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Abstract. This paper studies two data analytic methods: Fourier transforms
and wavelets. Fourier transforms approximate a function by decomposing it
into sums of sinusoidal functions, while wavelet analysis makes use of mother
wavelets. Both methods are capable of detecting dominant frequencies in the
signals; however, wavelets are more efficient in dealing with time-frequency
analysis. Due to the limited scope of this paper, only Fast Fourier Transform
(FFT) and three families of wavelets are examined: Haar wavelet, DaubJ ,
and CoifI wavelets. Examples for both methods work on one dimensional
data sets such as sound signals. Some simple wavelet applications include
compression of audio signals, denoising problems, and multiresolution analysis.
These applications are given for comparison purposes between Fourier and

wavelet analysis, as well as among wavelet families.
Although wavelets are a recent discovery, their efficacy has been acknowl-

edged in a host of fields, both theoretical and practical. Their applications
can be expanded to two or higher dimensional data sets. Although they are
omitted in this paper, more information is available in [7] or many other books
on wavelet applications.

1. Introduction

Wavelets are a recent discovery in mathematics; however, their rapid develop-
ment and wide range of applications make them more powerful than many other
long-existing analytical tools. Conventionally, wavelets are often compared to the
Fourier transform to promote their advantages. This paper will take a similar
approach in attempt to illustrate wavelet transform in various applications.

The Fourier transform makes use of Fourier series, named in honor of Joseph
Fourier (1768-1830), who proposed to represent functions as an infinite sum of si-
nusoidal functions [1]. Joseph Fourier was the first to use such series to study
heat equations. After him, many mathematicians such as Euler, d’Alembert, and
Daniel Bernoulli continued to investigate and develop Fourier analysis [1]. From
the original series, various Fourier transforms were derived: the continuous Fourier
transform, discrete Fourier transform, fast Fourier transform, short-time Fourier
transform, etc... Fourier analysis is adopted in many scientific applications, espe-
cially in dealing with signal processing. As the applications grew more complex
over time, the Fourier transform started to reveal its inefficiencies when working
with time series or data with certain characteristics. Despite the attempt to tailor
the method to different groups of data, the Fourier transform remained inadequate.
Consequently, wavelets received more attention as they proved able to overcome
the difficulties.
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The first block of wavelet theory was started by Alfred Haar in the early 20th
century [2]. Other important contributors include Goupillaud, Grossman, Mor-
let, Daubechies, Mallat and Delprat. Their different focuses helped to enrich the
wavelet families and widen the range of wavelet applications. Because of the simi-
larities, wavelet analysis is applicable in all the fields where Fourier transform was
initially adopted. It is especially useful in image processing, data compression,
heart-rate analysis, climatology, speech recognition, and computer graphics.

This paper focuses on only a few aspects of each analysis. The first section dis-
cusses Fourier series in different representations: sinusoidal functions and complex
exponential. A discretization method is also introduced so as to provide support for
the discussion of Fast Fourier Transform (FFT). After illustrating Fourier analysis
with concrete examples, the paper will turn to the Fourier transform’s shortcom-
ings, which give rise to wavelets .

The second section discusses three families of wavelets: the Haar wavelets,
Daubechies wavelets, and Coiflets. Concepts and general mechanisms will be pro-
vided in detail for Haar wavelets and omitted for the others. Finally, we will look at
the advantages of wavelets over Fourier transform through a number of examples.

The paper uses three main references: Course notes in Modeling II, A Primer on
Wavelets and their Scientific Applications by James Walker, and A First Course in
Wavelets with Fourier Analysis by Boggess and Narcowich. As the paper is aimed
at readers at undergraduate level, mathematical background of linear algebra and
basic calculus is assumed.

2. Fourier Analysis

Fourier analysis, which is useful in many scientific applications, makes use of
Fourier series in dealing with data sets. In this section, a few representations
of Fourier series and related concepts will be introduced. Consequently, several
examples will implement these defined concepts to illustrate the idea of Fourier
analysis.

2.1. Fourier Series.

2.1.1. Sine and Cosine Representation. A Fourier series is the expression of any
function f(x) : R → R as an infinite sum of sine and cosine functions:

(1) f(x) = a0 +

∞
∑

k=1

ak sin(kx) +

∞
∑

m=1

bm cos(mx).

In this section, we work with continuous functions on [0, 2π], and thus, it is
necessary to familiarize ourselves with the vector space of such functions. It is
an infinite dimensional vector space, denoted C[0, 2π], where each point on the
continuous interval [0, 2π] represents a dimension. Then, an orthogonal basis of
C[0, 2π] is:

{1, sin(kx), cos(mx)|k, m = 1, 2, 3, ...}.
Fourier series can also be employed to write any continuous function f(x) : C[0, 2π] →
C[0, 2π]. Concepts such as inner product, norm, and distance between two func-
tions in an infinite dimensional vector space are defined in a similar manner to that
of a finite dimensional vector space. However, the infinite sum gives rise to the use
of an integral in the definition:
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- Inner Product: The inner product of two continuous functions f(x), g(x) ∈
C[0, 2π] is

< f, g >=

∫ 2π

0

f(x)g(x)dx.

- Norm: Recall that the norm of a vector in finite dimensional vector space
is calculated as ‖ ~x ‖2=< ~x, ~x >. Norm is defined similarly for a function
in infinite dimensional space C[0, 2π]:

‖ f ‖2=< f, f >=

∫ 2π

0

f2(x)dx.

- Angle between two functions: The inner product of f and g can also be
written as

< f, g >=‖ f ‖‖ g ‖ cos(θ).

The angle between two functions, θ, can be achieved from the above equa-
tion.

- Distance Distance between two continuous functions f and g is defined as
‖ f − g ‖.

The inner product formula can be applied to prove that the basis mentioned
above is indeed orthogonal. Let us consider six possible inner products of the basis

vector functions:
∫ 2π

0
sin(kx)dx,

∫ 2π

0
cos(mx)dx,

∫ 2π

0
sin(kx) sin(mx)dx (k 6= m),

∫ 2π

0 sin(kx) cos(mx)dx (k 6= m),
∫ 2π

0 cos(kx) cos(mx)dx (k 6= m). The following
trignometric identities [3] are helpful in proving that all six inner products are
equal to 0, implying an orthogonal basis:

sin(x) cos(y) =
1

2
[sin(x + y) + sin(x − y)],

cos(x) cos(y) =
1

2
[cos(x + y) + cos(x − y)],

sin(x) sin(y) =
1

2
[cos(x − y) − cos(x + y)].

2.1.2. Function Coefficients. Coefficients of f can be obtained by projecting f on
the corresponding basis vectors (similar to that of finite dimensional space):

a0 =
< f, 1 >

< 1, 1 >
=

1

2π

∫ 2π

0

f(x)dx,

ak =
< f, sin(kx) >

< sin(kx), sin(kx) >
=

1

π

∫ 2π

0

sin(kx)f(x)dx,

bm =
< f, cos(mx) >

< cos(mx), cos(mx) >
=

1

π

∫ 2π

0

cos(mx)f(x)dx.

2.1.3. Complex Form. Instead of taking the integral of individual sine and cosine
functions, the complex form representation of Fourier series enables us to compute
the various inner product integrals simultaneously. The transformation makes use
of Euler’s formula [3]

eiθ = cos(θ) + i sin(θ).

Simple algebra yields

ak sin(kx) + bk cos(kx) =
bk − iak

2
eikx +

bk + iak

2
e−ikx.
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Thus, if we let c0 = a0/2, ck = bk−iak

2 , and c−k = bk+iak

2 , then the complex form
representation of the Fourier series is

f(x) =
∞
∑

k=−∞
ckeikx.

Then differentiation and integration can be calculated simultaneously [4]:

d

dθ
eiθ = ieiθ = − sin(θ) + i cos(θ),

∫

eiθdθ =
1

i
eiθ = sin(θ) − i cos(θ).

To illustrate the convenience of Euler’s formula, let us compute < x, sin(3x) > and
< x, cos(3x) > using the complex exponential.

Note that

< x, e3ix > =

∫ 2π

0

xe3ixdx =

∫ 2π

0

x cos(3x)dx + i

∫ 2π

0

x sin(3x)dx

= < x, cos(3x) > +i < x, sin(3x) > .

On the other hand, integration by parts yields
∫ 2π

0

xe3ixdx =
( x

3i
e3ix − 1

3i

∫

e3ixdx
)∣

∣

∣

2π

0

=
( x

3i
e3ix +

1

9
e3ix

)∣

∣

∣

2π

0

=
2π

3i
e6πi +

1

9
e6πi − 1

9
.

Since e6πi = cos(6π) + i sin(6π) = 1, it follows that
∫ 2π

0

xe3ixdx =
2π

3i
= −i

2π

3
.

Therefore,

< x, cos(3x) > = 0,

< x, sin(3x) > = −2π

3
.

Integrating two functions separately would have doubled the work.

2.1.4. Fourier Transformation. Fourier transformation is a method frequently used
in signal processing. As the name suggests, it transforms a set of data into a Fourier
series. Due to limitation, this paper will only introduce Fast Fourier Transform
(FFT).

Discretization. Most data sets are available as a collection of data points.
Therefore, the assumption that the function is continuous is no longer required.
However, a continuous function can always be represented by N points for some
positive integer N . A process in which a continuous function is translated into N
representative points is called discretization. Discretization translates an infinite
dimensional vector space into a finite one [4].

To discretize a function, we choose a finite number of points that represent
the function from which the function itself can be sketched. Consider functions
y1 = cos(π

4 t) and y1 = cos( 7π
4 t) with 0 ≤ t ≤ 64. In Figure 1, these functions
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Figure 1. Functions y1 = cos(π
4 t) and y2 = cos( 7π

4 t) with differ-
ent ∆t

are plotted with different increments of t (∆t) of 1 and 0.1. When ∆t = 0.1, two
functions are different, but when ∆t = 1, the values plotted are essentially the same.
This suggests that ∆t = 1 is too large to differentiate these two functions. The
same pattern is observed for any pair of sine or cosine functions that are conjugate
of each other (for example, cos(αt) and cos(βt), where α + β = 2π).

Formulas When a continuous function is discretized into N points for FFT,
N is usually a power of 2 for computational reasons. Suppose that N points
{f0, f1, ..., fN−1} are spaced out evenly on the interval [0, 2π], then the k-th point
in Fourier series form is

(2) Fk =

N
∑

n=1

fne−
2πi

N
·(k−1)(n−1)

for 1 ≤ k ≤ N . Recall that for two vectors x, y in complex plane, their inner
product is defined as

< x, y >= xT ȳ.

Thus, equation (2) is in fact an inner product between F = [f1, f2, ..., fN ]T and

[e−
2πi

N
·0·(k−1), e−

2πi

N
·(k−1), e−

2πi

N
·2(k−1), ..., e−

2πi

N
·(k−1)(N−1)] for any integer k in in-

terval [1, N ]. Hence, we can represent equation (2) by a product of F and an N×N
matrix C, whose entries are determined as follows:

Ckj = e
2πi

N
·(k−1)(j−1).

This process is called Fourier transformation. C is the transformation matrix.
Instead of dealing with integrals, we now face easier matrix operations:











F1

F2

...
FN











= e
2πi

N
A ×











f1

f2

...
fN











,

where

A =











0 0 0 . . . 0
0 1 2 . . . N − 1
...

...
0 N − 1 2(N − 1) . . . (N − 1)(N − 1)










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The above cross product suggests that the inverse transformation process is also
feasible:

(3) fn =
1

N

N
∑

k=1

Fke
2πi

N
·(k−1)(n−1)

for 1 ≤ n ≤ N .
Expansion to function f on the interval [α, β] The process of Fourier trans-

formation can be extended to any function on the interval [α, β] with the appropriate
discretization process. Discretize the function f into N equal subintervals, so that
each subinterval is

(4) ∆x =
β − α

N
or β − α = N · ∆x.

and we have N points {x1, x2, ...xN} on the interval [α, β]. To perform FFT, we
can find an one-to-one correspondence from the function f to [0, 2π]:

xj ∈ [α, β] → tj =
2π

β − α
· (xj − α) ∈ [0, 2π].

The inverse process is:

tj ∈ [0, 2π] → xj = α +
β − α

2π
· tj ∈ [α, β].

Substitute equation (4) in, we get:

tj =
2π

N · ∆x
· (xj − α) or xj = α +

N · ∆x

2π
· tj .

The above equation suggests that discretizing f(x) over [α, β] is the same as
f( 2π

N ·∆x(xj − α)) over [0, 2π]. Therefore, we can use the function

f(x) = a0 +

∞
∑

k=1

ak cos(k
2π

N · ∆x
(x − α)) +

∞
∑

m=1

bm sin(m
2π

N · ∆x
(x − α))

for Fourier transformation.
To summarize, if we have N points with spacing ∆x, labeled as {f0, f1, . . . , fN}

on the interval [α, β], then the relationship between function f and its FFT is
expressed in the following equations:

(5) fn = a0 +

N/2
∑

k=1

ak cos(k
2π

N · ∆x
xn) +

N/2
∑

m=1

bm sin(m
2π

N · ∆x
xn),

where

a0 =
F1

N
,

ak =
2

N
· Real(Fk+1),

bm = − 2

N
· Imag(Fm+1).

Let ∆x is the distance between two consecutive points. The periodic nature of
sines and cosines entails the period length to be at least 2∆x to yield good enough
approximations (See Figure 2.1.4. Fix the period to be 2∆x. If the distance between
two points is less than half the period, the intersection with the x-axis cannot be
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Figure 2. ∆x and the period length

detected, and hence imprecise estimation is possible. A similar situation occurs
when the distance between two points is larger than half the period.) Thus, it is
best to have ∆x as the distance between two points, or 2∆x as the period length.
For this reason, k and m range from 1 to N/2 in equation (5).

From what we know about trignometric functions sin(At) and cos(At), we have:

- The functions’ periods are

Period =
2π

A
=

N∆x

k
.

- The functions’ frequencies are

Frequency =
A

2π
=

k

N∆x
.

As k, m = 1, 2, . . . , N
2 , the periods measured in time unit per cycle are

N · ∆x,
N

2
· ∆x, . . . , 2 · ∆x.

and the frequencies measured in cycles per time unit are

1

N
· 1

∆x
,

2

N
· 1

∆x
, . . . ,

1

2
· 1

∆x
.

As k changes from 1 to N
2 , some functions sin(ktn) and cos(ktn) might con-

tribute more to the original function fn than others. To measure each function’s
“importance”, we define a new concept, frequency content of k, which is given by

freq(k) =
√

a2
k + b2

k.

A plot of k against the frequency content yields the power spectrum of a signal.

2.2. Applications. In this section, we will examine how FFT is applied in simple
examples.
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Figure 3. Power spectrum of the sunspot data.

2.2.1. Sunspot Example. Data from sunspots have interested scientists for hundreds
of years, as they are the indicator for radiation from the sun and therefore have an
effect on many scientific fields [5]. MatLab has a collection of data recording the
number of sunspots counted on the sun every year between 1700 and 1987. Using
Fourier transformation, we will analyze the data to find periodicity in the number of
sunspots. Let the domain be 288 years from 1700 to 1987 (thus N = 288, ∆x = 1).
So k will go from 1 to 143 (= N

2 ).
After the data are loaded, the frequency content of each k is plotted against

k (see Figure 3). The plot peaks at the 26th position, which suggests that the
component functions with k = 26 contribute the most to the FFT. Hence, the
period of the sunspot cycle can be estimated using k = 26, which yields

N · ∆x

k
=

288 · 1
26

≈ 11.08 years.

Figure 4 confirms this finding as the frequency content peaks approximately
every 11 years.

To see how well the FFT estimates the real function, we will produce a graph of
the original function and the approximate function by using the inverse FFT of the
ten most significant component functions (with the largest frequency contents) (see
Figure 5). Although only ten component functions were used, the approximation
shows close estimation to the original function.

Note that the imaginary part resulting from the inverse FFT is negligible since
we started with a real function, and the imaginary part therefore should be insignif-
icant.

2.2.2. Interpolation. Fourier transformation can be useful for interpolation of data.
Given a set of data points, we can fit them with a continuous function using FFT
coefficients. The last part of the sunspot example illustrates this method. First,
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Figure 4. Time cycle and frequency content of sunspot data.
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Figure 5. Original function and the approximate function using
the ten most significant component functions.

Fourier transform is employed to find FFT coefficients. Then, with an appropriate
interval length, ∆x, the new continuous function can be constructed. Determining
∆x is the key to obtaining an accurate approximation of the original function, given
that there are sufficient number of data points.
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Figure 6. Interpolation of 1000 data points from function f =
cos( 7π

8 k). m represents ∆x.
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Figure 7. Filtering based on 5% percentage method.

Figure 6 is a graph of the original function f = cos( 7π
8 k) and its approximations

with different interval lengths ∆x. When ∆x = 1, the approximation matches the
original function.

2.2.3. Filtering. In the third part of the sunspot example, only the 10 most sig-
nificant component functions were taken, and number 10 was indeed arbitrarily
determined. The process of choosing certain components over others is called filter-
ing. Filtering can be extremely useful if data points are suspected to include noise.
In this implementation, we take a look at two different methods of filtering.

- Method 1: The idea of this method is to choose functions whose coefficients
contribute more (or less) than a certain percentage of the total sum. For
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Figure 8. The original data and its approximation, resulted from
band-pass filtering method.

example, given a function F , we sum up all frequency contents:

S =

N/2
∑

k=1

|F (k)|.

Then for each k, we determine how much its frequency content contributes
to the sum in percentage terms: c(k) = |F (k)|/S×100%. Figure 7 displays
the original function f and its approximation after filtering all component
functions whose contribution is less than 5%. f is the function of sunspot
data.

- Method 2 (band-pass method): The second method is called band-pass
filtering, based on the distribution of frequencies in the signal. The idea
is to choose (or to not choose) only the frequencies that lie within one
standard deviation from the mean. Using the same set of data, Figure
8 depicts the original function f and its approximation function. Figure
9 displays the original power spectrum, the filtered power spectrum, and
the filtered part. Note that the latter two add up to the original power
spectrum.

2.3. The Drawbacks of Fourier Analysis. Despite its convenience in dealing
with different groups of data, Fourier analysis still poses problems in many appli-
cations. This section will examine two common issues of FFT: leakage and Gibb’s
phenomenon.

2.3.1. Leakage. To best illustrate the problem of leakage, we will look at the func-
tion

y = cos(
7π

8
t).
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Figure 9. Band-pass filtering method. Power spectrum of the
original data and the filtered power spectrum.
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Figure 10. Function y = cos( 7π
8 t) and 64 sample points.

N = 64 sample points from 0 to 63 are taken (∆x = 1). Figure 10 provides us with
a graph of y and sample points.

A problem data collectors usually encounter is that there are fewer data points
available than they wish. For other data mining methods, a simple method of
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a) 64 sample points b) 52 sample points
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Figure 11. Power Spectra of the FFT of function y with a) 64
sample points and b) 52 sample points (the rest are zeroed).

zeroing the rest of the sample points can be used. However, it is not the same
for Fourier transform: Figure 11(a) plots power spectrum of the FFT of y with 64
sample points, and Figure 11(b) plots the same thing, however, the last 10 sample
points are zeroed.

The frequency contents in Figure 11(a) reflect function y better; while the fre-
quency contents in Figure 11(b) appear to include some noise. From these graphs,
we can conclude that adding zeros does not help in case of sample points shortage.
This effect is known as “leakage”: while the frequency content of the signal did not
change, the power spectrum did [4].

2.3.2. Gibb’s Phenomenon. In many cases, an attempt to fit a function with discon-
tinuities or steep slopes using Fourier transform fails. The reason is that FFT only
yields smooth functions. This creates a problem known as Gibb’s phenomenon.

For example, take a look at a square wave function defined as follow:

f(x) =

{

1, if 2kπ ≤ x ≤ (2k + 1)π
−1, if (2k + 1)π ≤ x ≤ 2(k + 1)π

for any nonnegative integer k.
Then f can be written as sum of odd harmonics [4]:

f(x) = sin(x) +
sin(3x)

3
+

sin(5x)

5
+ . . .

=

∞
∑

k=1

1

2k − 1
sin((2k − 1)x).

The larger k is, the better the function f is approximated. Figure 12 illustrates
this fact: even with large k, the values at the points of discontinuities cannot be
approximated. Thus, a perfect square wave can never be obtained.
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a) Small k b) Larger k
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Figure 12. Gibb’s phenomenon. Approximation of function f
with a) small k and b) larger k

3. Wavelets

3.1. The Transitions from Fourier Analysis. The traditional Fourier trans-
form is implemented only on the interval [0, 2π]. This suggests that Fourier trans-
form will encounter difficulty in coping with large data files with complicated pat-
terns. Fourier analysis has been modified in many cases to comply with the available
data. For example, windowing - the method of multiple Fourier transform - is often
adopted to solve the problem of abundant data points [4].

3.1.1. Lag Matrix. Multiple transform is the method where we split a large data
file into equal time intervals and apply Fourier transform on each of them. Dividing
a data file into smaller intervals requires two specifications: (i) the time interval,
and (ii) the number of data points between two consecutive time intervals that
will be skipped (overlaps are encouraged for the purpose of precision). To make it
easier for computation, data can be put into a matrix, whose column vectors act
as an individual data set for a Fourier transform. Such a matrix is called a lag
matrix. Another way to visualize the lag matrix is to slide along the data file a
window whose length is equal to the time interval. Notice that the window is not
slid smoothly but discretely in accordance with the number of skipped data points.
The sliding process is called windowing process.

For example, consider a time series consisting of 2400 data points. They can
be split into 600 individual data sets, each of which contains 16 data points. The
skipping step is therefore 4. Hence the data matrix

X =











x1 x5 x9 . . . x2385

x2 x6 x10 . . . x2386

...
...

x16 x20 x24 . . . x2400











.

3.1.2. Sunspot Example Revisited. We will apply the windowing process to the
sunspot data set: the data was cut into lengths of 32 time units. Recall that
power spectrum is a plot of k against its frequency contents. Figure 13 is the spec-
tra of multiple Fourier transforms applied on the sunspot data set, with skipping
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Figure 13. Power spectra of the windowed sunspot data, data
length = 32, skipping step = 1.
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Figure 14. Power spectra of the windowed sunspot data, data
length = 32, skipping step = 5.

step equal to 1. Figure 14 is the spectra of the same data set; however, the skipping
step is now 5.

The color bar next to each graph is the guide to decipher power spectrum in
each smaller data set. The symmetric property is retained in both graphs. Figure
13 has better resolution, which results from smaller skipping step. However, both
graphs represent the same trend of frequency contents.

3.2. Haar Wavelets. Although multiple transforms can be adopted to solve prob-
lems of large data files, such a method is not complete. Determining the time
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Figure 15. Data from seismic survey [6].

interval and the skipping step is not an easy task for a complicated data set. More-
over, for a data set whose patterns vary greatly, a single time frame might not be
appropriate. These shortcomings of Fourier transform gave rise to wavelets.

Wavelets were first applied in analyzing data from seismic surveys in geophysics
and later on in many other signal processing applications [6]. Figure 15 displays
sample data from a seismic survey. Using the multiple transform method is certainly
not a good approach in this case: there are short-duration and high-frequency mixed
with low-frequency bursts; thus, equal-time intervals will not be able to detect both
of them.

In this section, the Haar transform and Haar wavelets will be introduced. They
represent the simplest type of wavelet analysis, and can serve as the prototype
for all other wavelet operations [7]. Two components that play primary roles in
any wavelet analysis are the scaling function, known as the father wavelet, and the
wavelet function, also known as the mother wavelet. Many theorems or results of
this section come directly or after a few simple steps from the definitions with some
knowledge of linear algebra; thus, some proofs will be omitted. Keep in mind that
all signals are plotted on a two dimensional time-axis against a displacement-axis.

This section only works with discrete signals. Thus, every signal f is of the
form f = (f1, f2, . . . , fN ), where N is a positive even integer (similar to FFT, N is
ideally a power of 2). The Haar transform decomposes a discrete signal f into two
subsignals: one reserves the trend of f , and the other reserves its fluctuation [7].

3.2.1. Haar transform, 1-level.

Definition 1. The first level of the Haar transform is the mapping H1 defined by

f
H17−→ (a1|d1),

where f is a discrete signal, a1 = (a1, a2, . . . , aN/2), and d1 = (d1, d2, . . . , dN/2)
such that

am =
f2m−1 + f2m√

2
,(6)

dm =
f2m−1 − f2m√

2
.(7)
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Figure 16. The graph of signal f on the left and its Haar trans-
form, 1-level on the right [7].

For example, let f = (4, 6, 10, 12, 8, 6, 5, 5), then we have

f 4 6 10 12 8 6 5 5

a1 5
√

2 11
√

2 7
√

2 5
√

2

d1 −
√

2 −
√

2
√

2 0

Thus,

(4, 6, 10, 12, 8, 6, 5, 5)
H17−→ (5

√
2, 11

√
2, 7

√
2, 5

√
2| −

√
2,−

√
2,
√

2, 0).

The mapping H1 has an inverse; given (a1|d1), f can easily be obtained:

f2m−1 =
am + dm√

2
, f2m =

am − dm√
2

.

If f is extracted from a continuous signal and the spaced sample values of f are
small, each value of d1 will be significantly smaller than the magnitude of f . Figure
16 illustrates this idea. While a1 appears to be a compression of f (a1 is the left
half of the graph in Figure 16(b)), d1 (the right half of the same figure) is close to
0 in magnitude. This property is called the small fluctuations feature.

Consequently, signals with small fluctuations feature can be compressed using a
smaller number of bits. For instance, if small fluctuations in d1 are disregarded,
we obtain a compression that is 50% of the original or a 2:1 compression.

3.2.2. Conservation and Compaction of Energy [7].

Definition 2. The energy of a signal f is defined by

Ef =

N
∑

i=1

f2
i .

Theorem 3 (Conservation of Energy). The 1-level Haar transform conserves en-
ergy, i.e., E(a1|d1) = Ef for all signal f .
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Proof. We have

Ea1|d1 =

N/2
∑

i=1

a2
i +

N/2
∑

i=1

d2
i

=

N/2
∑

i=1

[(f2m−1 + f2m√
2

)2

+
(f2m−1 − f2m√

2

)2]

=

N/2
∑

i=1

(

f2
2m−1 + f2

2m

)

= Ef

Hence the proof is complete. �

General Principle - Compaction of Energy: The energy of the trend subsignal
a1 accounts for a large percentage of the energy of the transformed signal (a1|d1).

This is consistent with the small fluctuations feature of d1 mentioned in the
previous subsection.

3.2.3. Haar transform, multiple levels. The multiple level Haar transform is per-
formed by consecutively applying Formula (1) on the trend subsignal of the previous
operation. For instance, a1 is obtained from the 1-level Haar transform applied on
the signal f . Computing the second trend a2 and the second fluctuation d2 for a1,
we obtain a 2-level Haar transform of f . We can keep on doing this as long as the
resulting trend signal allows. The Conservation of Energy Theorem still holds here:

E(an|dn|dn−1|...|d2|d1) = Ef .

Definition 4. The cumulative energy profile of a signal f is a signal defined by

(f2
1

Ef

,
f2
1 + f2

2

Ef

,
f2
1 + f2

2 + f2
3

Ef

, . . . , 1
)

.

Figure 17 is a graph of f , its 2-level Haar transform, and their cumulative energy
profiles. We can see that the elements in the cumulative energy profile of the 2-
level Haar transform signal approach 1 much more rapidly than the original signal,
suggesting that the compression by Haar transform conserves most of the energy
of the original signal.

3.2.4. Haar Wavelets. This section introduces two major concepts in wavelet anal-
ysis: the wavelet and the scaling signal. They are extremely useful in mathematical
operations of wavelet analysis, which will be illustrated in the following sections.

Definition 5 (Haar Wavelets). 1-level Haar wavelets W1
1
, W1

2
, . . ., W1

N/2 are

defined as W1
n

= (w1
n1, w

1
n2, . . . , w

1
nN ) such as

w1
ni =







1√
2

if i = 2n − 1
−1√

2
if i = 2n

0 otherwise.

Definition 6 (Haar scaling signals). 1-level Haar scaling signals V1
1, V1

2, . . .,
V1

N/2 are defined as V1
n = (v1

n1, v
1
n2, . . . , v

1
nN ) such as
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Figure 17. The graph of a) signal f , b) 2-level Haar transform
of signal f , c) the cumulative energy profile of signal f and d) the
cumulative energy profile of its 2-level Haar transform[7].

v1
ni =







1√
2

if i = 2n− 1
1√
2

if i = 2n

0 otherwise.

So, the 1-level Haar wavelets are:

W1

1 = (
1√
2
,− 1√

2
, 0, 0, . . . , 0),

W1

2 = (0, 0,
1√
2
,− 1√

2
, 0, 0, . . . , 0),

...

W1

N/2 = (0, 0, . . . , 0,
1√
2
,− 1√

2
),

and the 1-level Haar scaling signals are:

V1

1
= (

1√
2
,

1√
2
, 0, 0, . . . , 0),

V1

2
= (0, 0,

1√
2
,

1√
2
, 0, 0, . . . , 0),

...

V1

N/2 = (0, 0, . . . , 0,
1√
2
,

1√
2
).
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A relationship can be established between subsignals of f and the 1-level Haar
wavelets and scaling signals, using the familiar scalar product (known as the dot
product in Linear Algebra):

am = f · V1

m,

dm = f · W1

m
.

For any type of wavelets, the mother wavelets act as a window sliding along the
signal (translation), whereas the scaling signals allow zooming in and out at each
point (dilation).

We can also define multiple level Haar wavelets Wm
n = (wm

n1, w
m
n2, . . . , w

m
nN ) and

scaling signals Vm
n

= (vm
n1, v

m
n2, . . . , v

m
nN ) in a similar manner:

vm
ni =

{ 1√
2

if 2m−1n + 1 ≤ i ≤ 2mn

0 otherwise,

wm
ni =







1√
2

if 2m−1n + 1 ≤ i ≤ 3 × 2m−2n
−1√

2
if 3 × 2m−2n + 1 ≤ i ≤ 2mn

0 otherwise.

For example,

V2

2
= (0, 0, 0, 0,

1√
2
,

1√
2
,

1√
2
,

1√
2
, 0, 0, . . . , 0),

W2

2 = (0, 0, 0, 0,
1√
2
,

1√
2
,
−1√

2
,
−1√

2
, 0, 0, . . . , 0).

Consequently, we can obtain multiple level Haar transform from multiple level Haar
wavelets and scaling signals:

am =
(

f ·Vm

1
, f ·Vm

2
, . . . , f · Vm

N/2m

)

,

dm =
(

f ·Wm

1
, f · Wm

2
, . . . , f · Wm

N/2m

)

.

The multiple level Haar wavelets and scaling signals are essential in Haar wavelet
analysis. Similar to the coefficients in Fourier transform, they provide the means
to analyze the signals. More details will be provided in later sections.

3.3. Daubechies Wavelets. Haar wavelets are considered the most basic of all.
In 1988, Ingrid Daubechies discovered another family of wavelets that were named
after her [8]. Unlike Haar wavelets, Daubechies wavelets are continuous. Conse-
quently, they work better with continuous signals. They also have longer supports,
i.e. they use more values from the original signals to produce averages and dif-
ferences. These improvements enable Daubechies wavelets to handle complicated
signals more accurately.

We will first examine the simplest of the Daubechies family of wavelets: the
Daub4 wavelets. Although the scaling and wavelet numbers are different, the idea
of the Daubechies wavelets and Daubechies wavelet transform are very similar to
that of the Haar wavelets.

Since all wavelet analyses are similar in definitions and properties, the following
sections on different types of wavelets will not go into particulars. The previous
section on Haar wavelet analysis might be useful as a reference.
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3.3.1. Definitions. The Daub4 wavelets use four coefficients for their scaling signals
and wavelets, compared to two in that of Haar wavelets.

The scaling coefficients of Daub4 wavelets are

α1 =
1 +

√
3

4
√

2
, α2 =

3 +
√

3

4
√

2
, α3 =

3 −
√

3

4
√

2
, α4 =

1 −
√

3

4
√

2
,

and the wavelet coefficients are:

β1 = α4, β2 = −α3, β3 = α2, β4 = −α1.

Then, the first level Daub4 scaling signals are V1
n = (v1, v2, ...vN ), for n =

1, 2, ..., N/2, in which [7]

vi =























α1 if i = 2n − 1
α2 if i = 2n
α3 if i = (2n + 1) mod N
α4 if i = (2n + 2) mod N
0 otherwise.

The first level Daub4 wavelets W1
n = (w1, w2, ...wN ), for n = 1, 2, ..., N/2, are

defined similarly [7]:

wi =























β1 if i = 2n− 1
β2 if i = 2n
β3 if i = (2n + 1) mod N
β4 if i = (2n + 2) mod N
0 otherwise.

According to the definition, we have the 1-level Daub4 wavelets:

W1

1
= (β1, β2, β3, β4, 0, 0, . . . , 0)

W1

2 = (0, 0, β1, β2, β3, β4, 0, 0, . . . , 0)

W1

3 = (0, 0, 0, 0, β1, β2, β3, β4, 0, 0, . . . , 0)

...

W1

N/2−1
= (0, 0, . . . , 0, β1, β2, β3, β4)

W1

N/2 = (β3, β4, 0, 0, . . . , 0, β1, β2),

and the 1-level Daub4 scaling signals:

V1

1
= (α1, α2, α3, α4, 0, 0, . . . , 0)

V1

2 = (0, 0, α1, α2, α3, α4, 0, 0, . . . , 0)

V1

3 = (0, 0, 0, 0, α1, α2, α3, α4, 0, 0, . . . , 0)

...

V1

N/2−1
= (0, 0, . . . , 0, α1, α2, α3, α4)

V1

N/2 = (α3, α4, 0, 0, . . . , 0, α1, α2).

Figure 18 depicts the two wavelets: Haar and Daub4. Their shapes explain why
Haar wavelet works better with discontinuous functions while Daub4 wavelet has
an advantage while working with continuous ones.
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Figure 18. (a) Left figure: Haar wavelet, (b) Right figure: Daub4
wavelet

Notice that the scaling signals and wavelets are orthogonal to each other. This
can be easily proved using the scaling and wavelet numbers’ properties stated in
the next section.

3.3.2. The coefficients’ properties. The wavelet and scaling coefficients satisfy con-
ditions that are essential for the properties of wavelets

α2
1 + α2

2 + α2
3 + α2

4 = 1,

α1 + α2 + α3 + α4 =
√

2,

β2
1 + β2

2 + β2
3 + β2

4 = 1,

β1 + β2 + β3 + β4 = 0.

These identities can be used to prove the orthogonality among all scaling signals
and wavelets.

3.3.3. Daub4 First and Multiple-Level Transforms. Much like 1-level Haar trans-

form, Daub4 transform is defined as the mapping f
D17−→ (a1|d1). Each element in

the first trend subsignal a1 = (a1, . . . , aN/2) is the scalar product ai = f ·V1
i . Simi-

larly, the fluctuation subsignal d1 = (d1, . . . , dN/2) is the scalar product di = f ·W1
i .

Let us define the elementary signals V0
1
, V0

2
, ..., V0

N
as

V0

1
= (1, 0, 0, . . . , 0)

V0

2 = (0, 1, 0, 0 . . . , 0)

...

V0

N
= (0, 0, . . . , 0, 1).

We recognize that

V1
m = α1V

0
2m−1 + α2V

0
2m + α3V

0
2m+1 + α4V

0
2m+2,

W1
m = β1V

0
2m−1 + β2V

0
2m + β3V

0
2m+1 + β4V

0
2m+2,

where the sub index is mod N .
Higher level Daub4 transforms are obtained by applying the 1-level Daub4 trans-

form consecutively on the trend subsignal of the previous level transform. The
higher level scaling signals and wavelets are defined accordingly:

(8)
Vk

m = α1V
k−1
2m−1 + α2V

k−1
2m + α3V

k−1
2m+1 + α4V

k−1
2m+2

Wk
m = β1V

k−1
2m−1 + β2V

k−1
2m + β3V

k−1
2m+1 + β4V

k−1
2m+2.
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Figure 19. (a) Signal A. (b) 2-level Daub4 transform. (c) and
(d) Magnifications of the signal’s graph in two small squares; the
signal is approximately linear [7].

The above formulas can be modified and applied to any kind of wavelets. To
summarize, the first and multiple-level Daub4 transforms are achieved from these
wavelets and scaling signals:

(9)
am =

(

f ·Vm
1

, f ·Vm
2

, . . . , f · Vm

N/2m

)

,

dm =
(

f ·Wm
1

, f · Wm
2

, . . . , f · Wm

N/2m

)

,

which are similar to those of Haar transforms.

3.3.4. The Daub4 Transform’s Property [7].

Property 1. If a signal f is approximately linear over the support of a k-level Daub4
wavelet Wk

m, then the k-level fluctuation value f ·Wk
m is approximately zero [7].

The support of a k-level wavelet depends on the number k. For example, the
1-level Daub4 wavelet has 4 time-unit support (4 non-zero coefficients); the 2-
level Daub4 wavelet has 6 time-unit support, etc... Figure 19 illustrates this idea:
magnifications of the original signal appear linear; and the fluctuation subsignals
seem to be 0. This property is useful in determining whether Daub4 wavelets are
adequate for certain applications.

Property 2. Similar to Haar transform, Daub4 transforms also conserve energy.

The proof for this can be found in [7]. Figure 20 compares the efficiency of Haar
transform and Daub4 transform. The upper graphs show that the detail subsignals
from Daub4 transform are significantly less than that from Haar transform. As a
result, the cumulative energy of Daub4 transform reaches 1 much faster.
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Figure 20. (a)2-level Haar transform of signal A. (b) 2-level
Daub4 transform on the same signal. (c) Cumulative energy profile
for the Haar transform in (a). and (d) Cumulative energy profile
for the Daub4 transform in (b)[7].

3.4. Other Daubechies Wavelets. Other Daubechies wavelets are very similar to
Daub4 wavelets. Ingrid Daubechies developed two families of wavelets: the DaubJ
wavelets (for J = 4, 6, 8, . . . , 20) and the CoifI wavelets (for I = 6, 12, 18, 24, 30)
[7].

3.4.1. DaubJ Wavelets. We provide a general definition for DaubJ wavelets (for
J = 4, 6, 8, . . . , 20) as done in [7]. For each J , the scaling numbers αi (for i =
1, 2, ..., J) are computed. The wavelet numbers are then defined accordingly:

βi = (−1)i+1αJ−i.

The 1-level Daub4 scaling signals are: V1
n = (v1, v2, ...vN ), for n = 1, 2, ..., N/2, in

which

vi =



































α1 if i = (2n − 1) mod N
α2 if i = (2n) mod N
...
αJ−1 if i = (2n + J − 3) mod N
αJ if i = (2n + J − 2) mod N
0 otherwise.
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The 1-level Daub4 wavelets are:W1
n = (w1, w2, ...wN ), for n = 1, 2, ..., N/2, in

which

wi =



































β1 if i = (2n − 1) mod N
β2 if i = (2n) mod N
...
βJ−1 if i = (2n + J − 3) mod N
βJ if i = (2n + J − 2) mod N
0 otherwise.

The scaling numbers and wavelet numbers of DaubJ transform still satisfy some
identities:

α2
1 + α2

2 + . . . + α2
J−1 + α2

J = 1,

α1 + α2 + . . . + αJ−1 + αJ =
√

2,

0iβ1 + 1iβ2 + . . . + (J − 2)iβJ−1 + (J − 1)iβJ = 0,

for i = 0, 1, ..., J − 4.

The multiple level DaubJ transforms are defined similarly to Daub4. The 1-level
transform is applied consecutively on the previous level’s trend signal to achieve a
higher transform.

3.4.2. Coiflets. Like the DaubJ family, the CoifI family, also known as the “coiflets”,
consists of different wavelets defined in a similar manner [7]. Thus, we will examine
the representative Coif6, which should give us good understanding of the family in
general.

The six Coif6 scaling numbers are:

α1 = 1−
√

7
16

√
2
, α2 = 5+

√
7

16
√

2
, α3 = 14+2

√
7

16
√

2
,

α4 = 14−2
√

7
16

√
2

, α5 = 1−
√

7
16

√
2
, α6 = −3+

√
7

16
√

2
.

The wavelet numbers are defined based on the scaling numbers:

βi = (−1)i+1αJ−i.

Besides common identities, the Coif6 scaling numbers satisfy additional ones:

α1 + α2 + α3 + α4 + α5 + α6 =
√

2

(−2)iα1 + (−1)iα2 + 0iα3 + 1iα4 + 2iα5 + 3iα6 = 0

for i = 1, 2,

β1 + β2 + β3 + β4 + β5 + β6 = 0

0β1 + 1β2 + 2β3 + 3β4 + 4β5 + 5β6 = 0.

The Coif6 first level scaling signals V1
n = (v1, v2, ...vN ), and wavelets W1

n =
(w1, w2, ...wN ), for n = 1, 2, ..., N/2, are also determined slightly differently [7]:

vi =







































α1 if i = (2n − 3) mod N
α2 if i = (2n − 2) mod N
α3 if i = (2n − 1) mod N
α4 if i = (2n) mod N
α5 if i = (2n + 1) mod N
α6 if i = (2n + 2) mod N
0 otherwise,
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wi =







































β1 if i = (2n − 3) mod N
β2 if i = (2n − 2) mod N
β3 if i = (2n − 1) mod N
β4 if i = (2n) mod N
β5 if i = (2n + 1) mod N
β6 if i = (2n + 2) mod N
0 otherwise.

Formulas (8) and (9) may be employed to find higher level wavelets, scaling
signals, and to perform Coiflet transforms at different levels. Coiflets share all
properties with Haar and DaubJ wavelets.

3.5. Wavelet Applications. In this section, some basic applications of wavelet
analysis will be introduced. The Haar wavelet will be examined in all applications
as a model for other types of wavelets. Since wavelet analytical mechanisms are
similar across different families of wavelets, more complex wavelets will be exam-
ined without elaborate explanation. Juxtaposition of two or more different wavelet
analyses in one application will help indicate one wavelet’s advantages over the
others.

3.5.1. Multiresolution Analysis. Since discrete signals are subjects of wavelet anal-
ysis in this paper, all elementary algebraic operations such as addition, subtraction,
and scalar multiplication can be performed on any two or more signals. Multireso-
lution analysis allows the original signal to be built up from lower resolution signals
and necessary details.

Definition 7 (First Signals). The First Average Signal A1 is defined by

A1 =
( a1√

2
,

a1√
2
,

a2√
2
,

a2√
2
, . . . ,

aN/2√
2

,
aN/2√

2

)

.

The First Detail Signal D1 is defined by

D1 =
( d1√

2
,
−d1√

2
,

d2√
2
,
−d2√

2
, . . . ,

dN/2√
2

,
−dN/2√

2

)

.

Recalling the elementary signals defined in the previous section, we have:

f =

N
∑

i=1

fiV
0

i .(10)

The above formula is called the natural expansion of a signal f in terms of the
natural basis of signals V0

1, V0
2, . . ., V0

N
.
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Figure 21. The graph of signal A built up from 10-level Haar
MRA. Ten averaged signals from A10 to A1 are displayed from
top to bottom, from left to right [7].

It follows that
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∑
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=
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f · W1

i

)

W1
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This is the first level of Haar multiresolution analysis (MRA). Since the multiple
level Haar transform can be applied consecutively on average subsignals, we can
expand further to obtain multiple level Haar MRA:

f = Ak + Dk + . . . + D2 + D1,

in which

Ak =

N/2k

∑

i=1

(

f · Vk

i

)

Vk

i

Dk =

N/2k

∑

i=1

(

f · Wk

i

)

Wk

i
.

The values
(

f · Vk

i

)

and
(

f · Wk

i

)

are called wavelet coefficients. Each of the
component signals has lower resolution than f ; however, if a high-enough level of
MRA is employed, the original f can be obtained. In Figure 21, the original signal
was achieved after 10 levels of Haar MRA. Since the original signal is continuous,
Daubechies wavelets yield better results. Figure 22 and Figure 23 show that more
complex wavelets approach the original signal after fewer steps of MRA.
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Figure 22. Daub4 MRA of the same signal. The graph are of 10
averaged signals A10 through A1 [7].

Figure 23. Daub20 MRA of the same signal. The graph are of
10 averaged signals A10 through A1 [7].

3.5.2. Compression of Audio Signals. There are two basic categories of compression
techniques: lossless compression and lossy compression [7]. A lossless compression
technique yields a decompression free in error from the original signal, while a de-
compression resulted from lossy compression suffers a degree of inaccuracy. How-
ever, the lossy compression usually succeeds more often at reducing the size of the
data set. The wavelet transform is a lossy compression technique.

Method of Wavelet Transform Compression [7]
Step 1. Perform a wavelet transform of the signal
Step 2. Set equal to 0 all values of the wavelet transform which are insignificant,

i.e., which lie below some threshold value.
Step 3. Transmit only the significant, non-zero values of the transform obtained

from Step 2. This should be a much smaller data set than the original signal.
Step 4. At the receiving end, perform the inverse wavelet transform of the

data transmitted in Step 3, assigning zero values to the insignificant values which
were not transmitted. This decompression step produces an approximation of the
original signal.

Figures 24 and 25 are two examples of compression using wavelet transform
method. Because of the nature of Haar wavelets, discrete signals like signal 1
in Figure 24 can be more easily compressed with high degree of accuracy, while
continuous signals such as signal 2 in Figure 25 are much harder to compress,
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Figure 24. a)Original signal 1, b)10-level Haar transform of sig-
nal 1, c) energy map of Haar transform, and d) 20:1 compression
of signal 1, 100% of energy[7].

Figure 25. a)Signal 2, b)12-level Haar transform of signal 2, c)
energy map of Haar transform, and d) 10:1 compression of the
original signal, 99.6% of energy of signal 2[7].

and when they are compressed, the decompresion doesn’t yield high precision even
though a smaller compression size and higher level Haar transform were used.

Although Haar transforms are prominent in compressing piecewise constant sig-
nals, Daubechies transforms work much better with continuous signals. Figure 26
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Figure 26. (a) The original signal. (b) 12-level Coif30 transform.
(c) Energy map of the transform and (d) 32:1 compression of the
signal [7].

is the 12-level Coif30 transform of signal 2. We see that a 32:1 compression of this
signal by Coif30 transform yields better result when decompressed than the 10:1
compression by Haar transform.

3.5.3. Removing Noise from Audio Signals. When transmitted over a distance, sig-
nals are usually contaminated with noise, “the undesired change that has altered
the values of the original signal” [7]. Noise is often encountered in three types [7]:

(1) Random noise. The noise signal is highly oscillatory, its values alternating
rapidly between values above and below an average, or mean, value. We
will be mostly working with random noise.

(2) Pop noise. This type of noise is heard on old analog recordings obtained
from phonograph records. The noise is perceived as randomly occuring,
isolated “pops.”

(3) Localized random noise. Sometimes the noise appears as in type 1, but only
over a short segment or segments of the signal. This can occur when there
is a short-lived disturbance in the environment during transmission of the
signal.

The simple model for a contaminated signal is given as follows:

contaminated signal = original signal + noise

Denoting f as the contaminated signal, s as the original signal and n as noise,
we have an equation

f = s + n.

To filter out random noise, the threshold method of wavelet denoising can be
implemented. In this method, only the transform values whose magnitudes are
greater than a threshold Ts > 0 will be kept. Equivalently, we can discard all
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Figure 27. a) Signal B, 210 values. b) 10-level Haar transform of
signal B. The two horizontal lines are at values of ±.25 (the de-
noising threshold). c) Thresholded transform. d) Denoised signal
[7].

the transform values whose magnitudes lie below a noise threshold Tn satisfying
Tn < Ts.

The Root mean Square Error (RMSE) is used to measure the effectiveness of
noise removal method:

RMSE =

√

∑N
i=1(fi − si)2

N

=

√

∑N
i=1(ni)2

N

=

√
En√
N

.

Smaller RMSE indicates a better denoising result. This is similar to the least square
method in determining error for a set of data.

Figure 27 is a denoising example of signal 1. Part (a) of Figure 27 suggests that
some random noise was added to the original signal. Part (b) shows the denoising
threshold to be used on 10-level Haar transform of the contaminated signal, part (c)
shows the Haar transform after the noise was filtered, and part (d) is the denoised
signal. The result is fairly consistent with the original signal given in the previous
report. The RMSE between signal B and signal 1 is 0.057. After denoising, the
RMSE reduces to 0.011.

Figure 28 is another example of denoising method applied on signal 2. For this
signal, 212 values were used, together with a higher level of Haar transform (12
instead of 10), and a smaller denoising threshold (0.2 instead of 0.25). The RMSE
between signal C and signal 2 is 0.057. After denoising, the RMSE is 0.035.
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Figure 28. a) Signal C, 212 values. b) 12-level Haar transform
of signal C. The two horizontal lines are at values of ±.2 (the de-
noising threshold). c) Thresholded transform. d) Denoised signal
[7].

Even though a higher level of Haar transform as well as a smaller denoising
threshold were used, denoising of signal C still did not yield good results, which
implies that Haar wavelet denoising method does not work particularly well with
continuous signals such as signal 2.

Figure 29 consists of signal 2, its 12-level Coif30 transform, the thresholded
transform and the denoised signal. In comparison with the denoised signal by
Haar transform , this thresholded Coif30 transform yields much better result. This
example shows that Daubechies wavelets once again prove to be a better approach
in coping with continuous signals.

The thresholded method, however, poses a problem: what should the threshold
value be? One method of choosing the threshold is to rely on the mean µ and
standard deviation σ of the probability density function [7]. A further explanation
can be sought in [7].

3.6. Other Applications. All examples introduced in the previous section are
simple and more direct applications of wavelet analysis. The same analysis can be
applied to more complicated data sets, such as sound signals or two dimensional
images, to produce high quality compression images, or to filter the unexpected
noise from a recording. Although wavelets’ history can be traced back to Haar
analysis in 1910, most of the development has been in the last 20 years, starting
with Stromberg (1981) and Morlet (1984) [9] while working on seismology. Sim-
ilar to calculus’ development, wavelets quickly evolved beyond mathematics and
proved their efficacy in other natural sciences, including both theoretical fields such
as physics, chemistry, biology, and appplied fields such as computer science, en-
gineering, and econometrics [9]. The technique is still being developed and put
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Figure 29. (a) The familiar signal. (b) 12-level Coif30 transform,
with threshold = ±0.2. (c) Thresholded transform. (d) Denoised
signal.[7]

into trial in different disciplines, among them are statisticians and stock market
researchers.

4. Wavelets vs. Fourier Analysis

Throughout the previous section, Fourier analysis was occasionally compared to
wavelets. This section provides a concrete example inwhich wavelets outperform
Fourier analysis in yielding desired results.

The basic Fourier transform gives a global picture of a data set’s spectrum,
whereas wavelet transforms offer a more flexible way to examine a signal, a function
or an image. In addition, wavelet transforms also provide information on where
or when each frequency component is occuring. These advantages are especially
embraced in studying non-stationary or inhomogeneous objects [9].

Windowed Fourier transform, as mentioned in section 3.1, is capable of obtaining
a localized frequency; however, the window width remains the same along the data
set, which suggests a limitation if the data set contains jumps with unexpected high
or low frequencies. This problem can be resolved by wavelet analysis as it allows
the degree of localization to be adjustable.

For example, consider the signal f in Figure 30, defined by:

f = sin(2πv1x)e−π( x−0.2

0.1
)10

+
(

sin(2πv1x) + 2 cos(2πv2x)
)

e−π( x−0.5

0.1
)10

+
(

2 sin(2πv2x) − cos(2πv3x)
)

e−π( x−0.5

0.1
)10 .
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Figure 30. The original signal f .
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Figure 31. The power spectrum of signal f .

The signal comprises three distinct components; the first one has one dominant
frequency v1, the second one has two dominant frequencies v1 and v2, and the third
one also has two: v2 and v3. Figure 31 is the Fourier transform of f , and Figure 32
displays the power spectrum of each individual component.

Fourier transform only detects the dominant frequencies without telling us where
they come in. This problem can be solved by using wavelet analysis. Figure 33 plots
the wavelet coefficients of signal f against time and scale (logarithm of frequencies).
Both the dominant frequencies and their time of appearance are included in the
figure.

5. Conclusion

Compared to other mathematical topics, wavelets are in a rather fledgling stage.
However, their applications are widespread in many fields, both theoretical and
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Figure 32. The power spectra for each component.
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Figure 33. Wavelet transform of signal f . The plot is captured
at two different angles
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practical. Arising from the Fourier analysis’ failure to cope with large and complex
data files, wavelets rapidly develop to resolve these problems.

This paper briefly introduced Fourier series and chose Fast Fourier Transform
(FFT) to be the representative method for Fourier analysis. A modification of FFT
- the windowing process or short-term Fourier transform - was also examined as a
transition before moving to wavelets. Since all wavelets are constructed similarly,
the first and simplest, the Haar wavelet, was studied first and in more detail.
Two other families of wavelets were mentioned in the paper: DaubJ wavelets and
Coiflets. Some simple applications of wavelet analysis mentioned in the paper
include multiresolution analysis, the denoising problem and compression of audio
signals. These applications also provide a basis to make a comparison between
Fourier and wavelet analyses.

All examples in this paper, including discrete data and audio signals, are one-
dimensional. However, wavelet analysis is capable of dealing with higher dimen-
sional data sets, such as pictures. Information on wavelet analysis on 2D data sets
can be found in [7] or most books on applications of wavelets. More complex appli-
cations of wavelets, such as signal detection and applications in statistics, can also
be topics for further study.
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