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1 Abstract

In this paper, we examine one of the most fundamental and interesting alge-

braic structures, the rational numbers, from the perspective of group theory. We

delve into subgroups of the rationals under addition, with the ultimate goal of

completely classifying their isomorphisms, gaining insight into general torsion-

free groups along the way. We will develop an intuitive and efficient approach

to describing a subgroup, namely the height function, and use this description

to completely classify subgroup isomorphism. Some time will be dedicated to

methods of combining subgroups into new subgroups, one each corresponding to

the four main algebraic operations. The reader will come to understand the re-

lationship between the resulting groups of such operations and the groups used

to form them. Finally, we will focus attention on an elegant result that gives a

way of identifying an arbitrary torsion-free group as a subgroup of the rationals.
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2 Introduction

There are many insights that stem from a detailed study of the rational numbers

from the viewpoint of group theory. First and foremost, the rational numbers

are a construction that is central to modern mathematics. Indeed, students

learn of their basic nature very early in education. To improve our understand-

ing of the way rational numbers function is an important study in algebra.

Secondly, the rational numbers are a quintessential torsion-free group, mean-

ing a group whose only element of finite order is the identity. Studying the

rational numbers can provide important revelations about torsion-free groups

as a whole. Furthermore, and of particular interest to this paper, examining

the group structure of the rationals can give us specific criteria to determine

when an arbitrary torsion-free group is actually isomorphic to a subgroup of the

rationals.

The earliest roots of these studies arise from the development of group the-

ory, especially through the Nineteenth Century. However, the fundamentals of

this branch of mathematics were never thoroughly applied to the rational num-

bers in order to answer the question “when are two subgroups of the rationals

isomorphic” until the Twentieth Century. In 1937, the German mathematician

Reinhold Baer published a 54 page paper that accurately answered this ques-

tion. The paper also contained many results pertaining to other torsion-free

groups. Further work on the subject continued throughout the 1950s, 60s, and

70s, though much of the publishing done on the matter was simply alternate

descriptions of Baer’s conclusions. Finally, in the early 2000s, the mathemati-

cians Friedrich L. Kluempen and Denise Reboli published a paper titled “When

Are Two Subgroups of the Rational Numbers Isomorphic”. The purpose of this

publication was to broaden the accessibility of the subject so as to allow for un-

dergraduate students to study it. While the approach taken in Kluempen and
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Reboli’s paper differs from this paper’s methods, the fundamentals are the same.

Indeed, they are equivalent classifications. While the paper does an excellent

job of presenting the material in an understandable fashion, there is obviously

a certain level of expected knowledge in order to fully understand the subject.

Accordingly, there are many important definitions that will be used through-

out this paper that are essential for the reader to understand intimately. First

and foremost, the basics of group theory are taken to be understood by the

reader. Any undergraduate who has taken an introductory course to abstract

algebra or group theory will have the sufficient tools to grasp the group theory

concepts presented in this paper. Secondly, there is a great deal of number the-

ory involved in this topic, and readers should be familiar with basic ideas from

this branch of mathematics as well. Unless otherwise noted, the definitions used

in this paper will be those presented in Charles C. Pinter’s second edition of ”A

Book of Abstract Algebra”.

We will now introduce certain definitions that are specific to the study of

subgroups of the rational numbers under addition. Firstly, any use of the word

“subgroups” in this paper will be referring to subgroups of the rationals under

addition. Secondly, if a subgroup contains the unity (1), we will call this group

unitary. Note that this definition should not be confused with the definition of

a unitary ring; we are referring, here, to the multiplicative identity, although

the group’s operation is addition. The multiplication of a rational number m
n

by an integer z will be defined as
m

n
+
m

n
+ ..,+

m

n︸ ︷︷ ︸
z times

. Usually, but not always,

subgroups will be assigned to the variables A or B, functions will be assigned

to the variables h or k, and integers or natural numbers will be given the names

m,n, p, or q.
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3 Subgroup and Homomorphism Structure

In this section, we will examine some of the general structural nature of sub-

groups of the rational numbers. Many of the questions we will address are very

typical of group theory. For example, what do homomorphisms and isomor-

phisms between two subgroups look like? These studies will prove very valuable

in studying subgroup isomorphism.

The first step towards our goal is to briefly examine the nature of elemen-

tal inclusion in subgroups of the rationals. What are some testable conditions

under which a rational number is an element of a specific group? It turns out

that this question is fairly easily answered. Before we begin, however, it must

be stated that the subgroups in the proofs within this section will always be

assumed to be unitary.

Theorem 1.1: For relatively prime m,n, m
n ∈ A if and only if 1

n ∈ A.

Proof: First, assume that m
n ∈ A. Since m and n are relatively prime, there

are x, y ∈ Z such that 1 = xm + yn → 1
n = xm

n + y. m
n is in A. Addition-

ally, x, y ∈ A since A contains 1, and, inductively, all of the integers. Thus,

xm
n + y = 1

n ∈ A.

Now, assume that 1
n ∈ A. Then m

n =
1
n

+
1
n

+ . . .+
1
n︸ ︷︷ ︸

m times

∈ A. Thus, m
n ∈ A

if and only if 1
n ∈ A.

Theorem 1.2: For relatively prime m and n, the rational number 1
mn ∈ A if

and only if 1
m ∈ A and 1

n ∈ A.

Proof: First, assume that 1
mn ∈ A. So then 1

n = m
mn =

1
mn

+
1
mn

+ . . .+
1
mn︸ ︷︷ ︸

m times

∈

A. Similarly, 1
m = n

mn =
1
mn

+
1
mn

+ . . .+
1
mn︸ ︷︷ ︸

n times

∈ A.

Now, assume that 1
m ∈ A and 1

n ∈ A. Then 1
m + 1

n ∈ A. So 1
m + 1

n =

n
mn + m

mn = m+n
mn ∈ A. Since m and n are relatively prime, m+ n and mn are
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relatively prime. Thus, by Theorem 1.1, 1
mn ∈ A. And so 1

mn ∈ A if and only

if 1
m ∈ A and 1

n ∈ A.

These two theorems give us some tools to deduce what certain elements of

a subgroup will look like given one element. Theorem 1.1 emphasizes that it

is the denominators of elements that are definitive of a subgroup’s structure.

This will be important when we attempt to completely characterize a group in

a simple way. Theorem 1.2 is useful because it allows us to focus on the elements

of a group based on the primes that make up the denominators of the elements.

Decomposing the denominator of an element into it’s prime factorization puts

the element into a form that we can apply Theorem 1.2 to, and subsequently

look at elements whose denominators are primes. As an example, let A be a

unitary subgroup of Q. If 3
10 ∈ A, then 1

10 ∈ A, and furthermore 1
2 ∈ A and

1
5 ∈ A.

In general, for a unitary subgroup A, if m
n ∈ A with m and n relatively

prime, and n = pe1
1 ∗ . . . ∗ p

ej

j is the prime factorization of n, then each of the

1
p

e1
1
, . . . , 1

pj

ej are in A.

Having given some thought to the form and nature of subgroup elements, we

will now turn our attention to the homomorphisms and, in turn, isomorphisms

of subgroups of the rationals.

Theorem 1.3: For q ∈ Q, f(x) = qx is a homomorphism.

Proof: Let q ∈ Q and let f(x) = qx. For any a, b ∈ A, f(a+ b) = q(a+ b) =

qa+ qb = f(a) + f(b). So f is a homomorphism.

Related to Theorem 1.3,

Theorem 1.4: If f is any homomorphism from a subgroup A to Q (A need

not be unitary), then there is a unique q such that f(x) = qx.

Proof: Let f : A→ Q be a homomorphism. For p
q ∈ A, let f(p

q ) = m
n . Now,

we multiply both sides of a = p
q by mq, so that amq = pm. Now, multiply-
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ing both sides of f(p
q ) = m

n by pn, we get that f(p
q )pn = mp = amq so then

f(p
q ) = mq

pn ∗ a. Let g(x) = mq
pn ∗ x. We want to show that f = g, but we need

first to prove a quick lemma.

Lemma 1.4.1: If f, g : A → Q are homomorphisms and for some non-zero

a ∈ A we have that f(a) = g(a). Then f(x) = g(x).

Proof: First, let h : A → Q be a homomorphism such that h = f − g.

Let a = m
n . Let b = p

q ∈ A be non-zero. Note that h(a) = 0. We can

yield the equations anp = mp and bqm = pm, implying that anp = bqm. So

h(b)h(qm) = h(bqm) = h(anp) = h(a)h(np) = 0. So h(b) = 0 since q 6= 0 6= m,

and thus h(x) = 0. Now, returning to the homomorphisms f and g, we first

assume that f = g. Then it is obvious that f(a) = g(a). Suppose, on the other

hand, that f(a) = g(a). Then f(a) − g(a) = (f − g)(a) = 0 so (f − g)(x) = 0,

implying that f(x) = g(x).

Now, returning to the proof of Theorem 1.3, the way forward is obvious.

Since f and g agree at one point, namely a, it follows that f = g, and so

f(x) = mq
pn ∗ x, which, by Theorem 1.3, is a homomorphism.

Thus, not only are functions of the form f(x) = qx homomorphisms, but,

even more powerfully, every homomorphism can be expressed this way. It should

be noted that, if q 6= 0 and if the range of f is reduced from Q to the image of

all of A under f , it can easily be shown that f is an isomorphism. This simple

corollary will be useful in the proof of our next theorem.

Theorem 1.5: If A and A′ are non-trivial subgroups of Q, then A is isomor-

phic to A′ if and only if there is a q ∈ Q such that A′ = q ∗A = {q ∗ a : a ∈ A}.

Proof: A is isomorphic to A′ if and only if there exists an isomorphism

f : A→ A′. This isomorphism can be expressed, by Theorem 1.4, as f(x) = qx

for some q ∈ Q. But f is an isomorphism if and only if, f(A) = qA = {qa : a ∈

A} = A′, and we have proved that A is isomorphic to A′ if and only if there is
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a q ∈ Q such that A′ = qA = {qa : a ∈ A}.

This last result is what will justify our inclusion of 1 in the groups for the

proof of Theorems 1.1 and 1.2 (note that this condition was not needed in prov-

ing Theorems 1.3, 1.4, or 1.5).

Theorem 1.6: Every subgroup A of Q is isomorphic to at least 1 subgroup

of Q that contains 1.

Proof: Let a = m
n ∈ A. Then let f(x) = n

m ∗ x. The image of A under f ,

or f(A), is a group that is isomorphic to A. Since f(a) = 1, 1 ∈ f(A), and we

have proved the desired result.

Because of theorem 1.6, it is reasonable in many cases to begin general proofs

by assuming that subgroups are unitary.

4 The Height Function

In Section 3, we looked at some basic theorems regarding the structure of addi-

tive subgroups of the rationals. In Section 4, we look at a function that aptly

describes subgroups. This function, known as the height function, describes the

denominators of elements in a subgroup in terms of their prime decompositions.

Definition 2.1: Let ∞ be the number such that ∞+ a =∞ for any integer

a.

Definition 2.2: Let F be the set F = {f : P → N ∪ {∞}}.

Definition 2.3: For a unitary subgroup A of the rational numbers, hA ∈ F

is defined as follows for each prime p: hA(p) = max {e : 1
pe ∈ A}.

The first thing that we would like to do is show that the height function

does, indeed, give us a good description of when two subgroups are equal.

Theorem 2.1: For two subgroups A,A′ of Q, A = A′ if and only if hA(p) =

hA′(p) for all primes.
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Proof: Begin by assuming that A = A′. It is a triviality that hA(p) = hA′(p).

Now, assume that hA(p) = hA′(p) = e3. If q ∈ A, where q = 1
pj , Then

j ≤ hA(p) = hA′(p), so q ∈ A′. Now, if m
n ∈ A, where n = pe1

1 ∗ · · · ∗ p
ej

j is the

prime factorization of n, then we know from Theorem 1.1 and Theorem 1.2 that

each 1
p

e1
1
, . . . , 1

p
ej
j

∈ A. From above, they are all also in A′. Thus, taking their

product and adding this product to itself m times, we have that m
n ∈ A

′.

This conclusion shows us that the our definition of the height function is log-

ical. Much of the rest of this paper will deal with subgroups’ height functions.

Now, we will show some examples in order to familiarize the reader with the

height function. First, consider the subgroup of the rationals that is described

by the height function that is 1 everywhere. First, this subgroups contains el-

ements like 1
3 , 1

5 , −1
15 = −1

3∗5 , and even 1
210 = 1

2∗3∗5∗7 . By Theorem 1.1, this

subgroup also contains elements such as 3
5 , −4

15 , and 7
15 . However, the maximum

power that any prime can be raised to in the denominators of elements of this

group is 1, so numbers such as 1
9 = 1

32 and 3
12 = 3

22∗3 are not in the subgroup. In

short, this subgroup contains elements whose denominators have prime factors

that appear only to the first degree in the prime factorization.

Next, we will look at two very important and well-known subgroups of Q.

First, consider the integers, Z, which is indeed a subgroup of Q. When an inte-

ger x is represented as a rational number, it is assumed to be x
1 . That is, the

integers are all of the rational numbers whose denominators are 1 (or, in ac-

tuality, the rationals whose denominators are 1 when expressed with relatively

prime numerator and denominator). Thus, hZ(p) = 0 for all primes. Now, con-

sider a trivial subgroup of the rationals, namely, all of the rationals. Since there

is no restriction on what primes a rational number may contain as a factor of

the denominator, it is clear that hQ(p) =∞ for all primes.

Finally, we will look at the height function of a contrived subgroup. What

8



is the height function of 〈 1
2∗32∗1120 〉. By adding 1

2∗32∗1120 to itself any number

of times, the degrees of the primes in the denominator of the sum is never in-

creased. Thus, this subgroup is described by the height function where h(2) = 1,

h(3) = 2, h(11) = 20, and h(p) = 0 for all other primes.

Now, we will look at a certain type of height function that is very useful

in certain applications. For a specific prime p, consider the height function hA

where

hA(q) =

 0 : q = p

∞ : q 6= p

In other words, this height function allows all primes except for one to divide

denominators of elements of the group it describes. The group A is known as

“the integers localized at the prime p”. Furthermore, we can construct a similar

height function for a finite set of primes. This construction is very useful because

it allows us to focus on a finite number of primes at a time. Thus, it is useful

in proofs by induction where each step requires a proof about a different prime.

We would like to define some operations on height functions. The first such

operation is a way of changing a height function at a finite number of primes

by a finite amount.

Definition 2.4: For a positive integer x = pe1
1 . . . pen

n , where each pi is a

prime, and a height function h, define xh(p) as

xh(p) =

 h(p) + ei : p = pi

h(p) : otherwise

To explain in words, xh differs from h only at the primes that are factors of x;

at such primes, xh differs from h by the degree to which the prime appears in

the prime factorization of x.

Having defined a sort of scalar multiplication on F , we now define an equiv-
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alence relation. This relation will be invaluable in determining when two sub-

groups of the rationals are isomorphic.

Definition 2.5: For two height functions f and h, we write f ∼ h if and only

if, for some non-negative integers m and n, mf = nh.

Claim: The relation ∼ is an equivalence relation.

Proof:

1. Reflexivity: Let h be a height function. Then 1 ∗ h = 1 ∗ h, so h ∼ h.

2. Symmetry: Let h and k be height functions such that h ∼ k. Then for

some non-negative integers m and n, mh(p) = nk(p) for all primes p, and

so nk(p) = mh(p) for all p. Thus, k ∼ h.

3. Transitivity: Let f , h, and k be height functions such that f ∼ h and

h ∼ k. Then for some non-negative integers m, n, i, and j, we have that

mf = nh and ih = jk. Then we have that (im)f = i(mf) = i(nh) =

(in)h = (ni)h = n(ih) = n(jk) = (nj)k. Thus, f ∼ k. (Note: It can

be shown that for some integers m and n and a height function f , we

(mn)f = m(nf), but the proof is omitted).

While this definition of ∼ is useful in many applications, it is also sometimes

hard to apply. Essentially, this definition says that two height functions are

related if and only if they differ at a finite number of primes and if, at these

primes, they only differ by a finite amount. For example, the height functions hZ

and hQ are clearly not related by ∼, since they do not agree at any point (and,

for that matter, they disagree by an infinite amount everywhere). However, for

A = 〈 1
22∗32∗52∗...∗1672∗1732 〉, hZ and hA are related because they differ only at

the first twenty primes, and neither function takes on an infinite value anywhere.
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5 Subgroup Isomorphism and Types

In this section, we show how two groups whose height functions are related are

similar in structure.

Theorem 3.1: If A and B are unitary subgroups of the rationals, then A ∼= B

if and only if hA ∼ hB .

Proof: We begin the proof with a lemma.

Lemma 3.1.1: For some integer x and a unitary subgroup C, D = 1
xC is

also unitary, and hD(p) = xhC(p).

Proof: Clearly, D is unitary, since x ∈ C. Now, note that the height func-

tions of C and D will differ only at primes that divide x. Consider such a prime,

say q. The height function of D at q will be increased by exactly the highest

power of q that divides x, say e. Thus, hD(p) =
(∏

q|x ei

)
hC(p) = xhC(p).

Now, we return to our proof of the theorem, and begin by assuming that

A ∼= B. Then there is a bijective homomorphism f : A → B. We know that

for some rational number m
n , f(x) = m

n x. Thus, 1
mA = 1

nB. By the lemma,

mhA(p) = nhB(p), and hA ∼ hB . The proof of the reverse direction is almost

exactly the same.

This is a very significant classification of the subgroups of the rationals. Re-

visiting some examples from before, note that the height function for the integers

and that for the rationals are not related by ∼, so the integers are not isomor-

phic to the rationals. However, we showed that when A = 〈 1
22∗32∗52∗...∗1672∗1732 〉,

hA ∼ hZ, so A ∼ Z.

We will now show several more examples to clarify. Consider the integers lo-

calized at 3 and the integers localized at 5. Since hQ(3)(3) = 0 and hQ(5)(3) =∞,

these two height functions are not related. Thus, Q(3) � Q(5). Next, consider

the height function that is everywhere equal to 1 and the height function that
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is everywhere equal to 2. While these two height functions differ by a finite

amount at each prime, they are different at an infinite number of points, so

they are not related by ∼. Accordingly, their corresponding groups are not iso-

morphic.

Next, we will introduce some terminology that will simplify working with

this new notion of our equivalence relationship’s interaction with group isomor-

phism.

Definition 3.1: The type of a subgroup A, denoted type(A), is defined as

the equivalence class of hA under ∼.

We will now spend some time examining certain examples. As an example

of two types that are equal, see that type(〈 1
22∗32∗52∗...∗1672∗1732 〉) = type(Z), be-

cause, as stated previously, the height functions for these two groups are related.

The infinite type, denoted ∞̄, is the set of all height functions that are related

to the infinite height function. Since any height function disagreeing with the

infinite function at at least one point takes on a finite value at such points, it

cannot be related to the infinite function. Thus, the only height function in

the equivalence class of the infinite function is the infinite function itself. To

write this with our new terminology, type(Q) = [hQ]. The type of the integers,

however, contains more than one element; in fact, it contains an infinite number

of functions. The height function of the integers is 0 at all primes. Thus, it’s

type contains every height function that is non-zero at a finite number of points,

and at these points takes on a finite value.
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6 Combining Subgroups

We have now classified subgroup isomorphism based on our equivalence relation

∼ between two height functions. We now focus on different ways of combining

subgroups of the rationals. Specifically, we would like to show how combining

subgroups in certain ways to make new subgroups affects the height function of

the result.

To begin, we will examine taking the intersection of two subgroups. It is

easily shown that the intersection of two subgroups is a subgroup. We will use

an example to attempt to gain an intuitive grasp of what the resulting height

function might be. Let A = 〈 1
23∗3∗115 〉 and B = 〈 1

2∗3∗11∗132 〉. Looking only

at the prime 2, we see that in order for an rational number to be in A, 24

is the smallest power of 2 that cannot divide its denominator. In order for a

rational number to be in B, 22 is the smallest power of 2 that cannot divide

its denominator. Thus, in order to be in both subgroups, 22 cannot divide

the denominator of a rational number. This would indicate that the resulting

subgroup has a height function that is the minimum of the two subgroups.

We need to begin by showing that taking the minimum of two height func-

tions preserves ∼.

Theorem 4.1: For height functions h1 ∼ h2 and k1 ∼ k2, we have that

h1 ∧ k1 ∼ h2 ∧ k2.

Proof: The most important step is showing that for r ∈ P and h, k ∈ F ,

that rh ∧ k ∼ h ∧ k. The only place where rh ∧ k and h ∧ k might differ is at

the prime r. At this point, there are two cases. In one case, h ∧ k takes on an

infinite value. In this case, both h and k must take on an infinite value, in which

case h and rh(r) are equal, and it is clear that rh∧k ∼ h∧k. In the other case,

h ∧ k is not infinite, and so either h or k is finite. Whichever is finite, however,

rh∧k differs from h∧k by only a finite amount, and we have the desired result.
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If r is not a prime, then, by induction, we still have that rh ∧ k ∼ h ∧ k. In

more detail, if r = pe1
1 . . . p

ej

j , we know that p1h ∧ k ∼ h ∧ k. Thus, we also

have that p2
1h ∧ k ∼ h ∧ k. Continuing for every prime that divides r, we have

the desired result. Now, given height functions h1 ∼ h2 and k1 ∼ k2, we know

that for some m,n ∈ N that mh1 = nh2 and for some i, j ∈ N that ik1 = jk2.

Then h1(p) ∧ k1(p) ∼ mh1 ∧ k1 ∼ mh1 ∧ ik1 = nh2 ∧ jk2 ∼ h2 ∧ k2 (note that

the commutativity of taking the minimum of two functions is used at the end

of this proof).

This result justifies our definition of the minimum of two types.

Definition 4.1: For height functions h and k, [h] ∧ [k] = [h ∧ k].

Now that we have shown that taking the minimum of two types is well-

defined with respect to ∼, we set out to prove the result that we hypothesized

with regard to the height functions of the intersection of two subgroups.

Theorem 4.2: For non-zero subgroups A and B, hA∩B(p) = hA(p) ∧ hB(p).

Proof: Let k be an integer. Then k ≤ hA∩B iff 1
pk ∈ A ∩ B iff 1

pk ∈

A and 1
pk ∈ B iff k ≤ hA(p) and k ≤ hB(p) iff k ≤ hA(p) ∧ hB(p). This shows

that hA∩B(p) = hA(p) ∧ hB(p).

Finally, we will show how this result pertains to subgroup isomorphism.

Specifically, we would like to show that taking the intersection of two subgroups

preserves isomorphism.

Theorem 4.3: For non-zero subgroups A ∼= A′ and B ∼= B′, we have that

A ∩B ∼= A′ ∩B′.

Proof: We know that type(A) = type(A′) and type(B) = type(B′). Thus,

type(A ∩B) = type(A) ∧ type(B) = type(A′) ∧ type(B′) = type(A′ ∩B′).

We would like to examine the sum of two subgroups now; for two subgroups
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A and B, A+B = {a+ b : a ∈ A, b ∈ B}. First, we will verify that A+B is a

subgroup.

Claim: For subgroups A,B, A+B is also a subgroup.

Proof: First, note that the identity is in A + B since 0 = 0 + 0. Next,

we show that A + B is closed under addition. Let x, y ∈ A + B. Then, for

some a1, a2 ∈ A and b1, b2 ∈ B we have x = a1 + b1 and y = a2 + b2. Thus,

x + y = a1 + b1 + a2 + b2 = (a1 + a2) + (b1 + b2), so x + y ∈ A + B. Finally,

we need to show that A + B is closed under inverses. For a + b ∈ A + B,

−(a+ b) = −a− b ∈ A+B since −a ∈ A and −b ∈ B.

Again, we will begin by using an example to search for an intuitive way to

describe the height function of the sum of two subgroups. Let A = 〈 1
23∗3∗115 〉

and B = 〈 1
2∗3∗11∗132 〉. Again, looking at the prime 2, we know that 1

23 ∈ A and

0 ∈ B. Thus, 1
23 + 0 = 1

23 ∈ A + B. Thus, one might suspect that the height

function of A+B is the maximum of the height functions of A and B.

Similar to before, we first need to show that taking the maximum of height

functions preserves ∼. The argument that for h, k ∈ F , and r ∈ N that

rh ∨ k ∼ h ∨ k is analogous to the proof of Theorem 4.1, shown above, but

the “ands” are replaced with “ors”.

Theorem 4.4: For height functions h1 ∼ h2 and k1 ∼ k2, we have that

h1 ∨ k1 ∼ h2 ∨ k2.

Proof: First, we show that for r ∈ P and h, k ∈ F , that rh ∨ k ∼ h ∨ k.

The only place where rh ∨ k and h ∨ k might differ is at the prime r. At this

point, there are two cases. In one case, h ∨ k takes on an infinite value. In

this case, either h or k must take on an infinite value, in which case it is clear

that rh ∨ k is infinite and so rh ∨ k ∼ h ∨ k. In the other case, h ∨ k is not

infinite, and so neither h nor k is infinite. Thus, rh(r) is also finite, and so

rh ∨ k is finite and differs from h ∨ k by only a finite amount, and we have
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the desired result. If r is not a prime, then, by induction, we still have that

rh ∨ k ∼ h ∨ k by an analogous argument to that used for the minimum of two

height functions. Now, given height functions h1 ∼ h2 and k1 ∼ k2, we know

that for some m,n ∈ N that mh1 = nh2 and for some i, j ∈ N that ik1 = jk2.

Then h1(p) ∨ k1(p) ∼ mh1 ∨ k1 ∼ mh1 ∨ ik1 ∼ nh2 ∨ jk2 ∼ h2 ∨ k2.

This result justifies our definition of the maximum of two types.

Definition 4.2: For height functions h and k, [h] ∨ [k] = [h ∨ k].

Theorem 4.5: For two subgroups A and B, hA+B(p) = hA(p) ∨ hB(p).

Proof: Let k be an integer. Then k ≤ hA+B(p) iff 1
pk ∈ A + B iff 1

pk ∈

A or 1
pk ∈ B iff k ≤ hA(p) or k ≤ hB(p) iff k ≤ hA(p)∨ hB(p). This shows that

hA+B(p) = hA(p) ∨ hB(p)

As was the case with the intersection of two subgroups, we end by showing

that taking the sum of two subgroups preserves isomorphism.

Theorem 4.6: For subgroups A ∼= A′ and B ∼= B′, that A+B ∼= A′ +B′.

Proof: First, note that [hA] = [hA′ ] and [hB ] = [hB′ ]. Then [hA+B ] =

[hA] ∨ [hB ] = [hA′ ] ∨ [hB′ ] = [hA′+B′ ]. Thus, A+B ∼= A′ +B′.

Definition 4.3: For two subgroups A and B, define the product AB = {ab :

a ∈ A, b ∈ B}.

Next, we will define the product of two height functions and show how it

relates to the product of two subgroups.

Definition 4.4: For h, k ∈ F let

hk(p) =

 ∞ : h(p) =∞ or k(p) =∞

h(p) + k(p) : otherwise.
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Theorem 4.6: If h1 ∼ h2 and k1 ∼ k2 then h1k1 ∼ h2k2.

Proof: We need to show that for a prime p and height functions h and k,

that (ph)(k) ∼ (h)(k). If hk is infinite, then h or k is infinite, so either ph or k

is infinite, so (ph)(k) is infinite. If hk is finite, then neither h nor k is infinite,

so neither ph nor k is infinite and so (ph)(k) is finite. The proof is now easily

completed by induction.

As before, this justifies the definition [h][k] = [hk].

Definition 4.4: For height functions h and k, [h][k] = [hk].

Theorem 4.7: Suppose that A and B are non-zero subgroups of the ratio-

nals. Then AB = {ab : a ∈ A, b ∈ B} is a subgroup of the rationals and

type(AB) =type(A)type(B).

Proof: First, note that the 0 is in AB because 0 ∗ 0 = 0. Now, we need

to show that AB is closed under the operation of addition. Let x, y ∈ AB.

Note that, for some a1, a2 ∈ A and b1, b2 ∈ B, we have that x = a1b1 and

y = a2b2. First, consider < a1 > and < a2 >. These subgroups are cyclic,

and are thus isomorphic to the integers. Therefor, they are in the same class

as the integers, namely the zero class. We now have that type(< a1 >) =

type(< a2 >) = 0̄. Thus, type(< a1 > + < a2 >) = 0̄, and so this group is

cyclic, generated by some element a3 ∈ A. Clearly, a1 ∈< a1 > + < a2 >

and a2 ∈< a1 > + < a2 >. Thus, for some integers m and n we can write

x+y = a1b1 +a2b2 = ma3b1 +na3b2 = a3(mb1 +nb2) ∈ AB. Our goal now is to

show that hAB(p) = hA(p) + hB(p). Let k ∈ Z. Then k ≤ hAB(p) iff 1
pk ∈ AB

iff there exist k1, k2 ∈ N such that k1 + k2 = k and 1
pk1
∈ A and 1

pk2
∈ B iff

k = k1 + k2 ≤ hA(p) + hB(p). This proves that hAB(p) = hA(p) + hB(p).

We will now begin assembling the tools needed to examine the analog to a
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quotient for two subgroups.

Definition 4.5: If h, k ∈ F , we will say that h ≤ k if and only if for all p ∈ P

we have that h(p) ≤ k(p). For two types τ1, τ2, we will say that τ1 ≤ τ2 if and

only if there is an h ∈ τ1 and a k ∈ τ2 such that h ≤ k.

Colloquially, this definition is saying that type(h) is less than or equal to

type(k) if and only if h is larger than k only at a finite number of primes, and,

furthermore, anywhere that h is infinite, k is also infinite. We would like to now

show that it is a partial ordering of T .

Claim: The relation ≤ is a partial ordering of T .

Proof:

• Reflexivity: Let τ ∈ T . Let h ∈ τ . Then h ≤ h so τ ≤ τ .

• Antisymmetry: Let τ1, τ2 ∈ T such that τ1 ≤ τ2 and τ2 ≤ τ1. So there

exists a h1, k1 ∈ τ1 and h2, k2 ∈ τ2 such that h1 ≤ h2 and k2 ≤ k1.

Suppose that f ∈ τ1. We need to show that f is related to some height

function in τ2. Suppose that f(p) = ∞ for a prime p. Because f ∼ h1,

we know that h1(p)∞. Because h1 ≤ h2, we now also can conclude that

h2(p) = ∞. Now suppose that f(p) is finite. Then we know that k1(p)

is also finite. Since k2 ≤ k1, k2 is also finite. Finally, since k2 ∼ h2, we

know that h2 is also finite. Thus, anywhere that f is infinite, so is h2,

and anywhere that f is finite, so is h2. Now, note that f differs from h1

and k1 only at a finite number of primes. Additionally, see that h2 ≤ h1

only at a finite number of points and that k1 ≤ k2 only at a finite number

of points. Thusly, f is greater that h2 and less than k2 only at a finite

number of points. Since h2 and k2 differ on a finite set, it follows that f

differs from h2 and k2 only at a finite number of primes. Thus, f ∈ τ2. A
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similar argument shows that a function in τ2 is also in τ1.

• Transitivity: Let τ1, τ2, τ3 ∈ T such that τ1 ≤ τ2 and τ2 ≤ τ3. Then there

exists a h1 ∈ τ1 and a h2 ∈ τ2 such that h1(p) ≤ h2(p) and there also

exists a k1 ∈ τ2 and a k2 ∈ τ3 such that k1(p) ≤ k2(p). If h1(p) = ∞,

then so does h2(p). Since h2 ∼ k1, k1(p) = ∞, implying that k2(p) = ∞.

So we have that h1(p) ≤ k2(p). Now if h1(p) is finite then we have two

cases. First, h2(p) may be infinite. In this case, by the same arguments

just made, we know that k2(p) =∞ and so h1(p) ≤ k2(p). If h2(p) is also

finite, then h2(p) = h1(p)+m for some integer m. Since h2 ∼ k1, we know

that h2 ∼ k1 +m where (k1 +m)(p) = k1(p) +m. Finally, since k1 ≤ k2,

k1 + m ≤ k2. Note that this implies that h1(p) ≤ k2(p). And so τ1 ≤ τ2.

We would like to continue looking at the partial ordering≤, with the ultimate

goal being to examine, as we have for intersections, sums, and products, some

form of quotient of subgroups. As we have already defined the minimum and

maximum of types, we will relate ≤ to these notions with the following result.

Theorem 4.8: For two types τ1 and τ2, the following are equivalent:

1. τ1 ≤ τ2

2. τ1 ∨ τ2 = τ2

3. τ1 ∧ τ2 = τ1

Proof:

1. (1) → (2): Since τ1 ≤ τ2, there exist height functions h ∈ τ1, k ∈ τ2 such

that, for all primes, h(p) ≤ k(p). Then τ1∨τ2 = [h]∨[k] = [h∨k] = [k] = τ2.

2. (2) → (3): Suppose that τ1 = [h] and τ2 = [k] for height functions h and

k. Then τ1 ∨ τ2 = τ2 → [h] ∨ [k] = [k] → [h ∨ k] = [k] → h ∨ k = k →
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h ∧ k = h→ [h ∧ k] = [h]→ τ1 ∧ τ2 = τ1.

3. (3) → (1): If τ1 = [h] and τ2 = [k], τ1 ∧ τ2 = τ1 → h ∧ k = h → h ≤ k →

τ1 ≤ τ2.

We are now ready to introduce the concept of the quotients of two height func-

tions and, in turn, types.

Definition 4.6: For two height functions h ≤ k, define

k

h
(p) =

 ∞ : k(p) =∞

k(p)− h(p) : otherwise

We now must show that taking the product of two height functions preserves

∼, which, as before, justifies our definition of
[

h
k

]
= [h]

[k] .

Theorem 4.9: For height functions h ∼ h′ and k ∼ k′ where k ≤ h and

k′ ≤ h′, h
k ∼

h′

k′ .

Proof: First, we will show that for height functions g ≤ f and a natural

number x, that xf
g ∼

f
g . Since f ≤ xf , it is obvious that g ≤ xf . Thus, the

quotient xf
g is defined. If f(p) = ∞, then xf(p) = ∞, so wherever f

g (p) is

infinite, so is xf
g . Furthermore, f and xf differ only at those primes that divide

x, which is a finite set, and so xf
g ∼

f
g .

Next, we show that xh
xk = h

k . These two height functions will potentially

differ only at those primes that divide x, so we need only show that they agree

at these points. Let p|x, but pn 6 |x for some n. Then xh
xk = xh(p) − xk(p).

Suppose that e is the largest integer such that pe|x. Then xh(p) − xk(p) =

h(p) + e − k(p) − e = h(p) − k(p) = h
k (p). If h(p) = ∞, then xh(p) = ∞, so,

again, xh
xk = h

k (p).

Now, we can complete the proof. Note that there exist an i, j,m, n ∈ N such

that ih = jh′ and mk = nk′. Thus, h
k ∼

jmh
k = ijmh

ik ∼ ijnh′

jk′ = inh′

k′ ∼ h′

k′ .

Now, we define something similar to a quotient, except for two subgroups.
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Definition 4.7: For two subgroups A,B, define Hom(A,B) = {q ∈ Q : qA ⊂

B}.

The notation is thus because Hom(A,B) can also be thought of as the col-

lection of homomorphisms from A to B.

Theorem 4.10: For two unitary subgroups A,B, Hom(A,B) is a subgroup

of Q.

Proof: Clearly, 0 ∈ Hom(A,B) since 0A = {0}. Now, we need to show that

Hom(A,B) is closed under addition. Let r, s ∈ Hom(A,B). So rA ⊂ B and

sA ⊂ B. Thus, for all a ∈ A, ra ∈ B and sa ∈ B, and so (ra)+(sa) = (r+s)a ∈

B. Therefore, we have that rs ∈ Hom(A,B). Next, we have to show closure

under inverses. Suppose t ∈ Hom(A,B). Then for all a ∈ A, ta ∈ B and,

furthermore, t(−a) = −ta ∈ B. Thus, Hom(A,B) is closed under inverses.

Intuitively, Hom(A,B) can be thought of as the quotient when B is divided

by A. We will now prove a result that is analogous to the statement “a rational

number a has a non-zero quotient when divided by b if and only if b ≤ a.

Theorem 4.11: For unitary subgroups A and B, Hom(A,B) 6= {0} if and

only if type(A) ≤ type(B).

Proof: Begin by supposing that Hom(A,B) 6= {0}. Then there is a rational

number q 6= 0 such that qa ∈ B for all a ∈ A. If a prime p divides the denomi-

nator of a, then, for some integer l, p+ l divides qa. In other words, hA(p) and

hqA(p) differ by a finite amount. Since qA ⊂ B, hqA ≤ hB . By the previous

two statements, type(A) ≤ type(B). The reverse direction of this proof follows

from the forward argument.

Now, we show the relationship between the type of Hom(A,B) and the type

of both A and B. Predictably, it involves the notion of the quotient of two

types.

Theorem 4.12: For unitary subgroups A,B, where Hom(A,B) 6= {0}, we
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have that type(Hom(A,B)) = type(B)
type(A) .

Proof: For an integer k, k ≤ hHom(A,B)(p) iff there exists a m
n ∈ Hom(A,B)

such that m and n are relatively prime and pk|n. Note that m
n A ⊆ B, so the pre-

vious statement is true iff k+hA(p) ≤ hB(p) iff k ≤ hB(p)−hA(p) iff k ≤ hB

hA
(p)

iff hHom(A,B) = hB

hA
(p). Thus, type(Hom(A,B)) = type(hB)

type(hA) .

Theorem 4.13: For unitary subgroups A,B, where Hom(A,B) 6= {0}, we

have that type(Hom(A,B)) = type(B)
type(A) .

Proof: Suppose that an integer k ≤ hHom(A,B)(p). This is the case if and

only if there exists an element m
n ∈ Hom(A,B), (m,n) = 1 such that pk|n.

Thus, since m
n A ⊂ B, hA(p) + k ≤ hb(p), and so k ≤ hB(p) − hA(p) = hB

hA
(p).

Thus, hHom(A,B)(p) = hB

hA
(p) and type(Hom(A,B)) = type(B)/type(A).

Finally, we will complete our study of the Hom operation on two subgroups

by showing that it preserves isomorphism.

Theorem 4.14: For unitary subgroups A ∼= A′ and B ∼= B′, Hom(A,B) ∼=

Hom(A′, B′).

Proof: First, note that [hA] = [hA′ ] and [hB ] = [hB′ ]. So [hHom(A,B)] =

[hB/hA] = [hB ]/[hA] = [hB′ ]/[hA′ ] = [hB′/hA′ ] = [Hom(A′, B′)]. Thus, Hom(A,B) ∼=

Hom(A′, B′).

7 Result Relating to General Torsion-Free Groups

We will now prove a theorem that is very elegant. It gives circumstances under

which an arbitrary torsion-free group is isomorphic to a subgroup of the ratio-

nal numbers. This is incredibly useful because it allows us to use the rational

numbers to help typify torsion-free groups.

Theorem 5.1: For a torsion free group A, the following statements are equiv-
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alent:

1. A is isomorphic to a subgroup of Q.

2. For any two non-zero subgroups X and Y of A, X ∩ Y 6= {0}.

3. For any two non-zero subgroups B and C of A, if B and C are cyclic, then

so is B + C.

Proof:

• (1) → (3) : This proof has essentially been completed elsewhere in this

paper. If B and C are cyclic, then their type is 0̄, so the type of their sum

is also 0̄, and their sum is thusly cyclic.

• (3) → (2) : First, let X ′ ⊂ X and Y ′ ⊂ Y be cyclic subgroups. From

our hypothesis, X ′ + Y ′ = S is cyclic. If X ′ ⊂ S and Y ′ ⊂ S, then

X ′ ∩ Y ′ 6= {0}, and thus X ∩ Y 6= {0}

• (2) → (1) : Suppose that x is a non-zero element of A. If y is another

element of A, then, by hypothesis, 〈x〉 ∩ 〈y〉 6= {0}. Let f be a function

such that f(y) = k
l ∈ Q wherek, l ∈ Z such that kx = ly 6= 0. We will

show that f is an isomorphism from A onto the image of f . First, f is a

homomorphism, since, for a, b ∈ A if j, k,m, n are such that jx = ka and

mx = nb, then we can multiply both equations by n and k respectively,

then add them together, resulting in the equation jnx+mkx = kna+knb.

Thus, (jn + mk)x = kn(a + b), and so f(a + b) = jn+mk
kn = j

k + m
n =

f(a) + f(b). Because we are restricting our attention to the image of f ,

that f is onto is obvious. Next, f is one-to-one, since, if f(a) = f(b),

then am = xn for some m,n, and also bm = xn, so a = b. Thus, f is an

isomorphism, and we have completed our proof.
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8 Conclusion

We have now seen, in detail, the structure of subgroups of the rationals un-

der addition. Furthermore, we have classified them by isomorphism, examined

combinations of subgroups, and, finally, proved a significant result regarding the

relationship between general torsion-free groups and subgroups of the rationals.

Significantly, the paper is targeted at an undergraduate level, meaning that

an undergraduate who studies this paper will have the tools to fully understand

it. While the conclusions we have proven are an important first step, the tools

we have developed can be used to move much further into the study of the

rational-numbers, and, indeed, torsion-free groups generally. The ideas in this

paper form an excellent method of studying group theory and number theory.

It is the hope of the author that students in the future will study the subjects

presented, and use them to further raise the bar of undergraduate mathematical

knowledge.
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