biomedical research at the National Institutes of Health (NIH). Trainees work side-by-side with some of the leading scientists in the world in an environment devoted exclusively to biomedical research. Fellowships are available in the more than 1250 intramural laboratories of the National Institutes of Health (NIH), which are located on the main NIH campus in Bethesda, MD as well as in Baltimore and Frederick, MD; Research Triangle Park, NC; Phoenix, AZ; Hamilton, MT; and Detroit, MI.

Fellowships for International Study

Most fellowship programs for graduate study abroad require that applicants be nominated by their undergraduate institution. These include the Churchill, Fulbright, Marshall, Rhodes and Watson Fellowships. Generally these programs carry certain restrictions such as location of study and career goals. Further details may be obtained from the Post-graduate Fellowships and Grants Office in RCC.
D. APPLYING TO HEALTH PROFESSIONS SCHOOLS
If you are considering a career in the health professions - medicine, nursing, public health pharmacy, dentistry, veterinary medicine, etc., contact Whitman's Health Professions Advisor as early as you can (preferably by early in your junior year). They will provide the specialized advice you need to meet requirements for these various professional programs.

APPENDIX A: BBMB course descriptions
[Check the current issue of the course catalog for recent updates on pre-requisites and scheduling]

324 Biophysics 3, x Juers
The application of concepts and approaches from physics (e.g. mechanics, thermodynamics and electromagnetism) to deepen understanding of molecular and cell biology. We will focus on simplified models that capture the salient features of biological systems. Example topics include diffusion, hydrodynamics and cellular locomotion, free energy transduction, ligand binding, entropic forces, enzyme kinetics, molecular motors, macromolecular conformation, and signal propagation in neurons. Three one-hour lectures per week; weekly problem sets; exams. Prerequisites: Physics 156 and Mathematics 225.

325 Biochemistry 3, 3 Fall or Spring: Moss, Rokhsana, or Russo
A detailed examination of protein structure and function, focusing on the role of proteins in molecular recognition and catalysis. Topics include: techniques used to characterize proteins; enzyme kinetics and mechanisms; signal transduction across membranes; bioenergetics; catabolism of proteins, fats, and carbohydrates; integration of metabolism and disease. Three lectures per week. Contributes to the Molecular/Cell Biology requirement for the Biology major. Prerequisites: Biology 111, Chemistry 246.

326 Molecular Biology 3, x Vernon or Moss
A detailed examination of nucleic acid structure and function, focusing on gene expression and mechanisms of gene regulation. Other topics include molecular biology of viruses, mobile genetic elements, the genetic basis of cancer, and principles of genomics. Three lectures per week. Required for BBMB majors. Contributes to the Molecular/Cell requirement for the Biology major. Prerequisites: Biology 205 and BBMB 325 or consent of instructor.

334 Biophysics Laboratory 1, x Juers
Laboratory exercises on a range of biophysical top-ics. Experimental testing of models developed in BBMB 324. Study of macromolecules using techniques that may include absorption spectroscopy, fluorescence spectroscopy, circular dichroism, nmr, crystallization and structure determination via X-ray diffraction. One three- to four-hour laboratory per week. Corequisite: BBMB 324. Open to non-BBMB majors only with consent of instructor.

335 Biochemistry Laboratory x, 1 Russo or Moss
Laboratory exercises in protein biochemistry, which will include biochemical reagent preparation, enzyme isolation and purification, enzyme and protein assays, and gel electrophoresis. One three- to four-hour laboratory per week. Contributes to the Molecular/Cell Biology requirement for the Biology major. Prerequisites: Biology 111 and Chemistry 136 or 140; Corequisite: BBMB 325. Chemistry 240 is strongly recommended. Open to non-BBMB majors only with consent of instructor.

336 Molecular Biology Laboratory 1, x Vernon or Moss
Laboratory exercises in nucleic acid biochemistry, including molecular cloning, PCR, and DNA and
RNA isolation and analysis techniques. One three-hour laboratory per week. Prerequisite: BBMB 335; Corequisite: BBMB 326; consent required for non-BBMB majors.

400 Senior Seminar x, 1 Vernon, Juers, Moss, Russo
The senior seminar will serve as the capstone of the major by providing a forum for all seniors to make a full-length oral presentation. Each student will describe the background, methodologies, and experimental results of the senior research project and respond to questions and critiques of his or her peers. Open to other students with consent of instructors.

430 Infectious Disease 3, x Russo
The role of infectious disease in human mortality and morbidity. Discussion topics include: epidemiology and etiology of disease, cellular targets of microbial infection, immune responses, design and mechanism of action of antibiotic drugs, drug resistance, the development of vaccines for disease prevention, and the ethical dilemmas and social consequences of infectious disease. Case studies may include polio, influenza, malaria, tuberculosis, Hepatitis B, and HIV. Prerequisite: consent of instructor.

481, 482 Special Projects 1-2, 1-2 Staff
Research projects or independent studies arranged with individual students. The students must consult with a faculty member prior to the semester of the anticipated project to determine if the project is suitable, and the project must be done with the supervision of a Whitman faculty member. Prerequisite: Consent of instructor.

490 Senior Research and Thesis 1-3, 1-3 Staff
Each student will collect data and write a thesis on his or her research in accepted scientific style. One or more initial drafts of the thesis will be required before the final version is due in the last week of classes. Each student also will present his/her research results in a public forum, typically BBMB 400 Senior Seminar. May be taken for a maximum of three credits; a total of three credits are required in the senior year (Fall and/or Spring). Prerequisite: consent of the research adviser.

APPENDIX B: Research Internships- Information and Examples
BBMB's research and thesis requirements add a whole hands-on dimension to your Whitman education - one that complements all the book-learnin' you do for your classes here and gives you a different perspective on science. Don't be too picky about where you do your thesis research or even what the research subject is: it does not need to be closely related to your precise career goals. At this stage of your career, almost any research experience will prove valuable.

A. Projects at Whitman...
Many professors in BBMB, biology, and chemistry provide student research opportunities in their laboratories. Some secure funds from research grants to support students during the summer as well as during the school year. There is also a Whitman Internship Program that provides stipends to students for summer work, on a competitive basis. Unfortunately, starting in 2014, this program may not support students doing work on campus. Still, you can contact them and inquire.
Feel free to approach any faculty in BBMB, Biology, or Chemistry to inquire about possibilities in their labs!
B. Off-Campus Projects

You may be able to land a paid summer internship, or get paid with a Whitman Internship Grant, for research you do off campus (contact the Student Engagement Center for info on that program; deadline is in late March). Having funding from the Internship Program may make it easier to find an off-campus lab willing to take you for the summer. Lots of Whitties land lab gigs at universities, hospitals, or companies in their hometowns (many in the Northwest), just by contacting professors, doctors, or scientists at those places and asking.

Private research institutes in the Puget Sound Area
* Fred Hutchinson Cancer Research Center http://www.fhcrc.org/science/education/undergraduates/
Infectious Disease Research Institute http://www.idri.org
Center for Infectious Diseases Research http://www.cidresearch.org/
Pacific Northwest Diabetes Research Institute http://www.pnri.org
PATH (Program for Appropriate Technology in Health) http://www.path.org
Institute for Systems Biology http://www.systemsbiology.org
Allen Brain Institute

* Whitman College has grants to support 2 students each summer at Fred Hutchinson. Calls for applications will be posted on the BBMB list serve in November. Keep your eye out for informational emails.

Universities and other agencies in the Northwest
WSU (many depts. incl Health Sciences in Spokane; Veterinary Sciences and
SURF program in Pharm/Toxicology in Pullman;)
UW (many depts. including Biochemistry, Structural Biology)
WSU (many depts. incl Health Sciences in Spokane; Veterinary Sciences and
SURF program in Pharm/Toxicology in Pullman;)
Other state universities in WA
OHSU (many depts. including Cancer Center, CROET, Stroke Center, Vollum Institute)
U. Idaho; Boise State University
Oregon State University
U. of Oregon
Walla Walla Health Dept.
USDA extension offices or research programs
PNNL
Any hospital or institute that has labs in Seattle, Portland, or anywhere else (e.g., Seattle Childrens’, UW med campuses…)

Biotech & Pharmaceutical companies
Amgen http://www.amgen.com
AmpliPhi Biosciences Corp: http://www.ampliphibio.com
CTI BioPharma Corp: http://www.ctibiopharma.com
Zymogenetics: http://www.zymogenetics.com
Seattle Genetics, SEngine Precision Medicine, and others . . .

Other U.S. programs
1. National Science Foundation The biggest and most diverse collection of undergraduate research opportunities in the U.S. is the NSF’s REU (Research Experience for Undergraduates) program [http://www.nsf.gov/crssprgm/reu/reu_search.cfm]. REUs are full-time, paid summer research internships found at many universities. There are REU programs are all over the U.S., including the Northwest. Though funded by the NSF, REU programs are run independently by different universities: each REU program has its own focus and its own application process and deadlines. You
can get info on REU opportunities from individual university departments (such as biochemistry, cell biology, or microbiology department websites), or you can go directly to this excellent NSF website to get more info: http://www.nsf.gov/crssprgm/reu/reu_search.cfm You can search that site for opportunities by geographic location or research topic. NSF REU programs are usually very competitive - but they offer diverse opportunities, they pay well, and are worth looking into. Helpful advice: don't just focus on REU programs at super-prestigious universities. There's a lot of cutting edge science done at scores of universities all over the country. In recent years Whitties have had great (sometimes career-shaping) research experiences in universities in places like Iowa, Oklahoma, and Alabama.

2. NIH Summer Research Program (any of the National Institutes of Health)
http://www.training.nih.gov/

3. HHMI Janelia Undergraduate Scholars
This program gives undergraduates an opportunity to spend 10 weeks during the summer working as an intern in the lab of a mentor at HHMI’s Janelia Farm, one of the most prestigious, multi-disciplinary biomedical science research centers. The scholars are encouraged to attend weekly seminars and other events at Janelia. At the end of the session, each scholar will present his or her work at a symposium. Housing is provided and there's a stipend paid for the 10-week period. The program also supports the most economical travel to and from Janelia. https://www.janelia.org/y Janetia/students-postdocs/undergraduate-scholars-program/application-details

4. Pasteur Institute
Located in the heart of Paris, the Institut Pasteur is one of the world's leading biomedical research organizations devoted to basic scientific research primarily in the area of infectious disease. The Pasteur Foundation Summer Internship Program provides U.S. undergraduates with the rare opportunity to conduct summer research at the Institut Pasteur. The foundation’s goal is to encourage students in the pursuit of a scientific career and to expose them to an international laboratory experience. Each year, four laboratories at the Institut Pasteur are chosen to host U.S. undergraduates. During the internships, interns will carry out research supervised by a lab mentor. Applicants should be eager to engage with a different culture, and self-sufficient enough to arrange travel and secure housing in Paris. Interns receive a living allowance of several hundred dollars/week. See http://www.pasteurfoundation.org/scientific-careers/summer-internship.

5. Other Universities, Biotech Companies, Research Institutes, and Hospitals
By looking at posters around the building or doing internet searches for summer undergraduate research opportunities, you can identify many universities and institutions with summer research programs that pay good stipends for 8-10 weeks of research. Thanksgiving break or Winter break is a great time to start thinking about possible summer opportunities. Many of the programs have deadlines ranging from mid-January to Mar 1. New programs may not be advertised until December or January, so if you start to look in the fall semester, check again periodically for announcements of new programs.

But sometimes the most effective way to find a research gig is to email, phone, or just drop in on labs at universities or biotech companies in your hometown, or at other places where you might have a personal connection. Lots of Whitties have found internships by simply cold-calling professors or labs this way. If you aren't asking for pay, they may be very happy to take you on for a few weeks or even full time for a summer. If you do this early enough in the year, you can apply for Summer Internship funding from Whitman's Student Engagement Center [contact the SEC for more info on deadlines and criteria for Whitman summer funding].
Recent examples of BBMB Sr. Research Projects (Note the variety of topics and locations)

2018-19
- **Y. Buckley** Auxin hormone signaling in maize
 BBMB, Whitman (Moss Lab)
- **B. Cosgrove** Programming to design online genomics analysis tools
 NSF REU, University of Missouri
- **M. Duncan** Bioenzymatic organic synthesis
 Chemistry, Whitman (Collins Lab)
- **C. Finkbeiner** Regulation of cell identity in mouse knockout mutants
 U. Washington (Stone Lab)
- **M. Maker** Enzyme expression and kinetic analysis
 Chemistry, Whitman (Machonkin Lab)
- **A. Person** Evolution of flower pigmentation in Monkey Flowers
 Biology, Whitman (Cooley Lab)
- **E. Peterson** Cancer cell biology: CAR T cell therapy
 Fred Hutchinson Cancer Research Ctr.
- **R. Price** Organic synthesis of a proteasome inhibitor
 Chemistry, Whitman (Gott lab)

2017-18
- **K. Chang** Mechanism of tissue regeneration in *Acomys*
 Majesky Lab, Seattle Children's Res. Inst.
- **K. Daly-Jensen** Auxin hormone signaling pathway in *Zea maize*
 BBMB, Whitman (Moss lab)
- **E. Gladhill** Modelling of carbon monoxide dehydrogenase active site
 Chemistry Dept., Whitman (Rokhsana lab)
- **K. Harrison** Warming and cooling curves of protein crystals
 Physics Dept., Whitman (Juers lab)
- **N. Horst** Mouse mitochondrial physiology
 Biology Dept, Whitman (Coronado lab)
- **A. Mercer** Antibiotic resistance in pathogenic bacteria
 Los Alamos National Lab
- **E. Minus** Hybridization and evolutionary diversity in monkeyflower
 Biology Dept, Whitman (Cooley lab)
- **T. Salaguinto** Bee foraging behavior in Greece
 NSF REU, U. Central Oklahoma
- **S. Zewedie** HIV infection/vaccine research
 Fred Hutchinson Cancer Res. Center, Seattle

2016-17
- **R. Eguia** Evolution of Monkeyflower anthocyanin pigmentation
 Whitman (Advisor: A. Cooley, Biology)
- **C. Amundson** Stem cell/immunology research
 Fred Hutchinson Cancer Center, Seattle
- **M. Palmer** Organic synthesis for proteasome inhibitor drug design
 Whitman (Advisor: M. Gotz, Chemistry)
- **A. Oken** X-ray crystallography of enzyme structure
 REU, U. of Oklahoma (Advisor, D. Juers)
- **Q. Wang** Studies on protein crystallization
 Whitman (Advisor: D. Juers, Physics)
- **M. Hirano** B-catenin phosphorylation: effects on zebrafish embryos
 Univ. of Washington (Advisor, D. Juers)
- **N. Lifshaz** Removing bioactive organic pollutants from water
 REU, Samford Univ., Alabama
- **B. Henried** Engineering a plant hormone response pathway in yeast
 Whitman (Advisor: B. Moss)

2015-16
- **B. Walfund** Virus evolution: Sequencing and comparing HIV variants
 Center for Infectious Disease Research, Seattle
- **C. Phalen** High-throughput enzyme inhibition screening
 Infec. Disease Research Inst., Seattle
- **S. Curtis** Testing antibody-drug conjugates for AML therapy
 Seattle Genetics (company)
- **S. Anderson** DNA replication protein FNACD2 interactions w/ CtIP.
 University of Minnesota
- **J. Jurich** Thermal expansion in solutions of cryoprotective agents
 Whitman (Advisor: Juers)
- **R. Fenoli** PRMT-1 protein and how it’s affected by dimerization
 Utah State University
- **A. Hulse** Disease resistance to stem rust fungus, in wild barley
 U. Minnesota (Advisor: Cooley)
- **J. O'Connor** Computational modeling of the CODH enzyme active site
 Whitman (Advisor: D. Rokhsana)
- **K. Beebe** Sex differences in mouse-circuit mapping in mouse brain
 UW Dept. Pharmacology (T. Knight)
- **B. Sheppard** Effects of PIRL9 overexpression on plant development
 Whitman (Advisor: Vernon)
- **W. Wood** PIRL6-GFP fusion constructs for protein localization
 U. Colorado-Denver
- **J. Hart** Lifetime and turnover time of taste buds
 Whitman (Advisor: Withers)
- **R. Waraich** Synapse formation in rat brains during development
 Majesky Lab, Seattle Children's Res. Inst.