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Abstract.

Let P2(G) be defined as the probability that any two elements selected at ran-
dom from the group G, commute with one another. If G is an Abelian group,
P2(G) = 1, so our interest lies in the properties of the commutativity of non-
Abelian groups.

Particular results include that the maximum commutativity of a non-Abelian
group is 5/8, and this degree of commutativity only occurs when the order of
the center of the group is equal to one fourth the order of the group. Explicit ex-
amples will be provided of arbitrarily large non-Abelian groups that exhibit this
maximum commutativity, along with a proof that there are no 5/8 commutative
groups of order 4 mod 8.

Further, we prove that no group exhibits commutativity 0, there exist examples
of groups whose commutativity is arbitrarily close to 0. Then, we show that for
every positive integer n there exists a group G such that P2(G) = 1/n. Finally
we prove that the commutativity of a factor group G/N of a group G is always
greater than or equal to the commutativity of G.

0 Introduction:

The way we define Abelian groups (see Definitions 0.2 and 0.3) provides us with
a simple way of understanding what might be termed the commutativity of such
groups. In particular, as each pair of elements in an Abelian group necessarily
commutes, we can say that the group has complete commutativity, or 100%
commutativity, or, on a decimal scale of zero to one, commutativity 1. As is
known by those with even a little background in the study of group theory,
however, Abelian groups account for only a small proportion of all groups.
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Given that these other, so-called non-Abelian groups, represent the vast major-
ity of all groups, we would like to develop a method for classifying the degree,
or the percent, to which a given non-Abelian group is commutative. As we
will see directly from the following definitions, even non-Abelian groups cannot
have commutativity 0 on the zero to one scale, since at least one group element,
namely the identity (see Definition 0.2), will always commute with every other
element. Also, as a non-Abelian group is, by definition, not Abelian, it must
contain some elements that do not commute, so we cannot have a non-Abelian
group with commutativity 1.

Since, at a glance, we already can rule out 0 and 1 as possible values for the
commutativity of a given non-Abelian group, our initial investigations will con-
sist primarily of showing what values, between 0 and 1, are possible degrees
of non-Abelian commutativity. In addition, we will spend much of our time
describing the ways in which many the characteristics of commutativity are ex-
hibited by finite non-Abelian groups, such as the dihedral groups. Finally, we
will conclude by demonstrating additional properties of the commutativity of
non-Abelian groups, such as the relationship between the commutativity of a
group, and the commutativity of one of its factor groups.

To begin our investigation of the commutativity of non-Abelian groups we will
first provide a few definitions. Unless otherwise specified, all notation and ter-
minology used will be as in [1].

Definition 0.1: Binary Operation .
Let G be a set. A binary operation on G is a function that assigns each ordered
pair of elements of G an element of G.

From the definition of a binary operation, we next develop the notion of a group.

Definition 0.2: Group
Let G be a nonempty set together with a binary operation (usually called multi-
plication) that assigns to each ordered pair (a, b) of elements of G an element of
G denoted by ab. We say that G is a group under this operation if the following
three properties are satisfied.

1. Associativity. The operation is associative; that is, (ab)c = a(bc)
for all a, b, c in G.

2. Identity. There is an element e (called the identity) in G such
that ae = ea = a for all a in G.

3. Inverses. For each element a in G, there is an element b in G
(called the inverse of a) such that ab = ba = e.

Now, to characterize the difference between Abelian and non-Abelian groups,
we provide the following definition.
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Definition 0.3: Abelian Group
If a group has the property that ab = ba for every pair of elements a and b, we
say that the group is Abelian. A group is non-Abelian if there is some pair of
elements a and b for which ab 6= ba.

Finally, the next two definitions require particular attention, as they will be
directly referred to numerous times throughout this article.

Definition 0.4: Center of a Group
The center, Z(G), of a group G is the subset of elements in G that commute
with every element of G. In symbols, Z(G) = {a ∈ G | ax = xa for all x in G}.

Definition 0.5: Centralizer of a in G
Let a be a fixed element of a group G. The centralizer of a in G, C(a), is the set
of all elements in G that commute with a. In symbols, C(a) = {g ∈ G | ga = ag}.

In addition to the five definitions above, we will later refer to both the Class
Equation and Lagrange’s Theorem, both of which will be stated and explained
prior to their usage.

1 Commutativity

Using the definition of the center of a group and of the centralizer of a group
element, we are prepared to begin developing a measure for the commutativity
of a given group. First, though, we define a certain family of groups.

Dihedral groups

The following definition describes the family of groups that will play the most
important role in providing examples of the properties of non-Abelian commu-
tativity throughout the remainder of this article.

Definition 1.1: Dihedral group 1

The dihedral group Dn is the symmetry group of an n-sided regular polygon for
n > 1. The group order of Dn is 2n.

1See [4] for definition. A thorough explanation of the properties and construction of the
dihedral groups can be found in [1].
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By order we mean the number of elements of a group (finite or infinite). We will
use |G| to denote the order of a group G. Now, to further explain this definition,
we will consider as an example the dihedral group, D4, of order eight.2

From the definition, we know that the dihedral group D4 is the symmetry group
of a 4-sided regular polygon, that is, a square. To elaborate, this means that the
group D4 consists of the eight flips and rotations which comprise the natural
transformations that can be performed on a square. The four rotations in the
plane are by degrees of 0, 90, 180, and 270. These are denoted R0, R90, R180,
and R270 respectively. The four remaining elements are two flips, H and V ,
across the horizontal and vertical axes, and two flips, D and D′, across the two
diagonal axes.

These eight transformation elements are shown in Figure 1.

Figure 1: D4 = {R0, R90, R180, R270, H, V,D,D
′}

Now that we have gained a knowledge of the elements that comprise the dihedral
group D4 we begin to consider products of these elements in different orders, so
as to determine how many pairs of elements commute out of the total number
of possible commutative pairs.

2The reader should note that the properties of this particular group D4 will be invaluable
in later sections of this article, as they exhibit many of the properties of commutativity of
non-Abelian groups that will be discussed and proved.
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The easiest way to summarize the result of taking the product of each pair
of elements in the group is to construct a Cayley table for D4 [see Table 1].
A Cayley table for group elements can be thought of in the same way as a
multiplication table for integers. That is, to determine the value of the product
ij, one may refer to the value in the intersection of the ith row and the jth
column.

D4 R0 R90 R180 R270 H V D D′

R0 R0 R90 R180 R270 H V D D′

R90 R90 R180 R270 R0 D′ D H V
R180 R180 R270 R0 R90 V H D′ D
R270 R270 R0 R90 R180 D D′ V H
H H D V D′ R0 R180 R90 R270

V V D′ H D R180 R0 R270 R90

D D V D′ H R270 R90 R0 R180

D′ D′ H D V R90 R270 R180 R0

Table 1: Cayley table for the group D4

As an example, notice that HR90 = D. Further, to demonstrate that the group
D4 is non-Abelian, we may note that R90H = D′. It will be left to the reader to
verify that the elements D and D′ do indeed represent the result of the product
of the elements H and R90 in the orders shown above.

A measure of commutativity

Now that we have one family of non-Abelian groups (the dihedral groups) to
examine, we can begin to develop a measure for the commutativity of groups in
general.

There are at least two ways to approach the problem of specifying a measure
of commutativity for non-Abelian groups. One uses the simple definition of the
centralizer of each element of the group, while the other uses the notions of
conjugates and conjugacy classes.

As it turns out, both of these methods lead to the same measure of commu-
tativity. We will discuss both methods, initially focusing on the perhaps more
intuitive approach involving centralizers, and later detailing the somewhat more
elegant conjugacy class idea.
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Henceforth, we will refer to the commutativity of a group G as P2(G) (notice
that this notation applies even when the group G is Abelian, but that P2(G)
trivially equals 1 if this is the case). The rationale behind this notation is that
the commutativity of a group as we will be measuring it is the probability that
any two group elements selected at random commute with one another, hence:
P2.

Before defining the P2 measure of commutativity in terms of the centralizers of
the group elements, we note that the center of a group by itself does not provide
a particularly accurate measure for commutativity. In order to demonstrate this
fact, we introduce some of the other small dihedral groups, specifically D3, D5,
and D6.3

As previously defined, the small dihedral groups D3, D5, and D6 consist of
elements corresponding to the rotation- and flip- symmetries of regular polygons
with 3, 5, and 6 sides respectively. In particular, Rm represents a rotation by
m degrees, and the other variables V,H,D, F and their primes represent flips
across the axes that run either from one vertex to the opposite vertex or from
the midpoint of one side to the midpoint of the opposite side (in the case of the
even-sided polygons such as the hexagon) or from one vertex to the midpoint of
the side opposite it (in the case of the odd-sided polygons such as the triangle
and the pentagon).

Thus, including D4 as defined earlier, we have:

D3 = {R0, R120, R240, V,D,D
′},

D4 = {R0, R90, R180, R270, V,H,D,D
′},

D5 = {R0, R72, R144, R216, R288, V,D,D
′, F, F ′},

D6 = {R0, R60, R120, R180, R240, R300, V, V
′, V ′′, D,D′, D′′},

where, in each case, R0 is the identity element of the group. Now, examining
the Cayley table of each group,4 we can conclude that the centers of the four
dihedral groups are:

Z(D3) = {R0},
Z(D4) = {R0, R180},
Z(D5) = {R0},
Z(D6) = {R0, R180}.

3In general, we will not consider the first dihedral group D2, as it only consists of 4 elements
and is thereby Abelian. In fact, whereas [4] defines the dihedral groups as beginning with D2,
[1] only considers the dihedral groups Dn for n ≥ 3.

4The reader may consult Table 1 for an example of the Cayley table of D4. The Cayley
table of each of the other three groups can be easily constructed.
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By the regular structural nature of the polygons that comprise the Dn groups,
we can conclude that when n is even the two elements in the center of Dn are
R0 and R180, whereas when n is odd, the only element in Z(Dn) is R0. To see
this, we make note of the following facts.

Clearly R0, a rotation by zero degrees, is the identity of every dihedral group
and is thus in the center of Dn for all n. Then, in all dihedral groups, every
rotation element commutes with every other rotation element, whereas every
flip element does not commute with most rotation elements. Since in the case
of even-sided polygon dihedral groups, every flip element commutes with the
identity, R0, and the element R180, but not with any other rotation element,
we conclude the Z(Dn) = {R0, R180} when n is even. On the other hand, every
flip element in an odd-sided polygon dihedral group does not commute with any
rotation element besides the identity, so Z(Dn) = {R0} when n is odd.

Since the center will continue to either be of order 1 or order 2, no matter how
large the group is, the sizes of the centers may rapidly become an inaccurate
measure of the degree to which a dihedral group is non-Abelian.

Given that the centers of the dihedral groups do not provide us with an accurate
method for measuring group commutativity,5 we proceed to compute the cen-
tralizers of every element of each of the four dihedral groups detailed above. We
may again refer to the Cayley table of each of these groups in order to determine
the centralizers of their elements according to Definition 0.5.

The elements of the centralizer of each element of D3 are listed below.

C(R0) = {R0, R120, R240, V,D,D
′},

C(R120) = {R0, R120, R240},
C(R240) = {R0, R120, R240},
C(V ) = {R0, V },
C(D) = {R0, D},
C(D′) = {R0, D

′}.

5It should be noted, however, that the center of a group will be an important consideration
when determining the maximum commutativity of non-Abelian groups.
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The elements of the centralizer of each element of D4 are listed below.

C(R0) = {R0, R90, R180, R270, V,H,D,D
′},

C(R90) = {R0, R90, R180, R270},
C(R180) = {R0, R90, R180, R270, V,H,D,D

′},
C(R270) = {R0, R90, R180, R270},
C(V ) = {R0, R180, V,H, },
C(H) = {R0, R180, V,H, },
C(D) = {R0, R180, D,D

′},
C(D′) = {R0, R180, D,D

′}.

The elements of the centralizer of each element of D5 are listed below.

C(R0) = {R0, R72, R144, R216, R288, V,D,D
′, F, F ′},

C(R72) = {R0, R72, R144, R216, R288},
C(R144) = {R0, R72, R144, R216, R288},
C(R216) = {R0, R72, R144, R216, R288},
C(R288) = {R0, R72, R144, R216, R288},
C(V ) = {R0, V },
C(D) = {R0, D},
C(D′) = {R0, D

′},
C(F ) = {R0, F},
C(F ′) = {R0, F

′}.

The elements of the centralizer of each element of D6 are listed below.

C(R0) = {R0, R60, R120, R180, R240, R300, V, V
′, V ′′, D,D′, D′′},

C(R60) = {R0, R60, R120, R180, R240, R300},
C(R120) = {R0, R60, R120, R180, R240},
C(R180) = {R0, R60, R120, R180, R240, R300, V, V

′, V ′′, D,D′, D′′},
C(R240) = {R0, R60, R120, R180, R240, R300},
C(R300) = {R0, R60, R120, R180, R240, R300},
C(V ) = {R0, R180, V,D},
C(V ′) = {R0, R180, V

′, D′},
C(V ′′) = {R0, R180, V

′′, D′′},
C(D) = {R0, R180, V,D},
C(D′) = {R0, R180, V

′, D′},
C(D′′) = {R0, R180, V

′′, D′′}.
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As the order of the centralizer of a certain group element gives us the number
of group elements that commute with that certain element, we can rapidly
determine the total number of commutative pairs of elements (including the
product of an element with itself, which is clearly commutative) simply by
summing the orders of the centralizers of every element in a group. By this
standard, we can then also say that the total possible number of commutative
pairs of elements in a given group (that is, the total number of pairs) is simply
the order of the group squared.

Thus, the previously mentioned P2(G) measure of commutativity can be written
as the fraction c/|G|2, where c represents the sum of the the centralizers of all
of the group elements.

To better understand this definition of P2(G), we will compute the P2(Dn) for
n = 3, 4, 5, 6. As we have already computed the centralizers for every element in
each of these four dihedral groups, it remains to sum the order of each centralizer
in a given group, and divide this value by the order of the group squared.

In this way, we find that in D3, the total number of pairs that commute is
c = 6 + 3 + 3 + 2 + 2 + 2 = 18 (the sum of the order of each of the six
centralizers), while the order of the group squared is |D3|2 = 62 = 36. Thus,
the degree to which D3 is commutative, is:

18/36 = 0.5

Likewise, for D4, the number of commutative pairs is c = 8 + 4 + 8 + 4 + 4 +
4 + 4 + 4 = 40, the total number of pairs is |D4|2 = 82 = 64, and the degree to
which it is commutative is:

40/64 = 0.625

ForD5, the number of commutative pairs is c = 10+5+5+5+5+2+2+2+2+2 =
40, the total number of pairs is |D5|2 = 102 = 100, and the degree to which it
is commutative is:

40/100 = 0.4

Finally, for D6, the number of commutative pairs is c = 12 + 6 + 6 + 12 + 6 +
6 + 4 + 4 + 4 + 4 + 4 + 4 = 72, the total number of pairs is |D6|2 = 122 = 144,
and the degree to which it is commutative is:

72/144 = 0.5
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From these examples, we can begin to suppose that even-polygon dihedral
groups are more commutative than similarly-sized odd-polygon dihedral groups,
and that smaller dihedral groups are more commutative than larger ones. We
will shortly see that both of these ideas are correct, and can be easily proven.

Deriving P2 from conjugacy classes

As promised, we will now discuss a second method by which we may arrive at
the commutativity measure P2. Since this method uses the idea of conjugacy
classes, let us begin with a definition.

Definition 1.2: Conjugacy Class of a.
Let a and b be elements of a group G. We say that a and b are conjugate in G
(and call b a conjugate of a) if xax−1 = b for some x in G. The conjugacy class
of a is the set cl(a) = {xax−1 | x ∈ G}.

The reader may notice that conjugacy is an equivalence relation on a group.
That is, conjugacy satisfies the reflexive, symmetric, and transitive properties,
as shown below.

Let G be a group and let a ∈ G. Notice that a = eae−1, where e ∈ G is the
identity of the group. Thus, conjugacy satisfies the reflexive property. Next, let
b ∈ G and that a = xbx−1 for some x ∈ G. Then x−1ax = x−1xbx−1x = b,
such that conjugacy satisfies the symmetric property. Finally, let c ∈ G, and
suppose that in addition to a = xbx−1, there exists y ∈ G such that b = ycy−1.
Then a = x(ycy−1)x−1 = (xy)c(xy)−1, which shows that conjugacy satisfies the
transitive property.

This straightforward verification that conjugacy satisfies the three defining prop-
erties of an equivalence relation allows us to henceforth partition any group into
disjoint conjugacy classes where necessary.

It is worth noting that proofs of several of the following theorems rely one one
of the most important results in finite group theory, Lagrange’s Theorem, which
is included here for reference.

Theorem 1.1. Lagrange’s Theorem: |H| divides |G|.
If G is a finite group and H is a subgroup of G, then |H| divides |G|. Moreover,
the number of distinct left cosets of H in G is |G|/|H|.
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The reader is encouraged once again to consult [1] for the definition of a coset.
We call the number of distinct left cosets of a subgroup H, in a group, G, the
index of the subgroup, and denote this by |G : H|. Hence, as a consequence of
Lagrange’s Theorem, we have the following corollary.

Corollary 1.2. |G : H| = |G|/|H|.
If G is a finite group and H is a subgroup of G, then |G : H| = |G|/|H|.

Now, as stated in [1], we have a theorem relating the size of the conjugacy class
of an element a in a group G with the size of the centralizer of a in G.

Theorem 1.3. The Number of Conjugates of a
Let G be a finite group and let a be an element of G. Then,

|cl(a)| = |G : C(a)| = |G|/|C(a)|.

Proof. Consider the function T that sends the coset xC(a) to the conjugate
xax−1 of a. A routine calculation shows that T is well defined, is one-to-one,
and maps the set of left cosets onto the conjugacy class of a. Thus, the number
of conjugates of a is the index of the centralizer of a.

�

We previously stated that the P2(G) is defined to be the probability that two
elements chosen randomly with replacement from the finite group G commute.
That is, the total number of commutative elements divided by the total possible
number of element pairs, or the sum of the order of the centralizer of each
element of G divided by the order of G squared.

As a consequence of Theorem 1.3, if a and b are in the same conjugacy class,
then |C(a)| = |C(b)|. Thus, if cl(b) = {b1, b2, . . . , bk},

|C(b1)|+ |C(b2)|+ · · ·+ |C(bk)| = k|C(b)|
= |G : C(b)| |C(b)|
= |G|.

Now, the sum of the centralizers of all the elements of G can be separated into
sums of the centralizers of all the elements from each conjugacy class of G. That
is, ∑

a∈G

|C(a)| =
∑

x∈A1

|C(x)|+
∑

y∈A2

|C(y)|+ · · ·+
∑

z∈Am

|C(z)|.

where A1, A2, . . . , Am are the conjugacy classes of G.
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Thus, if we choose one element from each conjugacy class, say a1, a2, . . . , am,
we have that

∑
a∈G

|C(a)| =
m∑

i=1

|G : C(ai)| |C(ai)| =
m∑

i=1

|G| = m|G|.

In general, if m is the number of conjugacy classes in G, and |G| = n, then

P2(G) =
m · n
n2

=
m

n
.

Maximizing commutativity

Now that we have seen examples of different values of commutativity for non-
Abelian groups, we would like to determine what the maximum value of non-
Abelian commutativity is, given that we know it must be strictly less than 1.

In order to aid our investigation, we make note of the following three theorems,
as stated in [1].

Theorem 1.4. Z(G) is a group.
The center of a group G is a subgroup of G.

Theorem 1.5. C(a) is a group.
For each a in a group G the centralizer of a is a subgroup of G.

In order to determine the maximum non-Abelian commutativity, we begin by
determining the maximum order of the center of a non-Abelian group. A brief
analysis, given the theorems above, leads to the following theorem.

Theorem 1.6. Maximum size of the center of non-Abelian groups.
If G is a finite non-Abelian group, then the maximum possible order of the center
of G is |G|/4.

Proof. Let b ∈ Z(G). Since G is non-Abelian, Z(G) 6= G. Thus, there exists
a ∈ G such that a /∈ Z(G). Note that this implies that C(a) 6= G. By definition,
every element in G commutes with b, so ab = ba. It follows that b ∈ C(a). Since
a ∈ C(a), we find that Z(G) ⊂ C(a). In fact, since a group that is a subset of
a subgroup under the same operation is itself a subgroup of the subgroup, we
find that Z(G) is a proper subgroup of C(a). By Lagrange’s Theorem, it follows
that |Z(G)| ≤ |C(a)|/2.
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Now, since we assumed C(a) 6= G, C(a) ⊂ G, so by Lagrange’s Theorem and the
fact that the centralizer of any group element must be a subgroup of the group,
we find that |C(a)| ≤ |G|/2. Hence, we conclude that |Z(G)| ≤ |C(a)|/2 ≤
|G|/4. This completes the proof.

�

Now we proceed to determine the maximum value of P2(G) where G is non-
Abelian. Recall that the value of the denominator of P2 is always taken to be
|G|2. Thus, it is the value of the numerator, c, that must be maximized in order
to maximize the value of the fraction c/|G|2.

We can represent c as the sum of the sizes of each centralizer of the group. That
is, ∑

a∈G

|C(a)|.

We will suppose that the center ofG takes on the maximum order of |G|/4, so the
number of centralizers that are equal to G is equal to |G|/4. We claim that the
centralizers of the remaining three-fourths of the group elements each have order
equal to |G|/2. To see this, notice that by assumption (G : Z(G)) = 4. Suppose
that a ∈ G is not an element of the center of G. By Lagrange’s Theorem,
(G : Z(G)) = (G : C(a))(C(a) : Z(G)). Since a /∈ Z(G) and a ∈ C(a), we find
that C(a) 6= G and C(a) 6= Z(G), so (C(a) : Z(G)) = 2. Thus, (G : C(a)) = 2,
which implies that |C(a)| = |G|/2.

It follows that the maximum possible number of commutative pairs in a non-
Abelian group is

c =
(
|G|
4

)
(|G|) +

(
3|G|

4

)(
1
2
|G|
)
,

=
|G|2

4
+

3|G|2

8
,

=
5|G|2

8
.

Hence, the maximum size of the measure P2(G) is

P2(G) =
5|G|2/8
|G|2

,

=
5
8
.

We have thus proven the following theorem.
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Theorem 1.7. Maximum commutativity of non-Abelian groups
If G is a finite non-Abelian group, then the maximum possible value of the
commutativity measure P2(G) is 5/8. Furthermore, this maximum value of P2

occurs if and only if |Z(G)| = |G|/4.

As an example of a group that exhibits this maximum commutativity, consider
the dihedral group D4. Recall that Z(D4) = {R0, R180}, so

|Z(D4)| = 2 = 8/4 = |D4|/4.

Thus, by Theorem 2.5, we expect that P2(D4) = 5/8, and indeed we found
previously that this is the case, as P2(D4) = c/|D4|2 = 40/82 = 5/8.

Commutative properties of D4

We showed earlier that among the four dihedral groups, D4 is the only one that
exhibits 5/8 commutativity. It turns out that we can easily prove that D4 is
the smallest (although not the unique smallest) group with 5/8 commutativity.
In other words, there are no 5/8 commutativity groups of order less than 8.

To see this, we begin by listing the groups with order less than or equal to 8
(the reader may consult [2] for a more detailed discussion of small groups).

Order Group(s)
1 C1 (trivial group)
2 C2

3 C3

4 C4, C2 × C2

5 C5

6 C6, D3

7 C7

8 C8, C4 × C2, C2 × C2 × C2, D4, Q8

Table 2: Groups of small order

The notation in Table 2 is easily explained. The groups Cn which appears for
each order 1, 2, . . . , 8 are the cyclic groups of order 1 through 8 respectively.
Here we refer the reader to [1] and [3] for more detail on cyclic groups, and we
will suffice it to say that a property of cyclic groups is that they are Abelian.
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This simple observation rules out the majority of the groups with order less
than or equal to 8 as possible 5/8 commutativity groups.

Now, the Fundamental Theorem of Finite Abelian groups states that every finite
Abelian group is a direct product of cyclic groups of prime-power order. This
allows us to conclude that the direct product groups,6 C2 × C2, C4 × C2, and
C2 × C2 × C2, are also Abelian.

The only remaining groups to consider are D3, D4, and Q8. We know that
D3 has commutativity 1/2 < 5/8, so we have shown that there is no 5/8 com-
mutative group of order less than 5/8. Now we must determine if Q8 is 5/8
commutative, since if it is not, D4 must be the unique smallest non-Abelian
group with maximum commutativity.

ByQ8, we mean the group of quaternions.7 That is, Q8 = {1,−1, i,−i, j,−j, k,−k}.
By examining Table 3 we find that Z(Q8) = {1,−1}. Since |Z(Q8)| = 2 =
|Q8|/4, we conclude that the group of quaternions is, in fact, 5/8 commutative.

Q8 −1 −i −j −k 1 i j k
−1 1 i j k −1 −i −j −k
−i i −1 k −j −i 1 −k j
−j j −k −1 i −j k 1 −i
−k k j −i −1 −k −j i 1
1 −1 −i −j −k 1 i j k
i −i 1 −k j i −1 k −j
j −j k 1 −i j −k −1 i
k −k −j i 1 k j −i −1

Table 3: Cayley table for the group of quaternions

Thus D4 has the non-unique property (because it is shared with Q8) of being
the smallest non-Abelian group to exhibit maximum commutativity of 5/8.

5/8 commutative groups of order 8n, n ∈ Z+

We would like to be able to find examples of groups other than just D4 that
exhibit the maximum commutativity measure of 5/8. Among well-known finite
non-Abelian groups, however, there appear to be no other obvious examples.

6See the following subsection and section 2 of this article, or consult [1], for more detail on
direct products.

7See [5]. The reader may verify that D4 is not isomorphic to Q8.
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After all, for P2 to be 5/8, the size of the center of the group must be 1/4 the
size of the group. This can easily be seen not to occur in dihedral groups other
than D4, and which certainly never occurs for any symmetric or alternating
groups.8

Instead, we may perform group composition by way of the external direct prod-
uct in order to obtain a non-Abelian group with 5/8 commutativity.

Definition 1.3: External Direct Product
Let G1, G2, . . . , Gn be a finite collection of groups. The external direct product of
G1, G2, . . . , Gn, written as G1⊕G2⊕· · ·⊕Gn, is the set of all n-tuples for which
the ith component is an element of Gi and the operation is component-wise.

Suppose that G = {a1, a2, . . . , an} is a finite Abelian group, where |G| = n. We
will show that D4 ⊕ G is a non-Abelian group with P2 = 5/8. An arbitrary
element from D4 ⊕ G will be of the form (di, ax), where di ∈ D4 and ax ∈ G.
Suppose that (di, ax), (dj , ay) ∈ D4 ⊕G. Then

(di, ax) · (dj , ay) = (didj , axay).

Now, when didj = djdi, which happens 5/8 of the time for elements of D4, we
have

(di, ax) · (dj , ay) = (djdi, ayax) = (dj , ay) · (di, ax),

since G is Abelian so axay always equals ayax. The other 3/8 of the time, when
didj 6= djdi, we have

(di, ax) · (dj , ay) 6= (dj , ay) · (di, ax).

Thus, we find that D4⊕G is a group of order 8n which exhibits the 5/8 measure
of commutativity. Since the order, n, of G was arbitrary, we can thus find
arbitrarily large groups of order 8n that exhibit 5/8 commutativity.

No 5/8 commutative groups of order 4 mod 8

It should be clear that there are no 5/8 commutative groups of order k mod 8
for k = 1, 2, 3, 5, 6, 7, since for the order of the center to equal one-fourth the
order of the group, the order of the group must be a multiple of four.

8We do not discuss symmetric or alternating groups in this article, but information can be
found on them in [1].
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It is tempting, however, to suppose that we can find a 5/8 commutative group
of order 4 mod 8, just as we found one (infinitely many, in fact) of order 0
mod 8. What follows is a justification for why this cannot be the case.

As the proof of the following theorem relies on the Class Equation, it will be
stated here as in [1].

Theorem 1.8. The Class Equation
For any finite group G, |G| =

∑
|G : C(a)|, where the sum runs over one

element a from each conjugacy class of G.

Given the Class Equation, we are now prepared to state and prove the following
theorem.

Theorem 1.9. Groups of order 4 mod 8
There are no 5/8 commutative groups of order 4 mod 8.

Proof. Suppose G has order 4 mod 8 and G is 5/8 commutative. By the Class
Equation, |G| =

∑
|G : C(a)|, where the sum runs over one element a from

each conjugacy class of G. Since 5/8 commutativity requires |Z(G)| = |G|/4,
|G| = |Z(G)|+

∑
|G : (C(a))| where now the sum runs over one element a from

each conjugacy class outside of the center.

Since the centralizer of each element of G is a subgroup of G, it’s order must
divide |G|. The centralizer of an element a ∈ G that satisfies a /∈ Z(G) can
be at most |G|/2. To see that |C(a)| = |G|/2, notice that a commutes with
itself as well as with each of the |G|/4 elements of center of Z(G). That is,
|C(a)| = |G|/4 + 1 > |G|/4. By assumption, |G| is even, so 3 does not divide
|G|. Therefore, |C(a)| = |G|/2. Since a was an arbitrary element of G that was
not in the center of G, it follows that the centralizer of each element outside of
the center must have order |G|/2, implying that |G : C(a)| = |G|/(|G|/2) = 2.

Thus,
∑
|G : C(a)| is even, but since |G| ≡ 4 (mod 8), |Z(G)| = |G|/4 is odd.

Since the sum of an even number,
∑
|G : C(a)|, and an odd number, |Z(G)|,

can never equal an even number, |G|, we have arrived at a contradiction.
�

2 External direct products:

We saw, when developing a 5/8 commutative group of order 8n, that by taking
the external direct product of a 5/8 commutative group and an Abelian group
(with commutativity 1), that the commutativity of the resulting group was
5/8 · 1 = 5/8. We will now generalize this idea to determine the commutativity
of the external direct product of any number of groups of any commutativity.

17



Let A = {a1, a2, . . . , an} be a finite group of order n and let B = {b1, b2, . . . , bm}
be a finite group of order m. Let x represent the commutativity of A, where
0 < x ≤ 1 and let y represent the commutativity of B, where 0 < y ≤ 1.

An arbitrary element from A⊕B will be of the form (ai, bs), where ai ∈ A and
bs ∈ B. Suppose that (ai, bs), (aj , bt) ∈ A⊕B. Then

(ai, bs) · (aj , bt) = (aiaj , bsbt).

Now, when aiaj = ajai, which happens x of the time for elements of A, we have

(ai, bs) · (aj , bt) = (ajai, bsbt),

and when bsbt = btbs, which happens y of the time for elements of B, we have

(ai, bs) · (aj , bt) = (aiaj , btbs).

This means that x · y of the time, for elements of A⊕B, we have

(ai, bs) · (aj , bt) = (ajai, btbs) = (aj , bt) · (ai, bs).

That is, x·y is the probability that any two elements of A⊕B commute, so we can
conclude that the commutativity of A⊕B is the product of the commutativity
of A and of B.

This result can be trivially generalized to apply to external direct products of
any finite number of finite groups, allowing us to explicitly find groups of very
large order with very small commutativity.

A lower bound for P2

An obvious conclusion to draw from the result above is that 0 is a lower bound
for P2(G) where G is a non-Abelian group.

Clearly, an element will always commute with itself, and the identity will always
commute with every element, so P2(G) can never equal 0, but as we will see, it
is possible to find groups whose commutativity is arbitrarily close to 0.

An easy way to find groups of such arbitrarily small commutativity is to consider
the group formed from the external direct product of a small group with itself
a certain number of times.
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Suppose, for example, we wish to find a group with P2(G) < .00001. We may
simply consider the group formed by taking the external direct product of D3

with itself several times. Specifically, if we consider

G = D3 ⊕D3 ⊕ · · · ⊕D3︸ ︷︷ ︸
17 times

we will have a group with commutativity P2(G) = 1/217 ≈ .000008 < .00001 as
desired.

Also, note that if we consider the external direct product of D5 with itself,
we will be able to obtain a similarly small commutativity with fewer direct
products, since P2(D5) = 40/100 = 2/5. That is,

G = D5 ⊕D5 ⊕ · · · ⊕D5︸ ︷︷ ︸
8 times

yields a group with commutativity P2(G) = (2/5)8 ≈ .000005 < .00001. Hence,
0 is a lower bound for P2(G), and is in fact the greatest lower bound, as we can
find examples of groups, G, such that P2(G) is arbitrarily close to 0.

3 The reduced fraction P2

With such a simple way to determine the commutativity of groups we can create
through the method of external direct products, we now would like to deter-
mine what numbers can appear in the denominator of the reduced fractional
expression for P2(G).

We have seen that P2(D3) = 1/2, so clearly we can generate any power of 2 in the
denominator by taking the external direct product of D3 with itself the correct
number of times. Similarly, P2(D6) = 2/5, so we can generate any power of 5 in
the denominator by a similar process. Further, combining these two groups in
various direct products allows us to create groups with any product of a 2-power
and a 5-power in the denominator of the measure of commutativity.

The next fact to determine is whether or not it is possible to find a group, G,
such that the denominator of P2(G) is a 3 in reduced fractional form. If this is
indeed possible, then in turn it is possible that there exist groups such the the
denominator of the expression for commutativity is any prime, whereas if it is
not possible to obtain a 3 in the denominator, then clearly not every prime can
appear in the denominator of the expression.
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Since dihedral groups often provide nice examples of commutativity properties,
we will begin this search for a 3 in the denominator of the commutativity mea-
sure of a group by extrapolating the commutativity values from the first four
dihedral group so that they apply to arbitrarily large dihedral groups.

First, consider the dihedral groups, Dn, where n is even. That is, where n = 2k
for k ∈ Z+. Recall that we previously determined the sizes of the centralizers
of every element in each of the first four dihedral groups. For D4 and D6, we
have that

D4 contains:

2 centralizers of size 8 (all of D4)

2 centralizers of size 4 (just rotations)

4 centralizers of size 4 (a combination of Z(D4) and two flips)

D6 contains:

2 centralizers of size 12 (all of D6)

4 centralizers of size 6 (just rotations)

6 centralizers of size 4 (a combination of Z(D6) and two flips)

We previously determined that by the regular nature of the polygons whose
flips and rotations comprise the dihedral groups, Z(D4) = Z(D6) = Z(D2k) =
{R0, R180} for k ∈ Z+. Thus, for any even-sided polygon dihedral group D2k,
we will have two centralizers of size 4k.

The remaining 2k − 2 rotation elements in the group each commute only with
all of the other rotation elements, since none of the flip elements commute with
rotation elements other than R0 and R180. Thus, there will be 2k−2 centralizers
of size 2k. Finally, of the remaining 2k elements, all of which correspond to flip
symmetries, each commutes only with itself, the two elements of the center, and
the directly perpendicular flip element.

In summary, we have that

D2k contains:

2 centralizers of size 4k (all of D2k)

2k − 2 centralizers of size 2k (just rotations)

2k centralizers of size 4 (a combination of Z(D2k) and two flips)
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Similarly, we will now determine a list of the sizes of the centralizers of a group
Dn where n = 2k+1 such that n is odd. First, listing the sizes of the centralizers
of D3 and D5, we have that

D3 contains:

1 centralizer of size 6 (all of D3)

2 centralizers of size 3 (just rotations)

3 centralizers of size 2 (Z(D3) and one flip)

D5 contains:

1 centralizer of size 10 (all of D5)

4 centralizers of size 5 (just rotations)

5 centralizers of size 2 (Z(D5) and one flip)

As with the even-sided polygon dihedral groups, the odd-sided polygon dihedral
groups are comprised of the flips and symmetries of regular polygons. Thus,
all the odd-sided polygon groups follow a structured pattern in terms of the
distribution of the orders of the centralizers of the elements. Specifically, since
Z(D3) = Z(D5) = Z(D2k+1) = {R0} for all k ∈ Z+, the group Z(D2k+1)
contains just one centralizer of size 4k + 2.

Further, each rotation element outside of the center commutes only with every
other rotation element, so there are 2k centralizers of size 2k+1. The remaining
2k + 1 elements are all flip elements, each of which commutes only with itself
and the identity.

Thus, we have that

D2k+1 contains:

1 centralizer of size 4k + 2 (all of D2k+1)

2k centralizers of size 2k + 1 (just rotations)

2k + 1 centralizers of size 2 (Z(D2k+1) and one flip)

It follows that in order to determine the commutativity of any dihedral group,
we may simply add up the appropriate numbers of elements (depending on the
order of the group and whether it is even or odd) and divide this number by
the the square of the total number of elements in the group.
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Summarized below are the P2-measures of commutativity for the first 9 odd and
first 9 even dihedral groups,

G P2(G) (n odd) G P2(G) (n even)
D3 18/62 = 1/2 D4 40/82 = 5/8
D5 40/102 = 2/5 D6 72/122 = 1/2
D7 70/142 = 5/14 D8 112/162 = 7/16
D9 108/182 = 1/3 D10 160/202 = 2/5
D11 154/222 = 7/22 D12 216/242 = 3/8
D13 208/262 = 4/13 D14 280/282 = 5/14
D15 270/302 = 3/10 D16 352/322 = 11/32
D17 340/342 = 5/17 D18 432/362 = 1/3
D19 418/382 = 11/30 D20 520/402 = 13/40

Table 4: The first 18 dihedral groups

A formula for P2(D2k) and for P2(D2k+1)

Now that we know the sizes of all the centralizers in a given dihedral group,
and we know that the size of the denominator, c, of the P2 = d/c measure of
commutativity, is simply the order of the group squared, we can derive explicit
formulas for the measure of commutativity. This will allow us to easily determine
if a given prime can appear in the denominator of the reduced expression for
the P2-measure of commutativity.

First, consider the dihedral groups D2k. We know the sizes of the centralizers of
these groups, so summing these values gives us the numerator of the unreduced
P2 fraction.

The denominator is clearly (4k)2, so we have

P2(D2k) =
(2)(4k) + (2k − 2)(2k) + (2k)(4)

(4k)2

=
8k + 4k2 − 4k + 8k

16k2

=
4k2 + 12k

16k2

=
k + 3

4k
.
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Similarly, if we consider the dihedral groups D2k+1, since the denominator is
clearly (4k + 2)2, we have that

P2(D2k+1) =
(4k + 2) + (2k)(2k + 1) + (2k + 1)(2)

(4k + 2)2

=
4k + 2 + 4k2 + 2k + 4k + 2

4(2k + 1)2

=
4k2 + 10k + 4

4(2k + 1)2

=
2(k + 2)(2k + 1)

4(2k + 1)2
=

k + 2
2(2k + 1)

=
k + 2
4k + 2

.

From the above formulas we obtain the following theorem.

Theorem 3.1.
For each positive integer k, P2 (D2k+1) = P2

(
D2(2k+1)

)
.

Proof. Let k ∈ Z+. We know that

P2(D2(2k+1)) =
(2k + 1) + 3

4(2k + 1)
,

and

P2(D2k+1) =
k + 2
4k + 2

.

Thus, we find that

P2(D2(2k+1))− P2(D2k+1) =
(2k + 1) + 3

4(2k + 1)
− k + 2

4k + 2

=
2k + 4

4(2k + 1)
− 2(k + 2)

2(4k + 2)

=
2k + 4− 2k − 4

4(4k + 2)
= 0.

Hence, P2(D2k+1) = P2(D2(2k+1)).
�
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Thus it is convenient and appropriate to simply consider the even-polygon di-
hedral groups, D2k, as their formula for commutativity is simpler than that of
the odd-polygon groups.

It may be observed that the preceding theorem is also a consequence of the
following.

Theorem 3.2.
For each positive integer k, D2(2k+1) is isomorphic to 〈R180〉 ⊕ D2k+1, where
〈R180〉 = {R0, R180} = Z

(
D2(2k+1)

)
.

Proof. Let k ∈ Z+. We will first show that the mapping φ : 〈R180〉 ⊕D2k+1 →
D2(2k+1) defined by φ((x, y)) = x · y is a homomorphism.

Let (x1, y1) and (x2, y2) be elements of 〈R180〉 ⊕D2k+1. Notice that x1 and x2

are 〈R180〉, the center of D2(2k+1), so

φ ((x1, y1) · (x2, y2)) = φ ((x1x2, y1y2))
= x1x2 · y1y2
= x1y1 · x2y2

= φ ((x1, y1)) · φ ((x2, y2)) .

Hence, φ is a homomorphism. By a result proven in [1], if we can show that the
kernel of the homomorphism, Kerφ (the subset of elements of the group that
are mapped to the identity element of the codomain), is the identity element
〈R180〉 ⊕D2k+1, then φ must be one-to-one.

Let (x, y) ∈ Kerφ. Then φ ((x, y)) = x · y = R0. Since x ∈ Z(D2(2k+1)),

xxy = x ⇒ y = x.

It follows that either y = R0 or y = R180. As the group D2k+1 is an odd-polygon
dihedral group, however, it does not contain the rotation element R180. Thus,
x = y = R0, so that Kerφ is indeed comprised only of the identity element of
〈R180〉 ⊕D2k+1.

Hence, φ is a one-to-one homomorphism, and since D2(2k+1) and 〈R180〉⊕D2k+1

both have the same finite order for any positive integer k, it follows that φ is
also onto. Hence, D2(2k+1) is isomorphic to 〈R180〉 ⊕D2k+1.

�
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Figure 2 shows how the related symmetries of D2k+1 and D2(2k+1) can be helpful
in visualizing the result of the preceding theorem.

Figure 2: Related symmetry of even- and odd-sided polygons.

Valid values for the fraction P2

Now that we can express P2(Dn), where n = 2k or n = 2k + 1, in terms of k,
we can directly test whether a given fraction can appear as the commutativity
of a dihedral group. Before beginning to search for fractions that do not appear
in Table 4, let us demonstrate the process with some known examples.

Suppose we wish to determine which dihedral groups have commutativity 1/3.
First, testing the odd-polygon dihedral groups, we will solve the following equa-
tion for k,

1
3

=
k + 2
4k + 2

⇒ 4k + 2 = 3k + 6,

⇒ k = 4.

As we know from Table 4, the group D2(4)+1 = D9 does indeed have com-
mutativity 1/3. Now, testing the even-polygon dihedral groups, we solve the
following equation for k,

1
3

=
k + 3

4k
⇒ 4k = 3k + 9,

⇒ k = 9.

As before, the table confirms that D2(9) = D18 does indeed have commutativity
1/3.
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Now, recall that among the first 18 dihedral groups we were unable to find an
example of a group with a 7 in the denominator of the reduced expression for
P2. We will now use the known equations for the commutativity of dihedral
groups to test for the existence of a group with P2 = 1/7. First, examining the
odd-polygon dihedral groups, we solve,

1
7

=
k + 2
4k + 2

⇒ 4k + 2 = 7k + 14,

⇒ 3k = −12,
⇒ k = −4.

Since obviously we only concern ourselves with positive integer values of k, this
shows that there is no odd-polygon dihedral group with commutativity 1/7.
Similarly, solving for k in the case of the even-polygon dihedral groups, we
obtain k = −7, so there can be no dihedral group with commutativity 1/7.

We are interested in the denominator containing 7, however, with the only
restriction on the numerator begin that it is relatively prime to 7 so that the
fraction cannot be further reduced. Thus, solving the equation

2
7

=
k + 2
4k + 2

⇒ 8k + 4 = 7k + 14,

⇒ k = 10,

tells us that the group D2(10)+1 = D21 has commutativity 2/7. Similarly, in the
case of even-polygon dihedral groups, we find that

2
7

=
k + 3

4k
⇒ 8k = 7k + 21,

⇒ k = 21,

which shows that D2(21) = D42 also has commutativity 2/7.

We have now found denominators of size 2, 3, 5, 7, 13, 17, so to complete the list
of the first seven primes it would be nice to find at least one dihedral group with
a P2 measure containing 11 in the denominator.

As in the case of finding a 7 in the denominator of P2, the equations show that
it is not possible to find a dihedral group with commutativity 1/11.
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The same is true for 2/11, but for 3/11 we find that

3
11

=
k + 2
4k + 2

⇒ 12k + 6 = 11k + 22,

⇒ k = 18,

and

3
11

=
k + 3

4k
⇒ 12k = 11k + 33,

⇒ k = 33,

which shows that D2(18)+1 = D37 and D2(33) = D66 both have commutativity
3/11.

Having found examples of dihedral groups exhibiting the first seven primes
as the denominator of their reduced fractional measure of commutativity it is
tempting to suppose that, in fact, any prime can appear as the denominator of
the P2 measure of some dihedral group.

Every prime as the denominator of P2

Note that every odd prime is either of the form 4n+1 or 4n+3 for some integer
n (otherwise it would clearly be an even number). We now state, with proof,
the fact that the previous pages of hypotheses were leading up to.

Theorem 3.2. Every prime as the denominator of P2

Every prime can appear as the denominator of the reduced fractional expression
for P2(G) where G is some dihedral group.

Proof. Note that D6 exhibits commutativity 1/2, so the result is seen to be
true in the case of the only even prime. Now, suppose that we wish to find a
dihedral group that exhibits a prime of the form 4n + 3 in the denominator of
P2. Recall that our simplified expression for the commutativity of even-polygon
dihedral group, D2k, is

k + 3
4k

.

Then, we set the above expression equal to (n+1)/(4n+3), where, since n+1 <
4n + 3 and 4n + 3 is prime, gcd(n + 1, 4n + 3) = 1, so the expression for P2 is
indeed fully reduced and has the desired prime value as its denominator.
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Thus, we have that

n+ 1
4n+ 3

=
k + 3

4k
.

Then, cross-multiplying and simplifying, we find that

4k(n+ 1) = k(4n+ 3) + 3(4n+ 3),
4k(n+ 1)− 4k(n)− 3k = 12n+ 9,

4k − 3k = 12n+ 9,
k = 12n+ 9.

Hence, the dihedral group D2(12n+9) = D24n+18 exhibits commutativity (n +
1)/4n + 3). This means that we can find examples of dihedral groups with a
measure of commutativity that exhibits any prime of the form 4n + 3 as its
denominator.

We now consider primes of the form 4n + 1. Given the same expression for
the commutativity of an even-polygon dihedral group, D2k, we set it equal to
(n+ 1)/(4n+ 1) (where, as before, n+ 1 and 4n+ 1 are clearly relatively prime
when 4n+ 1 is prime, so the fraction is fully reduced and its denominator is as
desired). Thus,

n+ 1
4n+ 1

=
k + 3

4k
.

As before, we simplify to obtain

4k(n+ 1) = k(4n+ 1) + 3(4n+ 1),
4k(n+ 1)− 4k(n)− k = 12n+ 3,

4k − k = 12n+ 3,
3k = 12n+ 3,
k = 4n+ 1.

Hence, the dihedral group D2(4n+1) = D8n+2 exhibits commutativity (n +
1)/(4n + 1). Again, this means that we can find examples of dihedral groups
with a measure of commutativity that exhibits any prime of the form 4n+ 1 as
its denominator. We conclude that every prime can appear as the denominator
of P2(G) for some dihedral group G.

�
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Commutativity of the form 1/n

Having shown that for every prime p, there exists a dihedral group such that the
p is equal to the denominator of P2(G), it is easy to show that we can construct
groups with commutativity 1/p.

Theorem 3.3. Commutativity of the form 1/p.
For every prime, p, there exists a group G such that P2(G) = 1/p.

Proof. This will be a proof by induction. Since D3 exhibits commutativity 1/2
and D9 exhibits commutativity 1/3, the result holds for the base cases. Now,
suppose that for every prime q, where 2 ≤ q ≤ p − 1, there exists a group, G,
such that P2(G) = 1/q.

Then, for the prime p, by the previous theorem we know there exists a group H
such that P2(H) = (n+ 1)/p, where p = 4n+ 1 or p = 4n+ 3. Since n+ 1 < p,
by the Fundamental Theorem of Arithmetic n+ 1 can be uniquely expressed as
the product of prime-powers where each prime in the decomposition must be
less than p.

Hence, if we let n+ 1 = qm1
1 qm2

2 · · · qmk

k , where clearly qi < p for each 1 ≤ i ≤ k,
then

1
p

=
n+ 1
p
· 1
qm1
1

1
qm2
2

· · · 1
qmk

k

.

By the induction hypothesis, there exist groups with commutativity 1/qi for
1 ≤ i ≤ k. Then, by the method of external direct products, we can create
groups with commutativity 1/qm1

1 , 1/qm2
2 , . . . , 1/qmk

k (by taking the external di-
rect product of a group with commutativity 1/qi with itself mi times for each
1 ≤ i ≤ k). Hence, by the Principle of Strong Mathematical Induction, for every
prime, p, we can find or construct a group, G, such that P2(G) = 1/p.

�

If we can construct 1/p commutative groups for any prime p, the Fundamental
Theorem of Arithmetic (FTA) gives us the following corollary.

Corollary 3.4.
For every integer, n, there exists a group G such that P2(G) = 1/n.

The validity of this corollary should be immediately obvious. By the FTA, each
integer has a unique prime-power decomposition. Since we can find groups with
commutativity 1/p for every prime, p, and since the external direct product
of a 1/p-commutative group with itself m-times results in a 1/pm-commutative
group, we can construct a group with commutativity 1/n for each n ∈ Z+.
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The following table provides examples of the corollary for the first several inte-
gers.

Group Commutativity
A, where A is Abelian 1 = 1/1

D3 1/2
D9 1/3

D3 ⊕D3 (1/2)2 = 1/4
D3 ⊕D5 (1/2)(2/5) = 1/5
D3 ⊕D9 (1/2)(1/3) = 1/6
D3 ⊕D21 (1/2)(2/7) = 1/7

D3 ⊕D3 ⊕D3 (1/2)3 = 1/8
D9 ⊕D9 (1/3)2 = 1/9

Table 5: Groups with commutativity 1/n

Every positive integer as the numerator of P2

Although hardly as relevant as the fact that every integer can appear as the
denominator of P2(G) for some group, it is possible to show that every integer
can also appear as the numerator of P2(G). Of course, this does not mean that
every numerator/denominator-pair is a possible commutativity fraction for non-
Abelian groups, since the maximum commutativity value of 5/8 ensures that
non-Abelian commutativity cannot equal fractions greater than 5/8.

Theorem 3.5. Every integer as the numerator of P2.
For every positive integer, n, there exists a single dihedral group G such that n
is the numerator of the reduced expression for P2(G).

Proof. We have seen examples of groups that exhibit 1 as the numerator of their
reduced expression for commutativity. Let m = n + 1 for n ≥ 1 be a positive
integer. Then, set (n + 1)/(4n + 3) equal to the measure of commutativity for
the even-polygon dihedral group D2k, and solve for k. That is,

n+ 1
4n+ 3

=
k + 3

4k
,

4k(n+ 1) = 4kn+ 12n+ 3k + 9,
4k(n+ 1)− 4k(n)− 3k = 12n+ 9,

4k − 3k = 12n+ 9,
k = 12n+ 9.
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Thus, the dihedral group D2(12n+9) = D24n+18 exhibits commutativity with the
integer m in the numerator.

To ensure that the P2 fraction is, in fact, in reduced form, we use the Euclidean
Algorithm to verify that the greatest common divisor of 4n+3 and n+1 is one.

4n+ 3 = 3(n+ 1) + n,

n+ 1 = 1(n) + 1.

We see that the numerator and denominator of this fraction are indeed rela-
tively prime. Hence, every positive integer can appear as the numerator of the
reduced fractional expression for the commutativity of some dihedral group.
This completes the proof.

�

4 Commutativity of factor groups:

The last property of the commutativity of non-Abelian groups that we will
consider relates the commutativity of a group with the commutativity of any
one of its factor groups.

Definition 4.1: Normal subgroup.
A subgroup H of a group G is called a normal subgroup of G if aH = Ha for
all a in G. We denote this N CG.

Definition 4.2: Factor group.
Let G be a group and H a normal subgroup of G. The set G/H = {aH | a ∈ G}
is a group under the operation (aH)(bH) = abH. This group is often referred
to as the factor group of G by H.

The reader may recognize the factor group of G by H as the set of cosets of H
in G. Recall that cosets were previously defined in the context of Theorem 1.1.

The property of commutativity that we will prove, given these definitions, is
that P2(G) ≤ P2(G/N), where G is a non-Abelian group and N C G. This
entails showing that

|N |2dG/N ≥ dG,

where dG/N and dG are the actual number of pairs of commuting elements in
G/N and G respectively. We wish to show that there are at most |N |2 pairs of
commutative elements in G for each pair of commutative cosets in G/N .
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Proving the Inequality

Let a, b ∈ G, where G is any group, and let N be a normal subgroup of G.
Then aN = {ai : ai = ani, ni ∈ N, 1 ≤ i ≤ |N |} and bN = {bi : bi =
bni, ni ∈ N, 1 ≤ i ≤ |N |} are two elements of G/N . Since aNbN = abN and
bNaN = baN , aN and bN commute if a and b commute.

Now, since ai, 1 ≤ i ≤ |N |, is one of the |N | elements of aN and bj , 1 ≤ j ≤ |N |,
is one of the |N | elements of bN , and both ai and bj are elements of G for
1 ≤ i, j ≤ |N |, the total number of pairs of elements of G that may commute
for each pair of commutative cosets is |N |2.

That is, |N |2 is the maximum possible number of commutative pairs of elements
of G for each pair of commutative cosets in G/N . Thus, |N |2dG/N ≥ dG.

Examples of the Inequality

We have shown that the commutativity of any factor group of a non-Abelian
group can be no greater than the commutativity of the group itself. Before
demonstrating that the equality of these two quantities is, in fact, possible, we
here provide two general examples of the types of groups that are strictly less
commutative than at least one of their factor groups.

First, let G be a non-Abelian group with maximum commutativity 5/8. Let H
denote the center of G. Since P2(G) = 5/8, the order of the center must be
|G|/4, and since the center of G is normal in the G, we conclude that G/H is
a factor group of G of order |G|/(|G|/4) = 4. Since all groups of order 4 are
Abelian, the group G/H is Abelian. Thus,

P2(G) = 5/8 < 1 = P2(G/H).

As a second example, let D be any dihedral group and let k denote the com-
mutativity of D. Recall that since all dihedral groups are non-Abelian, k < 1.
Now let R denote the subgroup of D consisting of all the rotation symmetries
of D. Since R contains precisely half the elements of D, |R| = |D|/2. Thus, the
subgroup R has index 2 in the group D, so by a result stated in [1] we conclude
that R is normal in D. Since all groups of order 2 are Abelian, the factor group
D/R is Abelian. Hence,

P2(D) = k < 1 = P2(D/R).
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Example of the Equality

In order to prove that the equality P2(G) = P2(G/N) is possible, for some non-
Abelian group G and some N C G, it is sufficient to provide a single example
where this is the case. First, though, we describe the specific circumstances that
are necessary in order for this equality to occur.

We previously saw that if two elements, a and b, of a group G commute, then
the cosets aN and bN of G/N must also commute. If, in addition, for every pair
of commutative cosets aN and bN of the factor group of G by N the elements
a, b ∈ G commute, then we will have established the equality |N |2dG/N = dG.
That is, if

ab = ba ⇐⇒ aNbN = bNaN,

then for each pair of commutative cosets in G/N we will have exactly |N |2
pairs of commutative elements in G. This, then, leads to the desired equality
P2(G) = P2(G/N).

We will now demonstrate an example of this biconditional implication giving
rise to a group and a factor group that share the same commutativity.

Let A = D3, and let B be an Abelian group of order 3. Let G = A⊕B, and let
N = {(eA, x) | x ∈ B} = {eA} ⊕ B. We know that P2(G) = 1/2 = P2(A), and
N is a normal subgroup of G that is isomorphic to A. Thus,

P2(G) = P2(A) = P2(G/N).

Notice that this example was constructed so that little emphasis was placed on
the actual values of P2 for each of the groups in consideration. The only matter
of importance was that the measure of commutativity for each was equal. Thus,
simply dropping the condition that A be a particular dihedral group, we can
construct the following generalization of the example.

Let A be a non-Abelian group and let B be an Abelian group. Then let G =
A ⊕ B and let N = {eA} ⊕ B. Since P2(G) = P2(A) · P2(B) = P2(A), and
N ≈ A is normal in G, P2(G) = P2(G/N).

5 Conclusion

The results alluded to, explained, and proven in this article have covered a broad
range of topics in the realm of the commutativity of groups. Beyond defining
one method for classifying group commutativity, we proceeded to show that
whereas the commutativity of an Abelian group is always 1, the commutativity
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of a non-Abelian group can assume a value ranging between arbitrarily close
to 0 and a maximum of 5/8. Furthermore, infinitely many groups of order 8n,
n ∈ Z+, can be generated with commutativity 5/8, whereas no groups of order
4 mod 8 are 5/8 commutativity.

In large part, the latter half of the article details the possible reduced fractions
that can appear as the P2-measure of commutativity of non-Abelian groups.
However, despite the result that for each integer n there exists a group G such
that P2(G) = 1/n, a larger question was left unanswered. That is, what spe-
cific range of values between 0 and 5/8 can appear as the reduced fractional
expression for the commutativity of a non-Abelian group?

The final section of the article describes a relationship between the commuta-
tivity of a group and any one of its factor groups. The results of this particular
investigation were was not explained in great detail, and the exploration of the
commutativity of groups and their factor groups is recommended to the inter-
ested reader as a possible area of further study.

As a final note, we assure the reader that, although the vast majority of the
groups used in the examples and theorems in this article are dihedral groups,
the study of the commutativity of non-Abelian groups is in no way limited to
symmetry groups of regular polygons.
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