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Abstract

Basic ideas from convex geometry in Euclidean space are developed. The finite
and infinite versions of Helly’s theorem are proved. Some applications of Helly’s
theorem are examined. Our study culminates in proof of Krasnosselsky’s Art
Gallery Theorem in n-dimensional space.

1 Introduction

In this paper, we examine the visibility of points in two dimensional and n-
dimensional sets in Euclidean space, when the sets have one simple boundary
line or boundary surface, that is, no holes. Two points are visible from each
other in a set when the entire line segment between them is contained in the
set.

Our main question is, given a simply-bounded set A in Euclidean space,
what is the minumum number of points necessary in a subset B ⊆ A for every
point in A to be visible from at least one of the points B? In other words, what
is the minimum number of points in A required to “see” the entire set A?

1.1 The Simplest Case

In the two dimensional case, our question becomes “What is the minimum num-
ber of full angle security cameras required to assure that all points in an art
gallery are visible on camera?” When the art gallery can be represented as a
polygonal set in R2, there is a fairly straightforward answer. The solution pre-
sented below has been modified from section 4.2 of Edward Burger and Michael
Starbird’s The Heart of Mathematics.

Any non-triangular polygonal set in R2 can be subdivided into two adjacent
polygonal sets by connecting a pair of mutually visible vertices. Subdivision
can continue in this manner until the entire set has been divided into adjacent,
non-overlapping triangles. Each vertex of each triangle is also a vertex of the
original polygon.

It is always possible to choose three colors, and color the vertices of the
subdivided polygon so that the each triangle that makes up the polygon has
three different colors, one at each vertex. Consider that if we select a random
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triangle in the polygon, and color the three vertices each a different color, then
the remainder of the polygon, excluding the triangle, will be divided into up to
three disjoint sub-polygons (See Figure 1).

Figure 1: A triangularly subdivided polygon has been divided into three disjoint
parts, in grey, by selecting a triangle from the polygon to color

These parts are disjoint because if they came in contact at any point, the
polygon would have holes in it. The vertices in each of the three sub-polygons are
not yet colored, but the color of the remaining vertex of each triangle adjacent to
the original triangle is now determined. Color that vertex, and we have divided
the sub-polygon that contains it into two smaller, disjoint, and not yet colored
subsets. This process can be repeated until every vertex is colored with one of
three colors, and every triangle has three different colored vertices.

If a security camera is placed in a triangle, then every point in the triangle is
visible to the camera, because the triangle is convex. If there are n vertices col-
ored with three colors, then the color that is associated with the least number of
vertices must color less than or equal to n

3 vertices. If a camera is placed at each
vertex of that color then the entire gallery will be visible to n

3 or less cameras.
Thus any polygonal set in R2 can always be entirely “seen” by n

3 or fewer points.

In the n-dimensional case, the problem does not admit a basic solution. In
this paper, we develop principles of convexity theory, and we eventually use
Helly’s Theorem, one of the most powerful results in convexity, to demonstrate
a condition for when only one point is necessary to see an entire n-dimensional
set. Sets that contain such a point are called starshaped. Partitioning sets
into subsets that are all starshaped is one way of setting an upper limit on the
number of points required to see an entire set.

Most of this paper is paraphrased from Webster’s Convexity. Where other
sources are used, reference is given.
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2 Preliminaries

Before looking at convexity, Helly’s Theorem, and Krasnosselsky’s Theorem, we
need to build some of the concepts that will be used throughout the paper.

2.1 Flats

In order to study the art gallery theorem in Rn, we need a way to characterize
sets in Rn. One of the most basics subsets of Rn is a subspace. Flats in Rn are
a generalization of subspaces.

A subset B of Rn is a flat if, for any two points in B, the set B contains the
entire line defined by those two points. Thus for any two points a,b ∈ B, and
a free variable λ ∈ R, every point in the parametrically defined line

x = b + λ(a− b) = λa + (1− λ)b

must be contained in B (See Figure 2). If we set µ = (1−λ) we can characterize
a line through points a, b ∈ Rn as the set

{λa + µb|λ+ µ = 1}.

Consequently, a set B ⊆ Rn is a flat if it satisfies λa+µb ∈ B whenever a,b ∈ B
and λ+ µ = 1.

Figure 2: A line through points a and b

1 Lemma A flat that contains the origin is a subspace.
Proof Let A be a flat in Rn which contains the origin. Suppose that a, b

∈ A and λ ∈ R. Since A is a flat and a,0 ∈ A, therefore λa + (1− λ)0 ∈ A, i.e.
λa ∈ A. Thus A is closed under scalar multiplication. Since A is a flat and a,
b ∈ A, therefore 1

2a + 1
2b ∈ A. But A is closed under scalar multiplication, so

2( 1
2a + 1

2b) ∈ A, i.e. a + b ∈ A. Thus A is closed under addition, and A is a
subspace of the real vector space Rn.

Theorem Each nonempty flat in Rn is exactly a translated subspace of Rn

1image from Webster
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Proof Let F be a flat in Rn and a be some point in F . Consider the set
(F − a) = {f − a|f ∈ F}. If a flat contains the origin, then it is a subspace.
Since (F − a) contains a − a = 0, we only need to show that (F − a) is a flat.
We start with two general points f1, f2 ∈ F . If λ+ µ = 1, then

λ(f1) + µ(f2) ∈ F.

Subtracting a from the left term, we get the inclusion statement

λ(f1) + µ(f2)− (λ+ µ)a ∈ (F − a)

which simplifies to
λ(f1 − a) + µ(f2 − a) ∈ (F − a).

Thus (F − a) is a flat, and every flat can be translated to form a subspace.
Next we show that a translated subspace is always a flat. Suppose S is a

subspace of Rn and for some p ∈ Rn, F = S+ p = {s + p|s ∈ S}. We can show
that F is a flat. If x,y ∈ S and λ+ µ = 1, then λx + µy ∈ S, since S is closed
under linear combinations. Adding p to the left term, we get

λx + µy + (λ+ µ︸ ︷︷ ︸
1

)p ∈ (S + p),

where (S+p)= {s + p|s ∈ S}. Our expression simplifies to

λ(x+ p) + µ(y + p) ∈ (S + p).

Thus (S + p) is a flat, and translating any subspace results in a flat.�

2.2 Affine Combinations

Affine combinations provide some insight into the nature of flats.
A point x ∈ Rn is an affine combination of points a1, a2, ..., am in Rn if

there exist scalars λ1, λ2, ...λm where λ1 + λ2 + ...+ λm = 1 such that

x = λ1a1 + λ2a2 + ...+ λ2a2

The affine hull of A, written aff(A) is the set of all affine combinations of
the points in set A.

It can be shown that if A is a flat, then A=aff(A). In other words, for any
subset a1, a2, ..., am of a flat A, the affine combination λ1a1+λ2a2+...+λmam ∈
A.

A set B in Rn is affinely dependent if there exists a b ∈ B such that b ∈
aff(B \ {b}).

Another definition of affine dependence is given in the following theorem.
Theorem Let A be a set in Rn. Then A is affinely dependent if and only if

there exist some distinct points a1, a2, ..., am of A and scalars λ1, λ2, ...λm, not
all zero, such that λ1a1 + λ2a2 + ...+ λmam = 0 and λ1 + λ2 + ...+ λm = 0.
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Proof Suppose set A is affinely dependent. Then there is an a1 ∈ A, and
some a2,a3, ...,ak ∈ (A \ {a}) such that a1 = λ1a2 + λ2a3 + ... + λkak+1 for
some λ1 + ...+ λk = 1. Scaling this equation by −1, but calling it −λm, we get

−λma1 = −(λ1a2 + λ2a3 + ...+ λkak+1)λm

which simplifies to

0 = λma1 − (λ2λma2 + ...+ λkλmak+1).

Separating out the constants of the ai, we show that the sum of the constants
is zero

λ1 − λm(λ1 + ...+ λk︸ ︷︷ ︸
1

) = 0.

Thus if A is affinely dependent, then the other conditions of the theorem are
fulfilled. The proof of the converse is somewhat similar. �

2.3 Dimension

Another concept we define in order to prove the art gallery theorem in n dimen-
sions is dimension in Rn. We begin by considering a theorem that will lead to
a definition of affine bases. Its proof demonstrates one way to take advantage
of connections to linear algebra.

Theorem 2.3 An affinely independent set in Rn cannot contain more than
n+ 1 points.

Proof (of contrapositive) Consider a set A = {a1, . . . am} of m distinct
points in Rn, where m > n + 1. Then the system of n+1 linear homogeneous
equations in m unknowns


a11 a21 · · · am1

...
...

a1n a2n · · · amn

1 1 · · · 1




λ1

λ2

...
λm−1

λm

 =


0
0
...
0
0


has a nontrivial solution. Equivalently, the equations

λ1a1 + ...+ λmam = 0, λ1 + ...+ λm = 0

have a solution for which not all of λ1, λ2, . . . λm are zero and thus, the set
{a1, . . . am} is affinely dependent. �

The following theorem, presented without proof, will enable us to define the
dimension of a flat, and later the dimension of any set in Rn

Theorem Every flat in Rn is the affine hull of some finite affinely indepen-
dent subset of Rn, called an affine basis. Moreover, the number of elements in
such a subset is determined uniquely by the flat itself. �
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A flat in Rn which is the affine hull of some affinely independent set of r+ 1
points has dimension r and is called an r-flat.

Note that this definition is consistent with the definition of dimension of
subspaces in linear algebra. For example, in linear algebra, a two dimensional
subspace is defined by three affinely independent points: two points which are
linearly independent, and the origin. We can verify the affine independence of
these three points as follows. Since for any two nonzero linearly independent
vectors a and b, λa + µb = 0 has no solution for any λ, µ, we know that
λa + µb + τ0 = 0 must also have no solution, including when λ + µ + τ = 0.
Thus, by Theorem 2.3, these three points are affinely independent.

Using the concept of affine hulls, we can extend the definition of dimension
to apply to any subset of Rn.

The dimension of a subset A ∈ Rn is defined as the dimension of the flat
aff(A).

2.4 Norms and Distance

In order to define open and closed sets in the next section, we need a formal
definition of distance. The norm of a vector x=(x1, x2, ..., xn) in Rn is defined
as

‖x‖ =
√

x · x =
√
x2

1 + x2
2 + · · ·+ x2

n.

The distance between two vectors x and y is the norm of the difference
vector

‖x− y‖ =
√

(x− y) · (x− y) =
√

(x1 − y1)2 + (x2 + y2)2 + · · ·+ (xn + yn)2.

The following Theorem from page 26 of Convexity will be useful in our final
proof of Krasnosselsky’s Theorem.

Theorem 2.4 If, for some α > 0, ‖x + λy‖ ≥ ‖x‖ whenever 0 < λ < α,
then x · y ≥ 0.

Proof Let α > 0 be such that ‖x‖ ≤ ‖x + λy‖ whenever 0 < λ < α. Then,
whenever 0 < λ < α,

‖x‖2 ≤ ‖x + λy‖2 = ‖x‖2 + 2λx · y + λ2‖y‖2

whence
x · y +

1
2
λ‖y‖2 ≥ 0.

Letting λ→ 0+ in the last inequality, we deduce that x · y ≥ 0.

2.5 Open, Closed, and Bounded Sets

The set of points whose distance from a point a ∈ Rn is less than r with r > 0,

{x ∈ Rn : ‖x-a‖ < r}
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is called an open ball with center a and radius r, and is written B(a; r). A
closed ball is similarly defined as {x ∈ Rn : ‖x-a‖ ≤ r}, and is written B[a; r].

A point b of a set B in Rn is an interior point of B if it is the center of
some open ball which lies in B. The set of all interior points of B is denoted by
int(B).

A set B in Rn is called open if each point in the set is an interior point, i.e.
if B = int(B).

A point b of Rn is a closure point of a set B if the intersection of B and
every possible open ball centered at b is nonempty. The set of all closure points
of B is written cl(B).

A set B in Rn is called closed if it contains all of its closure points.

Theorem Let A be a set in Rn. Then cl(A) =(int(Ac))c where Ac, called
“A complement”, indicates the set of all points in Rn that are not in A.

Proof If x ∈ cl(A), then each open ball with center x must contain a point of
A, and so x cannot belong to int(Ac), the set of all points that have an open ball
not in A. Therefore x must belong to (int(Ac))c. Conversely, if x ∈ (int(Ac))c

then each open ball centered at x must contain a point of A, i.e. x∈ clA. Thus
clA =(int(Ac))c �

A set in Rn is called bounded if there exists a number r ∈ Rn such that
‖a‖ ≤ r for all a ∈ A.

2.6 Convergence and Closure

Convergence of infinite sequences of elements in a set in Rn provides another
way to characterize closure. Proof that a set is closed is often written in terms
of convergence of sequences contained in the set.

Definition An infinite sequence x1, ...,xk..., in Rn is said to converge to
a point x if, by making k arbitrarily large, we can make the distance between
xk and x as small as we want. In symbols, a sequence {xk} converges to x if
‖xk − x‖ → 0 as k →∞.

Theorem 2.6 If A is a set in Rn and x∈ Rn then x ∈ cl(A) if and only if
there exists an infinite sequence of points of A which converges to x.

Proof First we show that the existence of the convergent sequence implies
that x∈clA. Suppose that x1, ...,xk, ... is a sequence of points of A that con-
verges to x∈ Rn. Convergence implies that for any scalar r > 0, there exists
some point xk of the sequence such that ‖xk − x‖ < r. Since xk ∈ A, the
intersection of the open ball B(x;r) and A is nonempty for every r > 0. Thus x
is a closure point of A, that is x ∈ clA.

Next we show that if x ∈ clA then there exists an infinite sequence of points
that converge to x. If x ∈ clA then for each positive integer k, the intersection
of B(x;1/k) and A is nonempty. Thus for each k, there exists an xk ∈ A such
that ‖xk−x‖ < 1/k. Since for large enough k, we can make xk arbitrarily close
to x, the sequence x1, ...,xk... converges to x. �
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With Theorem 2.6, we can now also redefine a closed set A as a set for
which every convergent sequence of points a1,a2... with ai ∈ A, converges to a
point contained in A.

2.7 The Bolzano-Weierstrasss Theorem and Compactness

Lemma Every infinite sequence in R1 has an infinite monotone subsequence.
Proof A term in a sequence after which all subsequent terms are smaller is

called a peak element. If a sequence has an infinite number of peak elements,
then an infinite subsequence made of those peak elements is strictly decreasing.
If the sequence has a finite number of peak elements, then there is a last one, xl.
Every element xm after xl is followed by some later element that is either greater
than or equal to it since xm is not a peak element. An infinite subsequence can
be made from these elements that satisfies xn ≤ xq for n < q, that is, which is
monotonically increasing.�

The Bolzano-Weierstrass Theorem Every bounded infinite sequence of
points of Rn contains a convergent subsequence.

Proof A standard result from calculus states that every bounded mono-
tonic sequence is convergent. Thus every sequence in R1 contains a convergent
subsequence.

To extend this result to sequences in Rn, let x1, ...,xk... be a bounded se-
quence in Rn. Since |xki| ≤ ‖xk‖ for all xk, we know that the n sequences
of the coordinates of the terms of x1, ...,xk... must also be bounded. Since
the sequence of the first coordinates, x11, ..., xk1... is a bounded sequence of
real numbers, it contains a convergent subsequence. Thus there exists a subse-
quence of x1, ...,xk... such that the sequence of its first coordinates converges.
Then by the same conditions, there exists a subsequence of that subsequence
such that the sequence of second coordinates also converges. Taking subse-
quences of each new sequence n times, we are left with an infinite subse-
quence of x1, ...,xk... in which all of the n coordinate sequences converge. Since
‖xk − x‖ ≤ |xk1 − x1|+ ...+ |xkn − xn| for any x in Rn, we have found a con-
vergent subsequence of x1, ...,xk...�

Definition A subset of Rn is compact if each sequence of its points contains
some subsequence that converges to a point of the subset.

Theorem In Rn, a set is compact if and only if it is both closed and bounded.
Proof Suppose a set A in Rn is closed and bounded. Every infinite se-

quence a1,a2, ... of points in A is also bounded. By Bolzano-Weierstrass, each
a1,a2, ... contains a convergent subsequence. By the closure of A, each of these
subsequences converges to a point in A. Thus A is compact.

Suppose now that A is compact. If x∈ clA, then by Theorem 2.6, there
is an infinite sequence of points of A, a1,a2, ... which converges to x. Since
limits are unique, all subsequences of this sequence also converge to x. By the
compactness of A, the sequence contains some subsequence that converges to a
point of A. Thus x ∈ A and A is closed.
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Now suppose that A is compact but not bounded. Then, for each positive
integer k, there must exist a point xk of A such that ‖xk‖ ≥ k. The sequence
x1, ...,xk, ... of points of A contains no bounded infinite subsequence, and thus
no convergent infinite subsequence, contrary to the hypothesis that A is com-
pact. Thus A is both closed and bounded. �

Presented without proof, the following result from Webster’s Convexity will
be useful in our final proof of Krasnosselsky’s Theorem.

Theorem 2.7 In Rn the convex hull of an open set is open and the convex
hull of a compact set is compact.

2.8 Hyperplanes

Hyperplanes are useful for dividing Rn into two halves, and will be instrumental
in our eventual proof of Krassnosselski’s theorem. Hyperplanes are, as they
sound, an extension of the concept of a plane to Rn.

A hyperplane is a flat in Rn of dimension n− 1.
For a line L in R2 with equation c0 +c1x+c2y = 0, we have L = {(x, y)|c0 +

c1x+ c2y = 0}. The equation of a plane P in R3, c0 + c1x+ c2y+ c3z = 0 gives
us P = {(x, y, z)|c0 + c1x+ c2y + c3z = 0}. From this pattern we find that the
following provides a general formula for hyperplanes H in Rn

H = {(x1, x2, ..., xn)|c0 + c1x1 + c2x2 + . . . , cnxn = 0}.

A halfspace S in Rn consists of all the points that lie on one side of a
hyperplane. Halfspaces can be either open

S = {(x1, x2, ..., xn)|c0 + c1x1 + c2x2 + · · ·+ cnxn > 0}

or closed

S = {(x1, x2, ..., xn)|c0 + c1x1 + c2x2 + · · ·+ cnxn ≥ 0}.

A hyperplane H supports a set A in Rn at the points (H ∪ clA) if the
intersection of H and cl(A) is nonempty, and if A lies entirely in one of the
closed halfspaces determined by H. In this case we say that H is a support
hyperplane to set A.

A plane that is tangent to a ball is an example of a support hyperplane, and
every hyperplane H is a support hyperplane to the open halfspaces defined by
H. However, the line that is tangent to y = sin(x) at x = 2 is not an example
of a a support hyperplane to the set of points that satisfy y = sin(x), since the
set does not lie entirely on one side of the line.

3 Convexity

3.1 Convex Sets

If x and y are distinct points of Rn then the line through x and y can be written
as x + λ(y-x) where the parameter λ ∈ R can take on any value. Restricting λ

9



to between 0 and 1 results in an expression for the line segment between x and
y. If we set µ equal to 1− λ we find that

{µx + λy|λ, µ ≥ 0, λ+ µ = 1}

is another representation of the line segment between x and y.

The set A in Rn is convex if whenever it contains two points, it also contains
the line segment between them. In other words, A in Rn is convex if for ev-
ery x, y in A, the sum µx+λy is also in A for every λ, µ ≥ 0 for which λ+µ = 1.

To demonstrate that a set is convex, one can show that it contains the entire
line segment between any two of its points. For example, we demonstrate that
all open halfspaces are convex as follows. Consider two points y = (y1, ..., yn)
and z = (z1, ..., zn) in the arbitrary open halfspace P = {(x1, ..., xn)|a1x1 + . . .+
anxn > a0; a0, ..., an ∈ R}. By their definitions, y and z satisfy a1y1 + a2y2 +
...+ anyn > a0 and a1z1 + a2z2 + ...+ anzn > a0. Consequently, for some λ and
µ as defined above,

λ(a1y1 + a2y2 + ...+ anyn) + µ(a1z1 + a2z2 + ...+ anzn) > λa0 + µa0 = a0.

Thus
a1(λy1) + ...+ an(λyn) + a1(µz1) + ...+ an(µzn) > a0

and
a1(λy1 + µz1) + ...+ an(λyn + µzn) > a0.

Therefore λy + µz is in P for any y, z in P , and P is convex.
We can show by similar means that all closed halfspaces, all balls, and all

flats are convex.

Theorem The intersection of an arbitrary family of convex sets in Rn is
convex.

Proof Let {Ai|i ∈ I} where I is a set of natural numbers, be a family of
convex sets in Rn. If a,b ∈ ∩{Ai|i ∈ I} then a,b ∈ Ai for each i ∈ I. Since Ai

is convex, λa + µb ∈ Ai for any λ, µ ≥ 0 with λ+ µ = 1. Having λa + µb ∈ Ai

for all i ∈ I implies that λa+µb ∈ ∩{Ai|i ∈ I}. Thus a,b ∈ ∩{Ai|i ∈ I} implies
λa + µb ∈ ∩{Ai|i ∈ I} so the intersection of an arbitrary family of convex sets
is convex. �

3.2 Convex Combinations and The Convex Hull

The point x ∈ Rn is a convex combination of points a1, ...,an of set A ∈ Rn if
there exist scalars λ1, ..., λn with all λi greater than zero and λ1+λ2+· · ·+λn = 1
such that x = λ1a1 +λ2a2 + ...λnan. Analogous to the result for affine combina-
tions of points in a flat, it can be shown that a convex set contains all possible
convex combinations of its points.
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The intersection of all convex sets in Rn that contain a set A in Rn is called
the convex hull of set A, and is written convA. Since the intersection of any
family of convex sets in Rn is convex, we know that convA is always convex.
Also, for any convex set B that contains A, convA ⊆ B, so convA is the smallest
convex set that contains A.

The following theorem provides another way to think about convA.
Theorem 3.2 For a set A in Rn, convA is the set of all convex combinations

of points of A.
Proof Let B be the set of all convex combinations of points of A. Since

convA is convex, we know that it contains every possible convex combination
of points in convA. Since A ⊆ convA, we know that convA must also contain
every possible convex conbination of points in A, that is, B ⊆ convA.

Since A ⊆ B, we know by the definition of convA that convA ⊆ B when B
is convex. Next we demonstrate that B is convex.

If x, y ∈ B, then x and y can be written as a convex combination of points in
A. That is, for some points a1, ...,am,b1, ...,bp ∈ A, with λ1, ..., λm, µ1, ..., µp ≥
0 and λ1 + · · ·+ λm = µ1 + · · ·+ µp = 1, we have

x = λ1a1 + · · ·λmam and y = µ1b1 + · · ·µpbp.

Let λ, µ ≥0 and λ+ µ = 1. Then

λx + µy = λλ1a1 + · · ·+ λλmam + µµ1b1 + · · ·+ µµpbp.

We find that the scalars on the right side of this equality are all positive and
sum to one.

λλ1 + · · ·λλm +µµ1 + · · ·µµp = λ(λ1 + · · ·+λm)+µ(µ1 + · · ·+µp) = λ+µ = 1.

So the point λx + µy can be written as a convex combination of points in A,
and is therefore an element of set B. Thus set B is convex, and convA ⊆ B, so
B=convA. �

Theorem 3.2 implies that any point in convA can be written as a convex com-
bination of points in A. It can be extended to show that if A is r-dimensional,
any point in convA can be expressed as a convex combination of r + 1 or fewer
points in A

3.3 Radon’s Theorem

The following is essential to our eventual discussion of Krasnosselsky’s theorem.
Radon’s Theorem Let a1, ...,am ∈ Rn with m ≥ n + 2. Then the set

{1, ...,m} can be partitioned into two subsets I and J such that the intersection
of conv{ai|i ∈ I} and conv{aj |j ∈ J} is nonempty.

Proof We only consider the non-trivial case when a1, ...,am are distinct.
Since a1, ...,am contains more than n+1 points, it follows that the set is affinely
dependent and there exist scalars λ1, ..., λm not all zero such that

λ1a1 + · · ·+ λmam = 0 and λ1 + · · ·+ λm = 0. (1)
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Since they sum to zero, some of these λ’s will be positive, and others negative.
Let I = {i|λi ≥ 0} and J = {j|λj < 0}. Since

∑
i∈I

λi =
∑
j∈J

(−λj), we can

rearrange the first of the equations (1) as∑
i∈I

λiai∑
i∈I

λi

=

∑
j∈J

(−λj)aj∑
j∈J

(−λj)
= x

for some x. Rewriting the expression as

λi1ai1∑
i∈I

λi

+
λi2ai2∑
i∈I

λi

+ · · ·+
λip

aip∑
i∈I

λi

=
−λj1aj1∑
j∈I

(−λj)
+
−λj2aj2∑
j∈I

(−λj)
+ · · ·+

−λjq
ajq∑

j∈I

(−λj)
= x

we find that coefficients of the ai and the coefficients of the aj each sum to one.
Thus x is a convex combination of points of both {ai|i ∈ I} and {aj |j ∈ J}, so

x ∈ conv({ai|i ∈ I} ∩ {aj |j ∈ J})

and I and J satisfy the requirements of the theorem. �

4 Helly’s Theorem and Some Applications

In this section, we explore Helly’s Theorem and some of its applications.

4.1 Helly’s Theorem

Helly’s Theorem Let F be a finite family of convex sets in Rn containing at
least n+ 1 members. Suppose that the intersection of every n+ 1 members of
F is nonempty. Then the intersection of all members of F is nonempty.

Proof We prove by induction. The assertion is trivial when F has n + 1
members. Suppose that the theorem holds true for a family of m sets in Rn

with m ≥ n+ 1, where each set of n+ 1 members has a nonempty intersection.
Let A0, ..., Am be a family of m + 1 convex sets in Rn for which every n + 1
members of the family have a non-empty intersection. We want to show that
the intersection of the whole family is nonempty.

By our hypothesis, for each number i = 0, ...,m there exists a point ai

such that ai ∈ A0 ∩ A1 ∩ ... ∩ Ai−1 ∩ Ai+1 ∩ ... ∩ Am. By Radon’s Theorem,
{0, ...,m} can be partitioned into two sets J and K such that conv{aj |j ∈ J}
and conv{ak|k ∈ K} have a non-empty intersection. So there exists a point
a such that a ∈ conv{aj |j ∈ J} ∩ conv{ak|k ∈ K}. Thus for each j ∈ J ,
aj ∈ ∩(Ak|k ∈ K).

Since ∩{ak|k ∈ K} is convex, we have that conv{aj |j ∈ J} ⊆ ∩(Ak|k ∈
K). Similarly, conv{ak|k ∈ K} ⊆ ∩(Aj |j ∈ J). Thus a∈ conv{aj |j ∈ J} ∩
conv{aj |j ∈ J} ⊆ A0 ∩ ... ∩ Am Thus we’ve shown that A0 ∩ ... ∩ Am is non-
empty. �
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4.2 A Simple Application

Like many proofs dependent on Helly’s theorem, the following proof involves cre-
ating a new family of convex sets. Each convex set corresponds to a set in the
family that we’d like to prove something about. In this theorem, a transversal
for a family of sets is a line that intersects each of the sets of that family.

Theorem If F is a family of parallel line segments in R2, and every three
members of F have a transversal, then all of F has a transversal.

Proof Without loss of generality, we’ll limit F to families of only vertical
line segments Si, since any family of parallel lines can be rotated to vertical
without changing the properties of similarly rotated transversals. Each segment
can be written Si = {(x, y) : x = ui, vi ≤ y ≤ wi} for i = 1, ..., r, where r ≥ 3
and ui’s are distinct. For each i = 1, ..., r we create the convex set Ci in R2

composed of all the points (m, c) for which the line y = mx+ c has a nonempty
interesection with the segment Si.

Ci = {(m, c)|vi ≤ mui + c ≤ wi}

Ci is convex because it is the intersection of two halfspaces

Ci = {(m, c)|vi ≤ mui + c} ∩ {(m, c)|mui + c ≤ wi}

and halfspaces are convex. Since every three vertical lines have a transversal,
every three of the convex sets Ci must have a common point. Thus by Helly’s
Theorem, there exists a point (m0, c0) that is common to all the sets Ci, and
this corresponds to the line that is a transversal for the entire family. �

4.3 Another Nice Application

Using Helly’s Theorem, we can show that if a convex set is contained in the
union of a finite family of halfspaces in Rn, then it’s contained in the union of
some n+ 1 or less of the halfspaces.

Let a convex set A be contained in H1 ∪H2 ∪ ... ∪Hm where each Hi is a
halfspace and m > n. Then A ∩ (H1 ∪H2 ∪ · · · ∪Hm)c = ∅. We have that

A ∩ (H1 ∪H2 ∪ · · · ∪Hm)c = A ∩ (Hc
1 ∩Hc

2 ∩ · · · ∩Hc
m).

Rearranging, we find that

(A ∩Hc
1) ∩ (A ∩Hc

2) ∩ · · · ∩ (A ∩Hc
m) = ∅.

The contrapositive of Helly’s Theorem states that if the intersection of an entire
family of convex sets is empty, then there exists some n + 1 sets from the
family that also have an empty intersection. Since (A ∩ Hc

i ) is a convex set
for all i’s we have from Helly’s Theorem that there exists a subfamily of n + 1
such convex sets which has an empty intersection. So for some relabeled Hi’s,
(A∩Hc

1)∩ (A∩Hc
2)∩ ...∩ (A∩Hc

n+1) = ∅, and A∩ (H1∪H2∪ ...∪Hn+1)c = ∅.
Thus for some n+ 1 Hi’s, the set A is contained in (H1 ∪H2 ∪ ... ∪Hn+1). �
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4.4 Helly’s Theorem for Infinite Families

The requirement that F contain only a finite number of sets is necessary for
Helly’s theorem as stated above. For example, consider the infinite family of
closed parallel halfspaces

{(x1, x2, ..., sn) ∈ Rn|x1 ≥ m}

where m = 1, 2, 3, .... Every three elements in this family have a nonempty
intersection, but the intersection of the entire family is empty.

The generalization of Helly’s Theorem from finite to infinite families of con-
vex sets requires the additional constraint that all the sets be compact.

It also requires the following lemma from page 42 of Convexity which is
presented here without proof.

Lemma Let {Ai|i ∈ I} be a family of compact sets in Rn whose intersection
is empty. Then there exists a finite subset I∗ of I such that the intersection of
the family {Ai|i ∈ I∗} is empty.

Helly’s Theorem for Infinite Families Let F be an infinite family of
compact sets in Rn. If every n+ 1 sets in F have a nonempty intersection then
the intersection of all sets in F is nonempty.

Proof We show the contrapositive, that if the intersection of all of the sets
in a family is empty, then the intersection of some n+ 1 of them is also empty.
By Helly’s Theorem, we know that this is true for finite families with empty
intersections. The Lemma implies that if the intersection of the possibly infinite
family is empty, then the family must have a finite subfamily with an empty
intersection. The contrapositive of Helly’s Theorem states that some n + 1 of
them also must have an empty intersection.�

5 The Art Gallery Theorem in n Dimensions

Before we can prove the general form of Krasnosselsky’s Theorem, we need a
definition and a lemma.

Definition A set A is called starshaped if there exists a point a0 ∈ A,
called a starcenter such that (1−λ)a0 +λa ∈ A for any a ∈ A and 0 ≤ λ ≤ 1.
In other words, a set is starshaped if it contains a point that is visible to every
other point in the set. All convex sets are by definition starshaped.

The following lemma relates starshapedness to sets of the form

Ax = {a ∈ A|(1− λ)x + λa ∈ A for 0 ≤ λ ≤ 1}.

Each Ax is the set of all points in A that are visible to a point x ∈ A.
Any point a that is a starcenter of a nonempty closed set A ∈ Rn satisfies

a ∈ Ax for all points x ∈ A. In the following lemma, we strengthen this
condition.

Lemma 5 The point a is a starcenter of a non-empty closed set A in Rn if
and only if a ∈ convAx for all x ∈ A.
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Proof If a is a starcenter then a is visible to all points in A, so a ∈ Ax ⊆
convAx for all x ∈ A. For the other direction, we show the contraposative.
Suppose a is not a starcenter of A. We show that there is some point e ∈ A
such that a is not in convAe.

If a is not a starcenter of A then there exists a b ∈ A such that the line
segment between a and b is not entirely contained in A. Thus there is a point
c on the segment that is not contained in A. Any point not in a closed set A is
an interior point of Ac. Thus, since A is closed, we can construct a closed ball
C centered at c that shares no points with A.

If we a define a scalar α

α = inf{λ 6= 0|A ∩ (C + λ(b− c)) 6= ∅}

then the closed ball C +α(b− c) is a translate of C in the direction of point b.
Denote the ball C + α(b − c) by D, and its center point d. Our definition of
α ensures that A meets the boundary, but not the interior, of D. Suppose that
e ∈ A ∩D

Define complementary halfspaces

H− = {z|(z− e) · (e− d) < 0}

and
H+ = {z|(z− e) · (e− d) ≥ 0}.

The hyperplane H with equation (z−e) · (e−d) = 0 intersects with D at point
e but D lies entirely in the closed halfspace H−.

The definition of α ensures that the space swept out between C and D
contains no points in A (see Fig 3). 2

Figure 3: The convex hull of C ∪D does not contain any points in A

2image modified from Webster
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Thus for all θ > 0 small enough to satisfy ‖θ(b − c)‖ ≤ ‖1(d − c)‖, the
translate of C centered at d − θ(b − c) has an empty intersection with A.
Therefore

‖e− (d− θ(b− c))‖2 = ‖e− d + θ(b− c)‖2 > ‖e− d‖2.

It follows from Theorem 2.4 that

(e− d) · (b− c) ≥ 0.

Since (b− c) is antiparallel to (a− d), we know

(e− d) · (a− d) ≤ 0.

Using the definition of the norm, we have

(a− e) · (e− d) = (a− d + d− e) · (e− d) = (a− d) · (e− d)− ‖e− d‖2 < 0

which shows that a ∈ H−.
Next we show that Ae ⊆ H+. Let x ∈ Ae. Since A is disjoint from the

interior of D and ϕx + (1− ϕ)e ∈ A for some 0 ≤ ϕ ≤ 1,

‖ϕx + (1− ϕ)e− d‖2 = ‖e− d + ϕ(x− e) ≥ ‖e− d‖2.

See Figure 4. Using Theorem 2.4 again, we have that (x − e) · (e − d) ≥ 0,
whence x ∈ H+.

Figure 4: Every point x in Ae is in H+

3Thus Ae, is contained in H+. ConvAe is then also contained in H+ since
H+ is convex. Since a ∈ H− and H− and H+ have an empty intersection, we

3image from Webster
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conclude that a is not contained in Ae. �

Krasnosselsky’s Theorem Let A be an infinite compact set in Rn. Sup-
pose that, for each n+ 1 points of A, there is some point of A from which all of
these points are visible in A. Then A is starshaped.

Proof First we show that Ax is closed. Let a be a point in cl(Ax). Choose
a sequence of points {an} in Ax that converges to a. Since each an is in Ax,
we know {(1−λ)x +λan} is in A for each n, when 0 ≤ λ ≤ 1. By the closure of
A, if we fix λ at any allowable value, then the limit as n → ∞ of the sequence
{(1− λ)x + λan} of points in A converges to a point in A. Since

lim
n→∞

((1− λ)x + λan)) = (1− λ)x + λa,

we know (1− λ)x + λa) ∈ A for all 0 ≤ λ ≤ 1. Thus a ∈ Ax, and Ax is closed.
Since Ax is closed and is a subset of the bounded set A, we know Ax is

compact. By Theorem 2.7, the set convAx is also compact.
Let x0, ...,xn be any n+ 1 points of A. By the hypothesis, there exists some

point y ∈ A from which these n+ 1 points are visible in A, that is, there exists
some y such that x0, ...,xn ∈ Ay. Thus

y ∈ Ax0 ∩ ... ∩Axn ⊆ (convAx0) ∩ ... ∩ (convAxn),

and so each group of n+1 members from the infinite family F = {convAx|x ∈ A}
of compact convex sets in Rn have a common point. Therefore, by Helly’s the-
orem for infinite families, there exists a point a which belongs to every member
of F. In view of the Lemma 5, a is a starcenter of A, and thus A is starshaped.
�
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