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1. Introduction

The term “Fibonacci numbers” is used to describe the series of numbers gener-
ated by the pattern

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...,

where each number in the sequence is given by the sum of the previous two terms.
This pattern is given by u1 = 1, u2 = 1 and the recursive formula

un = un−1 + un−2, n > 2.

First derived from the famous “rabbit problem” of 1228, the Fibonacci numbers
were originally used to represent the number of pairs of rabbits born of one pair
in a certain population. Let us assume that a pair of rabbits is introduced into a
certain place in the first month of the year. This pair of rabbits will produce one
pair of offspring every month, and every pair of rabbits will begin to reproduce
exactly two months after being born. No rabbit ever dies, and every pair of rabbits
will reproduce perfecctly on schedule.

So, in the first month, we have only the first pair of rabbits. Likewise, in the
second month, we again have only our initial pair of rabbits. However, by the
third month, the pair will give birth to another pair of rabbits, and there will now
be two pairs. Continuing on, we find that in month four we will have 3 pairs,
then 5 pairs in month five, then 8,13,21,34,...,etc, continuing in this manner. It is
quite apparent that this sequence directly corresponds with the Fibonacci sequence
introduced above, and indeed, this is the first problem ever associated with the
now-famous numbers.

Now that we have seen one application of the Fibonacci numbers and established
a basic definition, we will go on to examine some of the simple properties regarding
the Fibonacci numbers and their sums.

2. Simple Properties of the Fibonacci Numbers

To begin our research on the Fibonacci sequence, we will first examine some sim-
ple, yet important properties regarding the Fibonacci numbers. These properties
should help to act as a foundation upon which we can base future research and
proofs.

The following properties of Fibonacci numbers were proved in the book
Fibonacci Numbers by N.N. Vorob’ev.

Lemma 1. Sum of the Fibonacci Numbers
The sum of the first n Fibonacci numbers can be expressed as

u1 + u2 + ... + un−1 + un = un+2 − 1.

1
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Proof. From the definition of the Fibonacci sequence, we know

u1 = u3 − u2,

u2 = u4 − u3,

u3 = u5 − u4,

...

un−1 = un+1 − un+2,

un = un+2 − un+1.

We now add these equations to find

u1 + u2 + ... + un−1 + un = un+2 − u2.

Recalling that u2 = 1, we see this equation is equivalent to our initial conjecture of

u1 + u2 + ... + un−1 + un = un+2 − 1.

�

Lemma 2. Sum of Odd Terms
The sum of the odd terms of the Fibonacci sequence

u1 + u3 + u5 + ...u2n−1 = u2n.

Proof. Again looking at individual terms, we see from the definition of the sequence
that

u1 = u2,

u3 = u4 − u2,

u5 = u6 − u4,

...

u2n−1 = u2n − u2n−2.

If we now add these equations term by term, we are left with the required result
from above. �

Lemma 3. Sum of Even Terms
The sum of the even terms of the Fibonacci sequence

u2 + u4 + u6 + ...u2n = u2n+1 − 1.

Proof. From lemma 1, we have

u1 + u2 + ... + un−1 + u2n = u2n+2 − 1.

Subtracting our equation for the sum of odd terms, we obtain

u2 + u4 + ... + u2n = u2n+2 − 1 − u2n = u2n+1 − 1,

as we desired. �

Lemma 4. Sum of Fibonacci Numbers with Alternating Signs
The sum of the Fibonacci numbers with alternating signs

u1 − u2 + u3 − u4 + ... + (−1)n+1un = (−1)n+1un−1 + 1.
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Proof. Building further from our progress with sums, we can subtract our even sum
equation from our odd sum equation to find

u1 − u2 + u3 − u4 + ... + u2n−1 − u2n = −u2n−1 + 1.(1)

Now, adding u2n+1 to both sides of this equation, we obtain

u1 − u2 + u3 − u4 + ... − u2n + u2n+1 = u2n+1 − u2n−1 + 1,

or

u1 − u2 + u3 − u4 + ... − u2n + u2n+1 = u2n + 1.(2)

Combining equations (1) and (2), we arrive at the sum of Fibonacci numbers with
alternating signs:

u1 − u2 + u3 − u4 + ... + (−1)n+1un = (−1)n+1un−1 + 1.

�

Thus far, we have added the individual terms of simple equations to derive lem-
mas regarding the sums of Fibonacci numbers. We will now use a similar technique
to find the formula for the sum of the squares of the first n Fibonacci numbers.

Lemma 5. Sum of Squares
The sum of the squares of the first n Fibonacci numbers

u2
1 + u2

2 + ... + u2
n−1 + u2

n = unun+1.

Proof. Note that

ukuk+1 − uk−1uk = uk(uk+1 − uk−1) = u2
k.

If we add the equations

u2
1 = u1u2,

u2
2 = u2u3 − u1u2,

u2
3 = u3u4 − u2u3,

...

u2
n = unun+1 − un−1un

term by term, we arrive at the formula we desired. �

Until now, we have primarily been using term-by-term addition to find formulas
for the sums of Fibonacci numbers. We will now use the method of induction to
prove the following important formula.

Lemma 6. Another Important Formula

un+m = un−1um + unum+1.

Proof. We will now begin this proof by induction on m. For m = 1,

un+1 = un−1 + un

= un−1u1 + unu2,
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which we can see holds true to the formula. The equation for m = 2 also proves
true for our formula, as

un+2 = un+1 + un

= un−1 + un + un

= un−1 + 2un

= un−1u2 + unu3.

Thus, we have now proved the basis of our induction. Now suppose our formula
to be true for m = k and for m = k + 1. We shall prove that it also holds for
m = k + 2.

So, by induction, assume

un+k = un−1uk + unuk+1

and

un+k+1 = un−1uk+1 + unuk+2.

If we add these two equations term by term, we obtain

un+k + un+k+1 = un−1(uk + uk+1) + un(uk+1 + uk+2)

un+k+2 = un−1uk+2 + unuk+3,

which was the required result. So, by induction we have proven our initial formula
holds true for m = k + 2, and thus for all values of m. �

Lemma 7. Difference of Squares of Fibonacci Numbers

u2n = u2
n+1 − u2

n−1.

Proof. Continuing from the previous formula in Lemma 7, let m = n. We obtain

u2n = un−1un + unun+1,

or

u2n = un(un−1 + un+1).

Since

un = un+1 − un−1,

we can now rewrite the formula as follows:

u2n = (un+1 − un−1)(un+1 + un−1),

or

u2n = u2
n+1 − u2

n−1.

Thus, we can conclude that for two Fibonacci numbers whose positions in the
sequence differ by two, the difference of squares will again be a Fibonacci number.

�

Now that we have established a series of lemmas regarding the sums of the
Fibonacci numbers, we will take a brief look at some other interesting properties
of the Fibonacci numbers.
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2.1. Fibonacci Numbers and Pascal’s Triangle. The Fibanacci numbers share
an interesting connection with the triangle of binomial coefficients known as Pascal’s
triangle.

Pascal’s triangle typically takes the form:

(3)

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

· · ·

In this depiction we have oriented the triangle to the left for ease of use in our
future application. Pascal’s triangle, as may already be apparent, is a triangle in
which the topmost entry is 1 and each following entry is equivalent to the term
directly above plus the term above and to the left.

Another representation of Pascal’s triangle takes the form:

(4)

C0
0

C0
1 C1

1

C0
2 C1

2 C2
2

C0
3 C1

3 C2
3 C3

3

C0
4 C1

4 C2
4 C3

4 C4
4 .

In this version of Pascal’s triangle, we have C i
j = k!

i!(k−i)! , where i represents

the column and k represents the row the given term is in. Obviously, we have
designated the first row as row 0 and the first column as column 0.

Finally, we will now depict Pascal’s triangle with its rising diagonals.

Figure 1. Pascal’s Triangle with Rising Diagonals

The diagonal lines drawn through the numbers of this triangle are called the
“rising diagonals” of Pascal’s triangle. So, for example, the lines passing through
1, 3, 1 or 1, 4, 3 would both indicate different rising diagonals of the triangle. We
now go on to relate the rising diagonals to the Fibonacci numbers.

Theorem 1. The sum of the numbers along a rising diagonal in Pascal’s triangle
is a Fibonacci number.



6 TYLER CLANCY

Proof. Notice that the topmost rising diagonal only consists of 1, as does the second
rising diagonal. These two rows obviously correspond to the first two numbers of
the Fibonacci sequence.

To prove the proposition, we need simply to show that the sum of all numbers
in the (n− 2)nd diagonal and the (n− 1)st diagonal will be equal to the sum of all
numbers in the nth diagonal in Pascal’s triangle.

The (n − 2)nd diagonal consists of the numbers

C0
n−3, C

1
n−4, C

2
n−5, . . .

and the (n − 1)st diagonal has the numbers

C0
n−2, C

1
n−3, C

2
n−4, . . .

We can add these numbers to find the sum

C0
n−2 + (C0

n−3 + C1
n−3) + (C1

n−4 + C2
n−4) + . . .

However, for the binomial coefficients of Pascal’s triangle,

C0
n−2 = C0

n−1 = 1

and

Ci
k + Ci+1

k = k(k−1)···(k−i+1)
1·2···i

+ k(k−1)···(k−i+1)(k−i)
1·2···i·(i+1)

= k(k−1)...(k−i+1)
1·2···i (1 + k−i

i+1 )

= k(k−1)···(k−i+1)
1·2···i · i+1+k−1

i+1

= (k+1)k(k−1)···(k−i+1)
1·2···i·(i+1)

= Ci+1
k+1.

We therefore arrive at the expression

C0
n−2 + C1

n−2 + C2
n−3 + . . .

= C0
n−1 + C1

n−2 + C2
n−3 + . . .

to represent the sum of terms of the nth rising diagonal of Pascal’s triangle. In-
deed, if we look at diagram (4) of Pascal’s triangle, this corresponds to the correct
expression. Thus, as we know the first two diagonals are both 1, and we now see
that the sum of all numbers in the (n − 1)st diagonal plus the sum of all numbers
in the (n − 2)nd diagonal is equal to the sum of the nth diagonal, we have proved
that the sum of terms on the nth diagonal is always equivalent to the nth Fibonacci
number. �

Example 1. Let us look at the 7th rising diagonal of Pascal’s triangle. If we add
the numbers 1, 5, 6, and 1, we find that the sum of terms on the diagonal is 13. As
we know that u7 = 13, we can see that the sum of terms on the 7th rising diagonal
of Pascal’s Triangle is indeed equal to the 7th term of the Fibonacci sequence.
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Figure 2. 7th Rising Diagonal of Pascal’s Triangle

3. Geometric Properties of the Fibonacci Numbers and the Golden
Ratio

3.1. The Golden Ratio. In calculating the ratio of two successive Fibonacci num-

bers, un+1

un

, we find that as n increases without bound, the ratio approaches 1+
√

5
2 .

Theorem 2.

lim
n→∞

un+1

un

=
1 +

√
5

2

Proof. Since

un+1 = un + un−1,

by definition, it follows that

un+1

un

= 1 +
un−1

un

.

Now, let

lim
n→∞

un+1

un

= L.

We then see that

lim
n→∞

un−1

un

=
1

L
.

We now have the statement

lim
n→∞

un+1

un

= 1 + lim
n→∞

un−1

un

,

which is equivalent to the the equation

L = 1 +
1

L
.

This equation can then be rewritten as

L2 − L − 1 = 0,

which is easily solved using the quadratic formula. By using the quadratic formula,
we have

L =
1 ±

√
5

2
.



8 TYLER CLANCY

Thus, we arrive at our desired result of

lim
n→∞

un+1

un

=
1 +

√
5

2
.

�

Even for relatively low values of n, this ratio produces a very small error. For
example

u11

u10
=

89

55
≈ 1.6182,

and

1 +
√

5

2
≈ 1.6180.

The value 1+
√

5
2 is the positive root of the equation x2 − x − 1 = 0 and is often

referred to as α. It arises often enough in mathematics and has such interesting
properties that we also frequently refer to it as the golden ratio. We will now apply
this ratio to a few interesting geometric scenarios.

3.2. The Golden Section. Let us begin by drawing a line segment, AB, of length
1 and dividing it into two parts, AC and CB. We will divide this segment such
that the ratio of the whole segment to the larger part is equal to the ratio of the
larger part to the smaller.

We will denote the length of the larger portion x, while the smaller segment will
then obviously be 1 − x. We have thus produced the proportion:

1

x
=

x

1 − x
,

which can be rewritten as

x2 = 1 − x.

By using the quadratic formula, we find that the postive root of this equation is
−1+

√
5

2 , and thus the proportion of the ratios is equal to

1

x
=

2

−1 +
√

5
=

2(1 +
√

5)

(−1 +
√

5)(1 +
√

5)
=

1 +
√

5

2
= α.

As we can see, the resulting ratio is the golden ratio we found in the previous
section. Furthermore, the division of this line at point C is called the median section
or golden section.
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Figure 3. A Regular Pentagon with its Diagonals

3.3. The Golden Ratio and a Regular Pentagon. Let us now look at a regular
pentagon with its diagonals forming a pentagonal star.

From the figure, we see m∠AFD is 108 ◦, and m∠ADF is 36 ◦. So, by the sine
rule

AD

AF
=

sin 108 ◦

sin 36 ◦ =
sin 72 ◦

sin 36 ◦ = 2 cos36 ◦ = 2
1 +

√
5

4
= α.

Obviously, AF = AC, so

AD

AF
=

AD

AC
= α,

and we see that the line segment AD is thus divided at C as a golden section.
From the definition of golden section, we know that AC

CD
= α, and noting that

AB = CD, we find

AC

AB
=

AB

BC
= α.

Thus, we see that of the segments BC,AB,AC, and AD, each is α times greater
than the preceding one.

3.4. A Rectangle and the Golden Ratio. Let us draw a rectangle in which
the sides are to each other as neighboring Fibonacci numbers. If we divide this
rectangle into squares, we will see that the side of each square is also equivalent
to a Fibonacci number, and the two smallest squares are of the same size. This
rectangle is remarkably similar to what is known as a “golden section rectangle,” in
which the ratio of the sides of the rectangle are equal to α. Using Figure 5, we will
now prove that if we inscribe the largest possible square within the golden section
rectangle, the resulting space will again be a golden section rectangle.

Since it was our first stipulation, obviously

AB

AD
= α,

and

AD = AE = EF,
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Figure 4. Fibonacci-Based Rectangle

Figure 5. Golden Rectangle with Inscribed Square

since AEFD is a square. So, it follows that

EF

EB
=

AB − EB

EB
= α2 − 1.

However, α2 − 1 = α, so we find

EF

EB
= α.

Thus, we see that we do indeed have another golden section rectangle.
It should be obvious that this process of breaking the golden section rectangle

down into a series of smaller squares can continue indefinitely. Unlike the golden
section rectangle, however, we saw that the rectangle based on Fibonacci numbers
did not continue in this inexhaustible manner. Although the ratio of two successive
Fibonacci numbers converges towards α, it is not a highly accurate estimate for very
low-valued Fibonacci numbers. For this reason, we cannot assume the Fibonacci-
based rectangle will continue inexhaustibly, as with the Golden Rectangle. So, as
we come to the smallest Fibonacci value, 1, we will find that we have two squares
of side length 1, and no more squares can be produced further.
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Figure 6. Golden Rectangle with Many Inscribed Squares

3.5. An Interesting Trick. We shall now go on to “prove” that 64 = 65.

First, let us take an 8x8 square and cut it into four parts, as shown above.

Now, if we rearrange these four parts into a 13x5 rectangle, we see that we now
have a total of 65 squares. This does not correspond to our initial value of 64
squares.

The explanation of this dilemna is actually quite simple. While it appears that
we correctly realligned the four pieces, the fact is that their vertices do not actually
all lie on the same line. If we were to use a larger Fibonacci number to represent
the side of our square, we could see that indeed, there is a small gap in between
these shapes.
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The width of the slit is so miniscule for small Fibonacci numbers that it goes
virtually unnoticed.

This trick, while a nice diversion, has little application beyond simple fun.

4. Binet’s Formula

Using the method of combinatorics and generating functions, we shall now show
that the nth term of the Fibonacci sequence

fn =
( 1+

√
5

2 )n − ( 1−
√

5
2 )n

√
5

,

which is known as Binet’s formula in honor of the mathematician who first proved
it.

Since we are proving this formula by means of generating functions, it is impor-
tant to first give a brief explanation as to what a generating function is.

Definition 1. A generating function is a function in which the coefficients of a
power series give the answers to a counting problem.

Our method of proving Binet’s formula will thus be to find the coefficients of a
Taylor series that directly correspond to the Fibonacci numbers.

Proof. By definition, we have fn = fn−1 +fn−2, and in this proof we will start with
the terms f0 = f1 = 1. To begin, we shall start with a basic function f(x) giving
the general coefficients of the Taylor series.

f(x) = f0 + f1x + f2x
2 + f3x

3 + . . .

−x · f(x) = −f0x − f1x
2 − f2x

3 . . .

−x2 · f(x) = −f0x
2 − f1x

3 . . . .

Combining these equations, we find

f(x) − x · f(x) − x2 · f(x) = f0 + (f1 − f0)x

= f0

= 1.

Using basic algebra we see

f(x) =
1

1 − x − x2
=

−1

x2 + x − 1
.
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We will now use the quadratic equation to find the roots of x2 + x − 1, which are

x = −1+
√

5
2 and x = −1−

√
5

2 . Next, we can use the method of partial fractions to
break the equation down further.

f(x) =
−1

x2 + x − 1

=
−1

(x − −1+
√

5
2 )(x − −1−

√
5

2 )

=
A

x − −1+
√

5
2

+
B

x − −1−
√

5
2

.

Solving this equation, we find A = −1√
5

and B = 1√
5
. So, we now have the equation

f(x) =
−1

x2 + x − 1

=
−1/

√
5

x + 1−
√

5
2

+
1/

√
5

x + 1+
√

5
2

.

We shall now use more combinatoric methods to complete this proof. Further-
more, it will first be important to note that

(−1

k

)

=
(−1)(−2)(−3) . . . (−1− k + 1)

k!
= (−1)k.

Let us now proceed to finish this proof using combinatorics.

f(x) =

−1√
5

x + 1−
√

5
2

+

1√
5

x + 1+
√

5
2

=
−1√

5

∞
∑

k=0

(−1

k

)

xk

(

1 −
√

5

2

)−1−k

+
1√
5

∞
∑

k=0

(−1

k

)

xk

(

1 +
√

5

2

)−1−k

=
1√
5

∞
∑

k=0



(−1)k+1

(

1 −
√

5

2

)−1−k

+ (−1)k

(

1 +
√

5

2

)−1−k


 xk

=
1√
5

∞
∑

k=0

[

( −2

1 −
√

5

)k+1

−
( −2

1 +
√

5

)k+1
]

xk.

From this work, we see that the kth coefficient of xk is equal to

1√
5

(

1 +
√

5

2

)k+1

− 1√
5

(

1 −
√

5

2

)k+1

.

As this generating function was calculated for the recursive formula fn = fn−1 +
fn−2, this value also corresponds to the kth term of the Fibonacci sequence. Fur-
thermore, if we let f1 = f2 = 1 rather than f0 = f1 = 1, we can further simplify
this equation to our initial formula of
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fn =
( 1+

√
5

2 )n − ( 1−
√

5
2 )n

√
5

.

Thus, we have proven Binet’s formula using the method of combinatorics.
�

5. Using Logarithmic Tables to Calculate Fibonacci Numbers

Theorem 3. The Fibanacci number un is the nearest whole number to the nth term
αn of the geometric progression whose first term is α√

5
and whose common ratio is

α.
That is, un is the nearest whole number to αn = αn

√
5
.

Proof. In proving this theorem, it is sufficient to show that the absolute value of the
difference between un and an will always be less than 1

2 . Let α and β be equal to
1+

√
5

2 and 1−
√

5
2 , respectively, representing the roots of the equation x2 −x−1 = 0,

which we introduced earlier. It is also important to note that un = αn−βn

√
5

, from

Binet’s formula. Then

|un − αn| =
αn − βn

√
5

− αn

√
5

= |α
n − αn − βn

√
5

| =
|β|n√

5
.

As β = −.618 . . . , obviously |β| < 1. So, for any n, |β|n < 1, and since
√

5 > 2,
|β|√

5
< 1

2 . Thus, we have proven our theorem. �

Now, using this theorem, we can go on to calculate the Fibonacci numbers by
using a logarithmic table.

For example, let us calculate u13.

Example 2.

√
5 ≈ 2.2361, log

√
5 ≈ .34949;

α =
1 +

√
5

2
≈ 1.6180, log α ≈ .20898;

log
α13

√
5

= 13 · .20898− .34949 = 2.36725, α13

√
5
≈ 232.94318.

The closest whole number to 232.94318 is 233, which is indeed u13, the 13th
term of the Fibonacci sequence.

While it is not necessary to use logs to make this calculation, it allows us to
approximate un for very large values of n. In most cases a large n value would

prohibit us from calculating un = αn−βn

√
5

without using a program such as Maple,

but using logarithms will at least allow us to evaluate how many digits are in un.
It is important to note that when we calculate Fibonacci numbers with very large
suffixes, we can no longer rely upon available tables of logarithms to calculate all
the figures of the number; we can only indicate the first few figures of the number,
and the calculation is only approximate.
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6. Fibonacci Numbers Under Modular Representation

6.1. Introduction to Modular Representation. We will now examine the Fi-
bonacci numbers under modular addition.

First, we will familiarize ourselves with modulo notation. Given the integers a,
b and m, the expression a ≡ b(mod m) (pronounced “a is congruent to b modulo
n”) means that a − b is a multiple of m. For 0 ≤ a < n, the value a is equivalent
to the remainder, or residue, of b upon division by n.

So, for example,

3 ≡ 13(mod 10),

or

2 ≡ 17(mod 5).

It is also convenient to note that

a(mod m) + b(mod m) = (a + b)(mod m).

Subtraction and multiplication work similarly.
Now that we are comfortable with basic modular operations, we shall examine

an example of the first 12 Fibonacci numbers (mod 2).

Example 3. Fibonacci numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...

Fibonacci numbers (mod 2):

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0...

It should be apparent that only the pattern of 1, 1, 0 repeats throughout the
Fibonacci series (mod 2). So, we can say that the series is periodic, with the period
being 3 in this case, since there is a repetition of only three terms. We will later go
on to prove that all modular representaions of the Fibonacci numbers are periodic.
Furthermore, we will show that this period is solely determined by the two numbers
directly following the first 0 within the series.

6.2. The Fibonacci Numbers Modulo m. Before attempting to prove any ma-
jor conclusions about the Fibonacci numbers modulo m, it may help us to first
examine the Fibonacci series for many values of m. Let us look at the first 30
terms of the Fibonacci series (mod m), where m ranges from 2 to 10.

First of all, the first 30 Fibonacci numbers are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,

28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040.



16 TYLER CLANCY

So, by using Maple, we find

F (mod 2) = 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0

F (mod 3) = 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2

F (mod 4) = 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0

F (mod 5) = 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0

F (mod 6) = 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 2

F (mod 7) = 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6

F (mod 8) = 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0

F (mod 9) = 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 0, 1, 1, 2, 3, 5, 8

F (mod 10) = 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0.

6.3. The Period of F(mod m).

Lemma 8. The Fibonacci series under modular representation is always periodic.

Proof. Since the Fibonacci series is recursive, we know that any pair of consecutive
terms will completely determine the rest of the series. Furthermore, under modular
representation, we know that each Fibonacci number will be represented as some
residue 0 ≤ F (mod m) < m. Thus, there are only m possible values for any given
F (mod m) and hence m · m = m2 possible pairs of consecutive terms within the
sequence. Since m2 is finite, we know that some pair of terms must eventually
repeat itself. Also, as any pair of terms in the Fibonacci sequence determines the
rest of the sequence, we see that the Fibonacci series modulo m must repeat itself
at some point, and thus must be periodic. �

Now, we will let k(m) denote the period of F (mod m). That is, k(m) represents
the number of terms of F (mod m) before the cycle starts to repeat again.

So, analyzing the above data, we can determine the period of all but the last
series.

k(2) = 3

k(3) = 8

k(4) = 6

k(5) = 20

k(6) = 24

k(7) = 16

k(8) = 12

k(9) = 24.

While it appears there may be some connection between these values, it may be
more convenient to analyze a larger sample size. To attain this larger sample size,
we will make use of a list of periods of F (mod m) given by Marc Renault, associate



THE FIBONACCI NUMBERS 17

professor of Mathematics at Shippensburg University. From this list, we find:

k(10) = 60

k(11) = 10

k(12) = 24

k(13) = 28

k(14) = 48

k(15) = 40

k(16) = 24

k(17) = 36

k(18) = 24

k(19) = 18

k(20) = 60.

With these values, we can begin to analyze patterns and formulate some hy-
potheses relating to the period of F (mod m).

6.4. Important Properties of k(m). Before we approach some of the more com-
plicated properties regarding the period of the Fibonacci numbers modulo m, it will
be helpful to introduce and prove some general properties. These results are not
only interesting in themselves, but will help us in our future proofs.

The following proofs were detailed by Marc Renault in his master’s thesis.
Let us first note that it is sometimes convenient to extend the Fibonacci sequence

backward by using negative subscripts. So, the Fibonacci recurrence relation can
be written as un = un+2 − un+1, which will allow us to use this notation.

The following chart will illustrate this new notation:
n value un

-5 5
-4 -3
-3 2
-2 -1
-1 1
0 0
1 1
2 1
3 2
4 3
5 5.

Inspecting this list, as well as un for other values of n, we are presented with the
following identity.

Identity 1. u−n = (−1)n+1un.

Using this identity, we can prove our first theorem regarding k(m), the period
of F (mod m).

For ease of notation, let k = k(m) and let all congruences be taken mod m. That
is, let un ≡ un(mod m).

Theorem 4. For m > 2, k(m) is even.
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Proof. From Identity 1, we know un = u−n when t is odd and un = −u−n when n
is even. We will now assume k is odd and prove that m must equal 2.

We know u1 = u−1 ≡ uk−1. Now, since k − 1 is even, uk−1 = −u1−k ≡ −u1.
Thus, u1 ≡ −u1 and so we see n = 2. Since m must equal 2 for odd values of k, we
see that all other k values must be even. �

Theorem 5. If j|m, then k(j)|k(m).

Proof. Let k = k(m). We will now show that F (mod j) must repeat in blocks of
length k. We shall do this by showing that ui ≡ ui+k(mod j) for any integer i. We
already know that ui ≡ ui+k(mod m), so for some 0 ≤ a < m, there exist ui and
ui+k such that ui = a + mx and ui+k = a + my, for some x, y.

Now assume m = jr and substitute accordingly in the above equations. We now
have ui = a + jrx and ui+k = a + jry. We can also say that a = a′ + jw (for 0 ≤
a′ < m) and again substitute this value into our equation. Now, ui = a′+j(w+rx)
and ui+k = a′ + j(w + ry). This implies that ui ≡ ui+k(mod j), and hence we have
proven our theorem. �

Now that we have intruduced some basic identities and theorems regarding the
period of F (mod m), we will proceed to analyze the results from our list of periods.
After forming some hypotheses from our information, we will go on to prove rules
regarding k(m) for certain m values.

We first consider values of m where m is the product of distinct primes (m =
r · s · t · · · , for r, s, t distinct primes). Analyzing our data, there is an apparent
pattern developing. It seems as if for any product of primes m, k(m) is equivalent
to the least common multiple of k(r), k(s), k(t),. . . .

So, k(r · s · t · · · ) = lcm(k(r), k(s), k(t), . . . ).
For example,

k(6) = k(2 · 3) = 24 = lcm(3, 8) = lcm(k(2), k(3)),

or

k(15) = k(3 · 5) = 40 = lcm(8, 20) = lcm(k(3), k(5)).

If we proceed further down Professor Renault’s list, we can see that this hypothesis
continues to hold true even for larger values of n. For example,

k(210) = k(2 · 3 · 5 · 7) = 240 = lcm(3, 8, 20, 16)

= lcm(k(2), k(3), k(5), k(7)).

Furthermore, the product of powers of primes seems to work in much the same
way. In fact, it appears that, for n = pe1

1 · · · pei

i , k(m) = lcm(pe1

1 , · · · , pei

i ). As an
example, we see this formula holds for

k(400) = k(16 · 25) = k(24 · 52) = 600 = lcm(24, 100) = lcm(k(16), k(25)).

These results lead us to our first important theorem regarding the period of m,
k(m).

Theorem 6. Let m have the prime factorization n = Πpei

i . Then k(m) = lcm[k(pei

i )],
the least common multiple of the k(pei

i ).

Proof. From our previous theorem, we know k(pei

i )|k(n) for all i. It follows that
lcm[k(pei

i )]|k(m). Now, since k(pei

i )|lcm[k(pei

i )], we know that F (mod pei

i ) re-
peats in blocks of length lcm[k(pei

i )]. So, Flcm[k(p
ei

i
)] ≡ F0 and Flcm[k(p

ei

i
)]+1 ≡
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F1(mod pei

i ) for all i. Since all the pei

i are relatively prime, a theorem known as the
Chinese Remainder Theorem shows us that Flcm[k(p

ei

i
)] ≡ F0 and Flcm[k(p

ei

i
)]+1 ≡

F1(mod m). Thus F (mod m) repeats in blocks of length lcm[k(pei

i )] and we see
that k(m)|lcm[k(pei

i )]. This concludes our proof. �

This result leads us to another similar, important theorem.

Theorem 7. k[lcm(m, j)] = lcm[k(m), k(j)].

Proof. As n|lcm(m, j) and m|lcm(m, j), we know that k(m)|k[lcm(m, j)] and k(j)|k[lcm(m, j)].
It follows that lcm[k(m), k(j)]|k[lcm(m, j)].

Now say we have the prime factorization lcm(m, j) = pe1

1 · · · pet

t . Then we know
k[lcm(m, j)] = k(pe1

1 · · · pet

t ) = lcm[k(pe1

1 ), . . . , k(pet

t )]. Since pei

i divides m or j for
all i, k(pei

i ) must divide k(m) or k(j) for all i. Thus lcm[k(pe1

1 ), . . . , k(pet

t )]|lcm[k(m), k(j)],
or k[lcm(m, j)]|lcm[k(m), k(j)]. Thus, we see that k[lcm(m, j)] = lcm[k(m), k(j)].

�

An example of this theorem follows:

k[lcm(6, 8)] = k(24) = lcm(12, 14) = lcm[k(6), k(8)].

Now, let us proceed to m values that are squares of primes. So, let m = p2 for
some prime p. Then, it appears as if k(m) = p · k(p). For instance,

k(49) = 112 = 7 · 16 = 7 · k(7).

Furthermore, if n is equivalent to any power of a prime number, that is n = pi, we
can see that k(n) = pi−1 · k(p). So

k(16) = 24 = 23 · 3 = 23 · k(2)

and

k(125) = 500 = 52 · 20 = 52 · k(5).

This trend appears to hold for all values of p and i. In fact, a closely-related theorem
regarding these values does exist.

Theorem 8. If t is the largest integer such that k(pt) = k(p), then k(pe) = pe−tk(p)
for all e > t.

Proof. Insert proof �

The conjecture that t = 1 for all primes has existed since 1960, yet there are still
no proofs nor counterexamples to completely prove or disprove this hypothesis.

Now that we have established some rules relating to the period of F (mod m),
we will go on to introduce some new definitions regarding the zeros of F (mod m).
These new concepts will lead to more interesting features of the Fibonacci numbers
under modular representation.

7. The Zeros of F (mod m)

The following section comes from an article by Marc Renault, associate professor
of mathematics at Shippensburg University.

Definition 2. Let a(m) denote the index of the first Fibonacci number divisible by
m. Equivalently, this will also be the position of the first zero in the sequence of
F (mod m). We call this the restricted period of F (mod m).
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Definition 3. Let s(m) denote the residue that appears after the first zero in
F (mod m). We will also refer to this as the multiplier of F (mod m).

Definition 4. Let b(m) denote the order of s(m) modulo m.

As an example, we will now examine these values for the sequence F (mod 7).

Example 4.

F (mod 7) = 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6...

So the period, k(7) = 16.
The restricted period, a(7) = 8.
The multiplier, s(7) = 6.
The order of 6, mod 7, i.e. b(7) = 2, as 62 ≡ 1(mod 7), yet 61 6≡ 1(mod 7).

Now that we are familiar with these new terms, we shall show that
k(m) = a(m)b(m).

For ease of notation, let k(m) = k, a(m) = a, s(m) = s, and b(m) = b.
Let Gj denote the sequence F (mod m), starting with the jth term of F (mod n).
So, for example, G0 = 0, 1, 1, . . . , whereas Ga = 0, s, s, . . . .
Essentially, we see that Ga is equivalent to Go, but with every term multiplied by
s. So, we can write Ga = (s)G0.
Similarly, we can write G2a = (s)Ga = (s2)G0.
We eventually arrive at the conclusion that Gba = (sb)G0 = G0, as b is the order
of s. Also, since b is the order of s, it follows that ab = k.

If we inspect our list for F (mod 7) again, we can better illustrate these new
points.

Example 5. Clearly G0 = 0, 1, 1, 2, 3 . . . .
Furthermore, Ga = G8 = 0, 6, 6, 5, 4 . . . , which we see is equivalent to
(6)G0 = (s)G0. Also, G2a = G16 = 0, 1, 1, 2, . . . , and as 36 ≡ 1(mod 7), we see
that indeed, G2a = (36)G0 = (s2)G0.
Finally, since a = 8, b = 2, and k = 16, it is clear that ab = k in this example.

8. The Lucas Numbers and L(mod m)

Similar to the Fibonaci numbers, there exists another interesting group of num-
bers known as the Lucas numbers. Like the Fibonacci numbers, each term of the
Lucas numbers is found by computing the sum of the previous two terms. However,
the Lucas numbers start with the terms L0 = 2,and L1 = 1, instead of F0 = 1 and
F1 = 1.

A list of the first 30 Lucas numbers is

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127,

24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851 . . .

Now, in a similar manner to the Fibonacci numbers, we will compute L(mod m)
for the first 30 Lucas numbers, for values of m ranging from 2 to 10.
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L(mod 2) = 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0

L(mod 3) = 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2

L(mod 4) = 2, 1, 3, 0, 3, 3, 2, 1, 3, 0, 3, 3, 2, 1, 3, 0, 3, 3, 2, 1, 3, 0, 3, 3, 2, 1, 3, 0, 3, 3

L(mod 5) = 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1

L(mod 6) = 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5

L(mod 7) = 2, 1, 3, 4, 0, 4, 4, 1, 5, 6, 4, 3, 0, 3, 3, 6, 2, 1, 3, 4, 0, 4, 4, 1, 5, 6, 4, 3, 0, 3

L(mod 8) = 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 2

L(mod 9) = 2, 1, 3, 4, 7, 2, 0, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 0, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2

L(mod 10) = 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1

Inspecting this list, we find that the period of L(mod m) is not quite as easy to
identify as the period of F (mod m). Although it appears that a period still exists
for the same reason as the Fibonacci numbers, we can no longer look for the simple
repetition of 0, 1, 1, . . . that was found in the sequence F (mod m) and acted as an
indicator for the repetition of the period of F (mod m). However, we can see that
for n > 2, the pair 2, 1 acts as an indicator for the period of L(mod m). Also, by
the same means as with the Fibonacci numbers we can still show that the sequence
L(mod m) must be periodic for all m.

Theorem 9. The Lucas series under modular representation is always periodic.

Proof. Let us take any term from the Lucas sequence (mod m). There are a total
of m options for what the value of this term may be. Similarly, there are exactly m
options for the term directly follwing. Thus, there are m2 possibilities for any two
consecutive terms in the sequence L(mod m). Since m2 is obviously a finite value,
we know that there are finite options for any two consecutive terms in L(mod m).
As there are finite options for any pair of terms in the sequence, we know that
some pair of terms must repeat at some point. Also, since any two consecutive
terms determine the rest of the Lucas sequence, we see that once a pair of terms is
at some point repeated, so is the rest of the sequence. Thus, L(mod m) must be
periodic. �

We know that for all values of m, L(mod m) is periodic. Furthermore, we can
examine the above sequences to find the period of each sequence. As before with
the Fibonacci numbers, let k(m) denote the period of L(mod m).

So,

k(2) = 3, k(3) = 8, k(4) = 6, k(5) = 4, k(6) = 24, k(7) = 16, k(8) = 12, k(9) = 24, k(10) = 12.

Although we are again left with a small sample size, it appears that our previous
rules for F (mod m) remain even for the sequence L(mod m). In fact, the following
rules will hold not only for the Fibonacci numbers as well as the Lucas numbers,
but for any generalized Fibonacci sequence. That is, a sequence of the form gm+2 =
gm + gm+1.

Theorem 10. For m > 2, k(m) is even.

Theorem 11. If j|m, then k(j)|k(m).

Theorem 12. Let m have the prime factorization m = Πpei

i . Then k(m) =
lcm[k(pei

i )], the least common multiple of the k(pei

i ).
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Theorem 13. k[lcm(m, j)] = lcm[k(m), k(j)].

Theorem 14. If t is the largest integer such that k(pt) = k(p), then k(pe) =
pe−tk(p) for all e > t.
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