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1 Abstract

This paper will discuss the constructability of regular n-gons. The constructions will follow
the rules of Euclidean Constructions. This question of which regular n-gons are constructible
stems from the same era of Ancient Greek questions like doubling the cube and squaring
the circle. The paper will examine both the Abstract Algebra theory and the physical
constructions. The theory will center on Gauss’ theorem of constructible regular n-gons and
a larger result of which Gauss’ theorem is a specific case of (although proven independently).
Our physical constructions will look at the regular pentagon, 17-gon, 15-gon and 51-gon as
specific examples to illuminate these possibilities.

2 Introduction

The theory and the application of constructible regular n-gons are seemingly very separate
from one another. Gauss’ Theorem states

Theorem 2.1. A regular n-gon is constructible if and only if n is of the form

n = 2ap1p2p3...pi

where a ≥ 0 and p1, p2, ..., pi are distinct Fermat Primes (primes of the form 22l + 1 such
that l ∈ Z+).

This does not give the reader any clue of how she might actually construct such an n-gon.
One purpose of this paper will be to explore both the theory and the physical construction
sides of the discussion, starting first with the physical Euclidean constructions, using only
a collapsing compass and straight edge, and then moving into proofs of Gauss’ Theorem
and a larger result. The latter can be used as a lemma in an alternative, much simpler,
proof of Gauss’ theorem. It will be interesting to note how the closest link between theory
and application comes when looking at why multiples of Fermat primes to the first power
and powers of two are constructible. There is a theoretical background that gives us the
constructability of certain building blocks, namely the regular n-gons such that n is a power
of 2 or a Fermat Primes to the first power and a seemingly unconnected physical background
that gives us these foundations as well. When pressed to go further and prove that the
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multiples of these Fermat Primes and powers of 2, all n of the form n = 2ap1p2...pk, are
actually possible is where these two areas collide and lead the reader to parallel proofs that
connect (to some extent) the theory and the application.

En route to constructingthese n-gons, one goal is to create the different interior angles of
the regular n-gons. Theoretically, they are marking the n evenly spaced points around the
complex unit circle. We can view these poiints as nth-roots of unity and are solutions to the
following equation,

xn − 1 = 0.

The solutions are powers of γn = e
2πı
n . This theoretical idea will be helpful in understand-

ing some of the physical constructions and vital to our theoretical discussion by giving us
something tangible for what these constructions mean theoretically.

We will first turn our attention towards understanding constructions as an action, dis-
cussing the constructions of regular n-gons when n is a single Fermat Prime, and proving
these constructions. Here we will take a break from constructions and shift our attention
to presenting the requisite algebraic background. After this, we will do a proof of Gauss’
Theorem with the simpler case of n being equal to a power of a prime. We will then prove
the Composition Lemma to extend this result to Gauss’ full theorem. Next, we will look
at how to construct more complex regular n-gons when n is composed of more than one
distinct Fermat Prime and a power of 2. We will use the Composition Lemma once again in
this instance. This is where the gap is bridged between theory and constructions. Finally
we will present a larger theorem and its proof, and briefly look at how this proof facilitates
the proof of Gauss’ Theorem.

3 Introduction to Constructions

Euclidean Constructions are those constructions that can be completed using only a straight
edge and a collapsing compass which closes when it is picked up. This collapsability causes
problems because it means we cannot simply move a distance with a compass. There are three
basic constructions that can be completed in Euclidean constructions. These constructions
are

1. The straight line by connecting two points,

2. A circle of a given radius centered at a given point or

3. Continuing a segment infinitely.

From these given constructions a number of other constructions can be created. A number
a is said to be geometrically constructible if it can be reached with a finitie number
of intersections of two circles, a line and a circle and/or two lines. Two of the simplest
and most important, bisecting an angle and drawing a perpendicular bisector to a segment,
are outlined below. Throughout this paper, constuctions were created in GeoGebra then
exported as .png files and saved as .jpgs in Paint.
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Angle Bisection:

1. Given an angle, ∠ABC, draw a circle of radius AB centered at B. Name this circle’s
intersection with AC, D.

2. Draw circles of radius AB centered at A and D. Name the intersection of these circles
within ∠ABC, E.

3. Connecting B and E creates an angle bisector of ∠ABC. This follows from Side-Side-
Side Congruence of ∆ABE and ∆DBE.

Figure 1: Angle Bisection
Step 1

Figure 2: Angle Bisection
Step 2

Figure 3: Angle Bisection
Step 3

Perpendicular Bisector:

1. Given a line segment, AB, draw two circles of radius AB, one centered at A and one
centered at B.

2. Call the intersections of these two circles C and C ′. Connecting these two points yields
a perpendicular bisector.
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Figure 4: Step 1 Figure 5: Step 2

This last construction is also coincidentally the construction for our simplest regular n-gon,
the equilateral triange, ∆ABC. It is clear that AB = BC = CA, since all are radii of
circles of equal radius. Thus all three sides are equal, and it follows that the angles are
of equal measure as well. Throughout this paper we will use these constructions, and the
ability to continue a line segment indefinitely in a straight line, to create the more complex
constructions that are pertinent to our discussion.

4 Construction and proof of the regular pentagon and

heptadecagon

Now we look to start laying out two of the foundational constructions in the scope of regular
n-gons. As we have already constructed the regular triangle(n = p1 = 3 = 220

+ 1), we turn
our attention to constructing the regular pentagon and the regular heptadecagon, n = p2 =
5 = 221

+ 1 and n = p3 = 17 = 222
+ 1 respectively. We will start with the regular pentagon

and then move on to the construction of the regular heptadecagon.
We will in turn to show that these two constructions are in fact valid and yield two exact

regular polygons, not merely two shapes that look regular. The easy way to show this is by
using basic geometry and proving that all the interior angles formed by the rays from the
center to adjacent verticies are in fact all congruent. This easy proof is left to the reader.

The more complex way, but yet more enlightening way is done by looking at what each
individual step of our construction is doing to create the requisite interior angle. For example,
we must construct an interior angle of 72◦ for the regular pentagon and one of 360

17

◦
for the

regular heptadecagon. It should be clear that with this angle constructed, we can copy it n
times with adjacent legs and draw a circle of any radius centered at the shared vertex and
create the regular n-gon in question.
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4.1 Constructing the Regular Pentagon

1. First, draw a line segment, AB, and its perpendicular bisector. Name the intersection
C.

2. Then, find the intersection of the bisector and the circle of radius |AB| centered at C.
Call these intersections D and D′ .

Figure 6: Step 1 Figure 7: Step 2

3. Next, connect D to A, forming the line segment DA. Construct a circle, of radius
|AC| = |AB|

2
, centered at A. Call this circle’s intersection with the line segment DA, E

4. Find a perpendicular line to this new section, DA, through the point E, Line X.

Figure 8: Step 3 Figure 9: Step 4

5. Construct a circle centered at D with radius |DD′|. Intersect line X with this circle.
Call the two points of intersection F and G.
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6. Construct line segments FD and GD.

Figure 10: Step 5 Figure 11: Step 6

7. Draw a circle, of radius |DA|, centered at D, call this circle Z. Its intersections with
FD and GD form the adjacent vertices to A, F ′ and G′.

Figure 12: Step 7

8. Finally, draw a circle, of radius |AF ′|, centered at F ′. Call this intersection with circle
Z, H.

9. Next, draw a circle centered at H with radius |F ′H|. Call this intersection with circle
Z, I.
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Figure 13: Step 8 Figure 14: Step 9

10. Connecting A,F ′, G′, H, I yields the regular pentagon.

Figure 15: Completed Pentagon Figure 16: Clean Pentagon

Proof: If we can prove that ∠ADF ′ = ∠F ′DH = ∠HDI = ∠IDG′ = ∠G′DA = 72◦ we
will know that each interior angle of the pentagon is 72◦ and that the pentagon is regular.
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Proof. As a convention, we will set |DC| = 1. Note |AB| = |DC| by construction. It follows
that |AC| = 1

2
. Considering ∆DAC, The Pythagorean Theorem yields

|DA| =
√

5

2

Figure 17: Side Measures of ∆DAC

Note that |AE| = 1
2
. It follows that |DE| =

√
5
2
− 1

2
. Now considering ∆DEF note that

|DF | = 2. It follows that sin(∠DFE) = 1
4
(
√

5− 1).

Figure 18: Side Measures of ∆DEF
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Thus ∠DFE = 18◦. Since ∠DEF = 90◦,

∠ADF = 180◦ − 90◦ − 18◦ = 72◦

It follows that our pentagon is regular.

Figure 19: Final Angle Measure

4.2 Constructing the Regular Heptadecagon

Next, we turn to look at the construction of the regular heptadecagon.

1. Construct a circle of diameter AB = 8 units.

2. Draw a perpendicular bisector to the segment AB. Name the intersection with AB,
O, and its intersection with the circle, C.

3. Bisect this radii twice to create the point, D.

4. Draw line segment DA.
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Figure 20: Steps 1,2,3 and 4

5. Bisect ∠ODA twice to create ∠ODE.

6. Construct a 45 degree angle to the left of DE and label its intersection with AB, F .

Figure 21: Step 5 Figure 22: Step 6

7. Bisect AF , and construct a circle centered at the mid-point of AF , called z through
A. Label the intersection with the vertical radius, G.

8. Draw a circle centered at E through G. Name the intersections with the horizontal
diameter H and K respectively.
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Figure 23: Step 7 Figure 24: Step 8

9. Draw perpendiculars through H and K. Label the intersections with the large circle
L and M .

10. Bisect ∠MOL. Label this intersection with the large circle N .

Figure 25: Step 9 Figure 26: Step 10

11. Finally, draw circles of radius LN starting centered at L, then using each new inter-
section as a center. Connect all these centers.
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Figure 27: Complete Regular 17-gon

12. Enjoy our regular 17-gon!

Figure 28: Pretty Regular 17-gon
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Proof: We look to prove that the interior angle ∠MOL is in fact 720◦

17
. Thus bisecting will

yield the requisite interior angle. To do this, we will prove that 180◦−∠LOH−∠MOK = 720◦

17

or 180◦−arccos OH
LO
−arccos OK

MO
= 720◦

17
. We know from our construction that MO = LO = 4

since they are radii. This leaves us with the task of finding values for OK and OH. We
will do this with a series of trigonometric arguments. All triangles considered will be right
triangles by construction.

Proof. 1. Note, ∠ODA = arctan 4. This comes from the triangle in Figure 29.

2. It follows from construction that ∠ODE =
(
arctan 4

4

)
. We will call this angle a. The

∆ODE yields, OE = tanODE. We will call this length b.

Figure 29: Steps 1 and 2

3. Next, observe that by construction ∠ODF = 45◦−a. Considering ∆ODF yields, that
OF = tan 45− a. We will call this length c.

4. It follows from construction that AF = c + OA. Thus, AF = c + 4. We will call this
length d.
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Figure 30: Steps 3 and 4

5. Remember, we are trying to find the value of OK. Note, we have found previously
OE, so all that is left is EK.

6. From our construction, observe EG = EK since both are radii of the same circle. We
will find EG.

7. Note that, OZ = d
2
− c and that ZG is a radius of a circle centered at Z through A

and F . Thus, ZG = d
2
. We will call these values e and f respectively.

8. Using ∆OZG we can find that cosOZG = OZ
ZG

=
d
2
−c
d
2

= 1− 2c
d

. We will let cosOZG =
g.

9. Next, solving for ∠OZG, we find ∠OZG = arccos g. We will call this angle h.

10. It follows that, OG = f sinh. We will call this length i.

11. Now, we will turn to ∆OGE and use i to find EG.
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Figure 31: Steps 5-13

12. Note, tanOGE = OE
OG

= b
i
. It follows that ∠OGE = arctan b

i
. We will call this last

value j.

13. It follows that, EG = OE
sinOGE

= b
sin j

= EK. We will name this value k.

14. Thus, we can clearly see that OK = OE + EK = b+ k. We will call this l.

15. Note, HK = 2k since it is a diameter of the same circle that EK is a radius of. This
gives us OH = HK − l.
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Figure 32: Steps 13 and 14

16. We now have all the requisite values. Trigonometric calculations with ∆MOK and
∆LOH give the values of ∠MOK, ∠LOH.

17. These computations yield ∠LOM = 180◦ −∠LOH −∠MOK = 720◦

17
. Thus, bisecting

∠LOM yields the necessary interior angle.

Figure 33: Steps 15 and16

Now that we have shown how to construct these two regular n-gons we will consider the
algebraic foundations of these constructions.

5 Algebraic Background

Here we look to develop some of the requisite Abstract Algebra theory in order to move
forward with our theoretical arguments. It will be assumed that the reader has a basic
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knowledge of group theory and has seen fields before although our review will start with
fields.

5.1 Fields

A field is a commutative ring with unity such that each non-zero element is invertible under
multiplication. Let’s look at a few aspects of this statement. First, A ring is a set with two
operations defined on it with the following properties

1. It is an abelian group under the additive operation.

2. Multiplication is associative.

3. Multiplication distributes over addition.

A commutative ring, R, has the property that ab = ba for any two elements a, b ∈ R. If a
ring has unity, it has the property that there is an identity element under multiplication. The
final requirement of a field is that every non-zero element is invertible under multiplication.
An element, a, is invertible if and only if there exists an x ∈ R such that ax = xa = 1.
A good example of a commutative ring with unity for which there exists an element that is
not invertible is Z. InZ the element 2 would have multiplicative inverse 1

2
which is not an

integer, thus 2 is not invertible. The only invertible elements are 1 and −1.
A field can have the cancellation property which states that if ab = ac then b = c.

If a field has such a property it is called an integral domain. In other words an integral
domain has no zero divisors, which are non-zero elements that when multiplied with other
elements equal zero. Another important aspect of fields is their characteristic, which is the
least positive integer n such that 1 + 1 + ... + 1 n times equals 0. If no such integer exists,
the characteristic is 0.

An example of a field we will use often is the rational numbers. As a way of understanding
fields let’s work though showing this is in fact a field.

1. Let a, b, c, d, e and f be in Z such that b, d, e 6= 0 and (a, b) = 1, (c, d) = 1 and (e, f) = 1.
Note that, a

b
, c
d
, e
f
∈ Q. We define addition by a

b
+ c

d
= ad+cb

bd
. First, consider, 0 and

−a
b
∈ Q. It follows a

b
+ 0 = a

b
and a

b
+ −a

b
= ab+(−ab)

bd
= 0. Thus addition has an identity,

0, and each non-zero element has an additive inverse, its negative. Finally, we must
show that Q is associative under addition. Consider

a

b
+

(
c

d
+
e

f

)
=

a

b
+
cf + ed

df

=
cfb+ edb+ dfa

dfb

=
ad+ cb

bd
+
e

f

=
(a
b

+
c

d

)
+
e

f
.

It follows that Q is a group under addition. One can easily show that commutivity
holds in Q.

17



2. Consider
(
a
b

)
∗ [

(
c
d

)
∗
(
e
f

)
] =

(
a
b

)
∗
(
ce
df

)
= ace

bdf
= ac

bd
∗ e
f

= [
(
a
b

)
∗
(
c
d

)
] ∗

(
e
f

)
. Thus

multiplication is associative over Q.

3. Consider a
b
∗ [ c

d
+ e

f
] = a

b
∗ cf+ed

df
= acf+aed

bdf
= acbf+aebd

bdbf
= ac

bd
+ ae

bf
. It follows that

multiplication distributes over addition.

Thus Q is a ring.

• Note that a
b
∗ c
d

= ac
bd

= c
d
∗ a
b

and that a
b
∗ b
a

= 1.

Thus Q is a commutative ring with unity. It is clear that given a non zero element a
b

that b
a

inverts it. Thus Q is a field.

5.2 Polynomials

Another important result is that if R is a commutative ring with unity then R[x], the
set of polynomials with coefficients in R, is also a commutative ring with unity. We will
often talk about irreducible polynomials. Irreducible polynomials are such that no other
polynomial of smaller degree in the same ring of polynomials divides it. In other words,
if p(x) is irreducible, then there exist no non-trivial polynomials of lesser degree such that
a(x)b(x) = p(x). These polynomials have similar properties to prime numbers in Z if our
base ring is a field, namely if p(x) is irreducible and p(x)|a1(x)a2(x)....an(x) then p(x) divides
one of the ai(x)s. Also, there exists a unique factorization of all polynomials into a string of
irreducible polynomials; this is analogous to the Fundamental Theorem of Arithmetic.

Recall from high school algebra that if a is a root of a quadratic, then one of the factors
of that quadratic is x − a. This idea holds more generally to polynomials of degree n and
each and every root of the polynomial. Polynomials are irreducible when those roots are not
contained in the same ring as the polynomial. This is the case for x2 − 2 ∈ Q[x]. Note the
two roots are ±

√
2 6∈ Q. Thus, x2−2 cannot be factored in Q[x] and therefore is irreducible.

All polynomials of degree n have n distinct roots and can be factored completely over the
complex numbers as a(x) = (x−b1)(x−b2)...(x−bn) where b1, b2, ..., bn are the distinct roots
of a(x).

Eisensteins Irreducibility Criterion is an important result from polynomial theory. It states
that a polynomia with integer coefficientsl, a(x) = anx

n + an−1x
n−1 + ...+ a0, is irreducible

inZ[x] if there exists a prime integer p such that p divides each ai such that i 6= 0, p does not
divide a0 and p2 does not divide an. This holds for polynomials in Z[x] and Gauss proved a
Lemma that shows that irreducibility over Z implies irreducibility over Q. We will use the
polynomial a(x) = 3x2+4x+2 to show an example of the utility of Eisenstein’s Irreducibility
Criterion. For this polynomial, let p = 2. It is clear that two divides four, but not three, and
four does not divide two. Thus, by Eisenstein’s Irreducibility Criterion a(x) is irreducible.

Note the two roots of this equation are −2
3
± i
√
2

3
. It is clear that, [x+(2

3
+ i
√
2

3
)][(x+(2

3
− i
√
2

3
)]

is not in Q[x], and thus a(x) is irreducible over this ring.

5.3 Field Extensions

The idea of irreducible polynomials over the Rational field leads to the following question:
what is the smallest field in which we can reduce a given polynomial? The Fundamental
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Theorem of Algebra says that all polynomials are reducible to polynomials of degree 1 over
the complex field, but our polynomial may be completely reducible over a smaller field. That
leads to the concept of Field Extensions.

Definition 1. Let K and F be fields. If K is a subfield of F then F is called a Field Extension
of K (Pinter 270).

A field extension is called simple if it can be reached by adjoining a single element. If a
field can be reached by adjoining a series of single elements, then we will have a chain of
simple field extensions. More specifically, we can adjoin roots of an equation to the rational
numbers, thereby creating a larger field that allows a polynomial to be further reduced. In
the case of our earlier polynomial x2 − 2, one larger field is Q(

√
2)(read Q adjoined with√

2). The elements of this field are a + b
√

2 where a, b ∈ Q. This is also an example of a
splitting field with minimum polynomial p(x) = x2 − 2

Definition 2. A splitting field for a polynomial is the smallest field containing all the roots
of that polynomial.

Definition 3. A complex number α has a minimum polynomial, p(x), if p(x) is the irre-
ducible monic polynomial of lowest degree over a field K and p(α) = 0.

Throughout this paper we will talk about the degree of these chains of simple field exten-
sions.

Definition 4. The degree of the field extension of F over K is denoted by [F : K] and is
found by finding the dimension of F as a vector space over K.

The degree of simple extension is the same as the degree of the minimum polynomial of
the adjoined element. It follows from definitions 2 and 3 that [Q(

√
2) : Q] = 2. These above

definitions will be critical to our arguments in being able to show whether certain numbers
are constructible by finding their minimum polynomials and showing that these splitting
fields have degree extensions that are a power of two over the rationals.

An important result concerning field extensions is the Tower Law. This states that if
K ⊆ L ⊆ M then [M : K] = [M : L][L : K]. For a finitely generated extesnsion such as
F (a1, a2, ..., an), we get

[F (a1, ..., an) : F ] = [F (a1, ..., an) : F (a1, ..., an−1)]...[F (a1, a2) : F (a1)][F (a1) : F ].

Since each of intermediate fields is a simple field extension then each one of these extensions
has a degree equal to the minimum polynomial of the adjoined element.

5.4 Cyclotomic Field

The Cyclotomic Field, ζn, is the field of the rationals with the n-th roots of unity of adjoined.
This field will be pivotal in transitioning the idea of n points spaced evenly around the
complex circle from physical constructions to something we can work with algebraically.

Definition 5. The n-th roots of unity are the roots to the equation xn − 1 = 0
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A nth root of unity will be denoted as γn, and the group of all the roots will be written
as ωn. A way to geometrically think about this is as n points evenly spaced around the unit
circle in the complex plane(See Figure 34). Note that for all n 1 is a n-th root of unity, this
is demonstrated in Figure 34 as well.

Figure 34: 5th-Roots of Unity Source: Wikipedia Root of unity

5.5 Constructible Numbers

As discussed earlier, a number is geometrically constructible if it can be reached in a finite
number of intersections of lines and circles. This is foreshadowing of the algebraic definition.
Note, that any intersection of lines and circles will have a equation that is of degree two or
fewer. It follows that all of these equations can be solved with only the rationals and square
roots of rationals or square roots of square roots of rationals, etc. Algebraically, a number,
a, is said to be constructible if there exist a chain of field extensions of degree two from the
rationals to the final field containing a. This clearly parallels the fininte number of solutions
to degree two or fewer.

5.6 Fermat Numbers

Fermat Numbers are numbers of the form 22k + 1 where k ≥ 1.The first 5 Fermat Numbers,
F0...F4 are known to be prime. These numbers are 3, 5, 17, 257 and 65537. The next number
after F5 is equal to 4, 294, 967, 297. Fermat was aware that he could not prove this claim,
but as exhibited by his Little and Last Theorems, proof was never really a high priority to
Fermat; testing the first few cases then conjecturing seemed to be his trend. In 1732, around
80 years after Fermat’s death Euler managed to prove that F5 was in fact composite.

At first he merely published the two divisors, 641 and 6,700,417. As an aside, the first
was known to be prime at the time, 6,700,417 was not proved till later to be prime. After
about 15 years, Euler published another paper with a more general proof of Fermat’s Little
Theorem which states:
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Theorem 5.1. If neither of the numbers a and b is divisible by the prime number p, then
every number of the form ap−1 − bp−1 will be divisible by p.

He used this to prove an intermediate result stating that any divisor of a number in the
form a2m + b2m, of which Fermat Numbers are, must be in the form k2m+1 + 1 such that
k ≥ 0. Lucas improved this to k2m+2 + 1. This gave him a starting point to test values for
n which produce prime numbers and then test if those divide F5. It only took him six tries
to find a suitable n.

In comparison to this brute force method proving composivity was relatively simple. It
merely required a set of congruences to show that 232 ≡ 1 (mod 641). Which implies that
that 641 divides 225

+ 1 = F5. Note first that 641 = 5 ∗ 27 + 1. It directly follows that

5 ∗ 27 ≡ −1 (mod 641)

54 ∗ 228 ≡ 1 (mod 641)

Note that 54 ≡ −24 (mod 641). It follows that

−232 ≡ 1 (mod 641)

and that 641|4, 294, 967, 297. The computing project Fermat Search has shown that F6

through F11 are composite. It is unknown if any larger Fermat Prime exist.

6 Gauss’ Theorem

Now we will move onto discussing the central theorem of this paper, Gauss’ Theorem, which
states

Theorem. A regular n-gon is constructible if and only if n is of the form

n = 2ap1p2p3...pi

where a ≥ 0 and p1, p2, ..., pi are distinct Fermat Primes.

Our proof of Gauss’ Theorem will be centered on four important lemmas. The first
three lemmas will be used to prove Gauss’ Theorem for n = pk. We will then prove the
fourth lemma, the Composition Lemma, and use this to generalize our modifided proof to
n = 2ap1p2...pk.

The conditional will depend on the definition of a constructible number, a lemma regarding
the degree of the cyclotomic field over the rationals and an algebraic lemma concerning which
numbers have a Euler Phi Function value that is a power of 2. The biconditional will also
use the degree of the cyclotomic field over the rationals but then turn towards Galois Theory
to show the existance of the chain of subfields of requisite degree.
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6.1 Necessary Lemmas

In this section we will state and prove three lemmas that are integral to our proof of Gauss’
Theorem.

Lemma 6.1. If a is constructible then [Q(a) : Q] = 2m for some integer m.

Proof. Let a be constructible. It follows from the definition of constructible numbers that
there exists a chain of field extensions each of order two from Q to Q(a). The Tower Law
yields that [Q(a) : Q] = 2m.

Lemma 6.2. If n = pk then [Q(ζn) : Q] = φ(n).

It is interesting to note that this lemma can be generalized for all n, but we will only use
the n = pk case.

Proof. Let n = pk for some prime p and integer k. The splitting field, S, for the polynomial
xn − 1, is equal to Q(γn). Thus we need to show that [Q(γn) : Q] = φ(n).

To do this we will start by finding the minimal polynomial of γpk . Consider the polynomial

qpk(x) = xp
k−1

xp
k−1−1

. We will use Eisenstein’s Irreducibility Criterion to show that this is in fact

both irreducible and that γpk is a root. Note the identity ap−1
a−1 = ap−1 +ap−2 + ...+a+ 1. We

will use Eisenstein’s Irreducibility Criterion and substitute x = y + 1 to prove that qpk(x) is
irreducible. This and our identity yield

qpk(y + 1) = (y + 1)p
k−1(p−1) + (y + 1)p

k−1(p−2) + ...+ (y + 1)p
k−1

+ 1.

Note the final term of the expanded polynomial is p since there are p terms each with a 1
as a constant term. Next, we must show that p divides each coefficient except the first. We
will show this by realizing that p dividing each term except the first is equivalent to saying
that qpk(y+ 1) ∼= yp

k−1(p−1)(mod p). This follows because the right side will be our first term

and the left is the rest of our equation. Congruency implies that qpk(y + 1) − ypk−1(p−1) is
divisible by p. The following argument will show why this congruencey holds, and thus each
coefficient except the first is divisible by p.

Pinter states the following theorem: in an integral domain, A, with characteristic p,
(a + b)p = ap + bp for all elements a, b.This follows from the binomial expansion having a
multiple of p in every term except the first and last, which leaves only those two terms,
namely ap+bp when we reduce mod p. This leads us to examine our polynomial qpk(y+1) =

(y+1)p
k−1

(y+1)pk−1−−1
= yp

k
+1−1

ypk−1+1−1
. This equals,

yp
k−pk−1

= yp
k−1(p−1).

Thus, we have shown that the polynomial qpk is in fact irreducible. It remains to show

that γpk = ω is a root of qpk(x). Consider qpk(ω) = ωp
k−1

ωpk−1−1
. Note that ω is a root of xp

k − 1

and not of xp
k−1 − 1. Thus, qpk(ω) = 0 and ω is a root of that polynomial. It follows that

qpk(x) is the minimum polynomial of ω over the rationals. Thus,

[Q(ω) : Q] = pk−1(p− 1) = φ(pk).
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Next, we will state and prove our lemma concerning the form of numbers with an Euler
Phi Function value that is a power of 2.

Lemma 6.3. If n = 2j + 1 and j is not of the the form 2l, then n is a composite.

Proof. Let j have an odd positivie integer, b, in its composition. Thus, j = b2l and l ≥ 0.
Thus 2j + 1 = 2b2

l
+ 1 = 2(2l)b + 1. This can be factored in the following manner

2(2l)b + 1 = [22l + 1][22l
(b−1)

− 22l
(b−2)

+ 22l
(b−3)

− ...− 22l + 1].

It follows that if j 6= 2l then 2j + 1 is composite.

6.2 Proof of Gauss’ Theorem for n = pk

We will start with a discussion of what is necessary to for n to be a constructible regular
n-gon. Note that the n-th roots of unity are n evenly spaced points around the complex unit
circle that when connected form a regular n-gon and that these roots are all contained in ζn.
It follows that being able to construct ζn implies that a regular n-gon will be constructible.

Theorem 6.4. A regular pk-gon is constructible if and only if p is of the form 2a or a Fermat
Prime.

Proof. Let n = pk be a regular constructible n-gon. It follows from our assumption that ζpk
is constructible and thus Lemma 6.1 gives us that [Q(ζpk) : Q] = 2m. From here Lemma 6.2
gives us that φ(pk) = [Q(ζpk) : Q] = 2m and thus

φ(pk) = 2m.

Note, phi(pk) = 2m = pk − pk−1. It follows that 2m = pk−1(p− 1). There are now two cases,
if k = 1 or k > 1. If k = 1 it follows that 2m = p − 1, and thus p = 2m + 1. If k > 1, it
follows that 2m = pk−1(p− 1). Thus pk−1|2m and it follows that p = 2. In conclusion, p = 2k

or 2m + 1. Lemma 6.3 gives us that the latter is in the form of a Fermat Prime. It follows
that if pk is a constructible regular n-gon then p = 2a or 22l + 1.

Now we will shift our attention to the biconditional. Let n = pk such that pk = 2a or
p is a Fermat Prime. Consider once again the following equation, xp

k − 1. The spitting
field of this equation is S = Q(ζn). It follows from Lemma 6.2 that [S : Q] = 2m. It is
now necessary to show that there are no intermediate subfields with a degree extension of
degree 4 or higher. In other words, we must show that the chain of field extensions of degree
2 do exist and none are a higher power of 2. Pinter gives us that there are 2m ways to
permute the roots of xp

k−1. Since these roots form adjoined to Q form S it follows that the
number of automorphisms that fix Q is equal to the number of these permutations. Thus
the Galois Group, the group of these autmorphims, Gal(S : Q), has order 2m and it is a
2-group. It follows that there exists a chain of subgroups that are order 2 over the previous
group. The Fundamental Theorem of Galois Theory gives us that there exists a one to one
correspondence between the descending chain of subgroups and an ascending chain of field
extensions such that the order of each subgroup over the previous corresponds to the degree
of each field extension over the previous. It follows that the chain of field extensions does
exist and that n is a regular and constructible n-gon.
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6.3 Proof of the Compisition Lemma

Now we must prove another important result in order to finish our proof of Gauss’ Theorem.

Theorem 6.5. Regular n and m-gons are constructible if and only if a regular mn-gon is
constructible such that (m,n) = 1.

Proof. Let a mn-gon be regular and constructible. It follows that the interior angle γmn =
e

2ıπ
mn = 360

mn
is constructible. Thus the complex circle is split into mn even segments. It follows

that connecting every m points will yield a regular n-gon and connecting every n points will
yield a regular m-gon. It follows that if a regular mn-gon is constructible then regular m
and n-gons are also constructible.

Now we look at the biconditional. Let regular m and n-gons be constructible. It follows
that the interior angles 360

m
and 360

n
are constructible. Note that (m,n) = 1 thus there exist

integers a, b such that am+ bn = 1 (Euclidean Algorithm). Thus

360

mn
= 360

am+ bn

mn
.

360

mn
= 360

(
a

n
+

b

m

)
.

It follows that the interior angle 360
mn

is constructible, and thus the regular mn-gon is con-
structible.

6.4 Example of the Composition Lemma

Let m = 3 and n = 5. It should be readily clear from Figure 35 that connecting every fifth
point (H, J, L) creates the equilateral triangle and connecting every third point (H, F’, A,
G’, I) to construct the regular pentagon.

Figure 35: Composition Lemma
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Note, in Figure ?? that adding two of the interior angles of the pentagon (∠HDI and
∠IDG′) less one interior angle of the equilateral triangle (∠HDL) result in an interior angle
of the regular 15-gon(∠LDG′).

Figure 36: Composition Lemma Figure 37: Completed 15-gon

6.5 Proof of Gauss’ Full Result

Now we will use the Composition Lemma to prove Gauss’ Full Result. The theorem follows
for the readers convenience.

Theorem 6.6. A regular n-gon is constructible if and only if n is of the form

n = 2ap1p2p3...pi

where a ≥ 0 and p1, p2, ..., pi are distinct Fermat Primes.

Proof. We will begin by letting a regular n-gon be constructible. It follows from the Com-
position Lemma that each prime in the composition of n is also the number of sides in a
regular constructible polygon. Our modified proof of Gauss’ Theorem gives us that each
regular and constructible n-gon where n is a power of prime n must be either 2a or a Fermat
Prime to the first power. It follows that n = 2ap1p2...pi where a ≥ 0 and p1, p2, ..., pi are
distinct Fermat Primes.

To show the other direction, Let n = 2ap1p2...pi where a ≥ 0 and p1, p2, ..., pi are distinct
Fermat Primes. It follows from our modified proof of Gauss’ Theorem that each prime in
the factorization of n is a constructible regular polygon. The Composition Lemma gives us
that the combination of these primes is also a constructible regular polygon.

It is important to note the manner in which the above proof was built up and remember
that as we move into the more complex constructions below. We started with proving
Gauss’ Result for powers of 2 and Fermat Primes to the first power and then used the
Euclidean Algorithm to generalize to combinations of these numbers. In the preceding
sections concerning constructions we showed the ability to bisect angles and construct regular
n-gons, where n is a Fermat Prime to the first power. In the next section, we will look more
closely at the example of the 15-gon above and then use the Euclidean Algorithm to generalize
how to construct more complex regular n-gons.
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7 Construction of Regular n-gons, where n is not a

single Fermat Prime

For this discussion, we will introduce a new definition and delineate between three different
forms of n.

Definition 6. A regular n-gon such that n = pi , such that p is a Fermat Prime will be
called a prime regular n-gon.

If n is not a prime number it will be called composite. Composites can be made up of
multiple Fermat Primes and/or powers of 2. We will look first to the trivial case of those
with powers of 2 then look at odd composites.

The first few n-gons which are even composites are the 6-gon(n = 2∗3), 10-gon(n = 2∗5),
and 12-gon(n = 22 ∗ 3). All n-gons of this form can be constructed by constructing the n

2a
-

gon and then bisecting the interior angle a times. Below is an example of using the regular
pentagon to construct a regular 10-gon.

Figure 38: Regular pentagon with regular 10-gon overlaid

Next, we consider the odd composite n-gons. We will start by looking at those in which
n is a composition of two Fermat Primes. Since we cannot have a Fermat Prime twice in
the prime factorization, our options are

3*5=15 3*17=51 3*257= 771
3*65,537=196,611 5*17=85 5*257= 1,285
5* 65,537=327,685 17*257=4,369 17*65,537=1,114,129
257*65,537=16,843,009

We will focus on the details of how to place an equilateral triangle a top of a pentagon in
order to construct the regular 15-gon to give us a clear and complete example, then examine
the 51-gon, and extrapolate from these two constructions a strategy to construct to the rest
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of the regular n-gons, namely n-gons with an unspecified number of Fermat Primes in the
factorization.

In order to construct the 15-gon we will need to construct both a regular pentagon and
an equilateral triangle that share a vertex, and which are inscribed within the same circle.
From this we will get eight of the 15 vertices. The other seven, will come from bisecting the
segment between the closest two vertices of the triangle and pentagon, finding this bisectors
intersection with the inscribing circle and then copying this length. Below is the step by
step construction and proof.

1. Construct a regular pentagon as earlier described.

Figure 39: Regular Pentagon

2. Construct a regular equilateral triangle that shares a vertex with our pentagon, namely
H. Steps 3 through 5 elaborate on how to do this.

3. Draw a segment connecting H and D. Construct a 60 degree angle, HDK, with this
as the right leg by finding the intersection of the inscribing circle centered at D and a
circle of equal radius centered at H.
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Figure 40: Construction of 60 degree angle

4. The supplementary angle, HDL, forms an interior angle of 120 degrees. Thus HL is
one side of an equilateral triangle inscribed in our circle.

5. Copying this length once, produces the third vertex, J, and our requisite triangle.

Figure 41: Construction of Equilateral Triangle
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6. Next, note that a 15-gon will have interior angles of 24◦, and that ∠HDJ = 120◦ and
∠HDF = 72◦.

7. It follows that ∠HDJ = 48◦.

Figure 42: Angle Measures

8. Bisecting angle FDJ and finding the intersection of the bisecting ray with the cirlce
will lead to the requisite spacing of verticies.

Figure 43: Angle Bisection

9. Note, a chord of a circle can be copied by creating a circle of that diameter centered
at a end point and finding this intersection with the larger circle.

10. Copying this chord MJ 15 times yields the regular 15-gon.
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Figure 44: Completed Regular 15-gon

This method of placing two prime regular n-gons that are factors of our new regular n-gon
on top of each other leads us to a method for construction of all of our regular n-gons. Take
for example the 51-gon. Placing an equilateral triangle on top of an already constructed
regular 17-gon with one vertex in common will lead to the following picture.

Figure 45: Interior angles of a 51-gon

Note that the requisite interior angle of a 51-gon is equal to 360
51

. Next note that angle
LOE1 is equal to 6 ∗ 360

17
and that angle LOP is equal to 120 degrees. It follows that angle

POE1 = 6 ∗ 360
17
− 120 = 360

51
. Thus we have the necessary interior angle and can create a

51-gon.
The above method gives us a way to create each n-gon where n only has two Fermat

Primes in its prime factorization and one of them is 3. The complicated part begins when it
is necessary to construct an overlaying pentagon, 17-gon, 257-gon or 65,537-gon. While the
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process is essentially the same, the constructions are a long and messy process we will not
explore here in depth, but for the curious reader we will discuss briefly.

Use a diameter of the inscribing circle to start your construction. This will result in
producing an angle with the required measure. Then use Euclids propositions of construction
to copy this angle onto a leg that forms an interior angle of our original shape, so our
pentagon, 17-gon, 257-gon or 65,537-gon share a vertex with the shape they are being overlaid
on. Then follow the above methods to find an interior angle with requisite measure.

Constructing odd composites with more than 2 factors follows the same pattern; it just has
one step more. Below is a discussion of constructing a regular 255-gon as an example of this
phenomenon. Refer to Figure 46 for clarification of the below discussion. This construction
will require placing an interior angle of 72 degrees into a already constructed 51-gon. Each
side of the 51-gon will have 5 vertices of the 255-gon in between them and each side of the
pentagon will have 51 vertices. Starting from the shared vertex, 10 of the interior angles of
the 51-gon will create an angle equal that is 360

255

◦
less than 72◦. Thus, we have created the

requisite interior angle, with that 11th leg from the interior angles of the 51-gon and the
second leg of the interior angle of the regular pentagon.

Figure 46: Interior angles of a 255-gon

From this it is possible to continue this pattern of overlaying prime regular n-gons, and
finding the new requisite interior angle by subtracting old interior angles, and thus construct
all regular n-gons.
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8 Theory of Composite Regular n-gons

Like with everything on this topic, the theory is seemingly much more elegant than the
application. In this section we will prove that all composite regular n-gons, such that
n = 2ap1p2...pn where the ps are distinct Fermat Primes to the first power. are constructible
by showing that angles of the form 1

n
, the interior angles of our regular n-gons, are con-

structible with the Euclidean Algorithm. We will limit ourselves to n = 20p1p2...pj since any
introduction of a non-zero power of two will just require bisecting at the end. This paper
has explicitly shown that the first three prime n-gons are constructible and will accept the
final two as more complicated examples, but still constructible. Here we look to prove that
using these prime regular n-gons we construct all composite regular n-gons.

Proof. Note, γp1 , γp2 , γp3 , γp4 and γp5 are constructible angles such that p1, p2, p3, p4 and p5
are the Fermat Primes. Consider γn where n = p1p2...pj such that j ≤ 5. Note all the
Fermat Primes are relatively prime to one another. It follows that for any integers i and
k such that 1 ≤ i, k ≤ 5 that there exist integers l,m such that 1 = lpi + mpk (Euclidean
Algorithm). From earlier results, we can construct angles that are equal to 360

pi

◦
and 360

pk

◦
.

Dividing by pipk,
360

pipk
= 360 ∗ lpi +mpk

pipk

Separating and reducing gives us the following equality,

360

pipk
= 360 ∗ (

l

pi
+
m

pk
).

Thus when we construct the angle lγpi + mγpk , we will obtain the desired angle of γpipk .
Further note, pipk is relatively prime to the rest of the Fermat primes and any power of
2. Thus, the same process can be used as many times as necessary to show that a given
n = 2ap1p2...pk is constructible from the composition of the prime regular n-gons and angle
bisection as demonstrated above.

Note, the above is the same argument as the Composition Lemma.

9 Larger Theorem

Now that we have looked at Gauss’ Theorem in both construction and in theory, we can
shift our attention to a larger and more powerful result, from which Gauss’ Theorem follows
almost immediately.

Theorem 9.1. If α is a complex number then α, with minimum polynomial p(x) and p(x)
has splitting field S, is a geometrically constructible number iff [S : Q] = 2j where j ∈ Z+.

We will use the following two lemmas in order to prove our larger result.

Lemma 9.2. If α is a geometrically constructible complex number with minimal polyno-
mial p(x) , splitting field S and β is another root of p(x), then β is also a geometrically
constructible complex number.
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Lemma 9.3. If G is a p-group of order pk,then there exists a descending chain of subgroups
from G = G0 ⊇ G1 ⊇ ... ⊇ Gk = {e} such that for each i = 0, 1, ..., k, o(Gi) = pk−i.

This Larger Theorem 9.1 formalizes the need for the existence chain of field extensions
of degree 2. When an element, α has a minimum polynomial p(x) and splitting field S it is
possible for [Q(α) : Q] = 2j but |Gal(S : Q)| 6= 2m. For example in a quartic polynomial,
this occurs when adjoing a root only allows for the quartic to be reduced to a cubic. Thus
the order of the Galois Group is 12 or 24 and the elements of this field are not constructible.

9.1 Two Important Lemmas

Here we prove Lemma 9.2.

Lemma. If α is a geometrically constructible complex number with minimal polynomial p(x),
splitting field S and β is another root of p(x), then β is also a geometrically constructible
complex number.

Proof. Let α be a geometrically constructible complex number with minimum polynomial
p(x) and splitting field S. It follows that there exists a chain of field extensions, starting at
the rationals, such that each extension is of degree two over the previous field. For example,

Q ⊆ F0 ⊆ F1 ⊆ ... ⊆ Ft

and
[Fi : Fi−1] = 2.

It is also important to note that α ∈ Ft and α 6∈ Ft−1.
Another way of thinking of this chain of extensions is that each one has a degree two

minimum polynomial over the previous field. For example x2 − 2 has a splitting field of

Q(
√

2) and
√

2
2 ∈ Q. By the quadratic formula any element introduced in the new field

has its square in the previous field. Let Fi be the extension Fi = Q(δ1, δ2, ..., δi). Thus, by
our previous statement, δi ∈ Fi implies that δ2i ∈ Fi−1. Now note, the following important
result:

Theorem 9.4. Suppose F ⊆ L are fields, and if ν : F → C is a homomorphism and
k = [L : F ], then there are exactly k extensions of ν to a homomorphism φ : L→ C.

Consider the evaluation function Eα that maps Q[x] → C by evaluating each polyno-
mial over the rationals at α. The range of this function is Q(α) and the kernel is gen-
erated by the multiples of p(x). The Fundamental Homomorphism Theorem yields that
Q[x]/(p(x)) ∼= Q(α). Next consider the evaluation function, Eβ : Q[x] → C. The range in
this case is Q(β) and the kernel is still generated by the multiples of p(x). It follows that
Q(α) ∼= Q[x]/(p(x)) ∼= Q(β). Thus, we have a homomorphism ν, which takes Q(α)→ Q(β).
Theorem 9.4 allows for an extension of ν to φ : Ft → Q(β). This function fixes Q and moves
δ1, δ2, ...δt. Let ε1 = φ(δ1), ε2 = φ(δ2), ..., εt = φ(δt) and note that ε ∈ Q(β). It follows that
φ(Ft) = F̂t = Q(ε1, ε2, ..., εt). Note, since φ is a homomorphism then φ(δ2i ) = φ(δi)

2 = ε2i and
that β ∈ F̂t .

Thus, for each εi ∈ F̂i then ε2i ∈ F̂i−1. It follows that β is a geometrically constructible
complex number.
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Next we turn to prove Lemma 9.3 which is necessary for the biconditional.

Lemma. If G is a p-group of order pk,then there exists a descending chain of subgroups from
G = G0 ⊇ G1 ⊇ ... ⊇ Gk = {e} such that for each i = 0, 1, ..., k, o(Gi) = pk − i.

Proof. Let G be a p-group with order pk. We prove with induction on k. First, we will check
for k = 1. Note o(G) = p and G ∼= Zp. Letting G1 = {e} it follows that o(G1) = 1.

Next, we will assume our lemma holds for pk−1. We look to prove our lemma for pk.
Consider G such that o(G) = pk. Let N be a normal subgroup of G with order p. Such
a group exists by Cauchy’s Theorem on groups and the fact that the center of a p-group
contains more than the identity. Note, the quotient group G/N has order pk−1. It follows
from our inductive step that there exists a chain of subgroups G/N = J0 ⊇ J1 ⊇ ... ⊇
Jk−1 = {eN} such that for each i = 0, 1, ..., k− 1 and o(Ji) = pk−1−i. We will use a previous
result, which states that if N is a normal subgroup of G and J is a normal subgroup of
G/N , then J = {x ∈ G : xN ∈ J} is a normal subgroup of G such that o(J) = o(J)o(N).
Let Gk = {e} and Gi = Ji. We find that all the Gis are normal subgroups of G and that
o(Gi) = o(Ji)o(N) = pk−1−ip = pk−i. It follows by the Principle of Mathematical Induction
that for all k, if G is a p-group of order pk, then such an ordering of subgroups does exist.

Now that we have these useful lemmas in hand we will turn now to a proof of our larger
theorem.

9.2 Proof of Larger Theorem

Here we will prove Theorem 9.1.

Theorem. If α is a complex number then α, with minimum polynomial p(x) and splitting
field S, is a geometrically constructible number iff [S : Q] = 2j where j ∈ Z+.

Proof. Let α be a constructible number with minimal polynomial p(x) and splitting field
S. It follows from Lemma 9.2 that all other roots, β, δ, ε, ... of p(x) are constructible. It
follows that we will have a chain of field extensions of degree 2 from the rationals to the
fields containing each one of these roots. For simplicities sake, let’s assume p(x) has four
roots, α, β, δ and ε. Consider the chains of field extensions Q ⊆ Q(a1) ⊆ Q(a1, a2) ⊆ ... ⊆
Q(a1, a2, ..., aj);Q ⊆ Q(b1) ⊆ Q(b1, b2) ⊆ ... ⊆ Q(b1, b2, ..., bk);Q ⊆ Q(d1) ⊆ Q(d1, d2) ⊆
... ⊆ Q(d1, d2, ..., dl);Q ⊆ Q(e1) ⊆ Q(e1, e2) ⊆ ... ⊆ Q(e1, e2, ..., em). The complex numbers,
α, β, δ and ε, are each in the final fields respectively. Now, consider the field,

Q(a1, a2, ..., aj, b1, b2, ..., bk, d1, d2, ..., dl, e1, e2, ..., em),

obtained by adjoing each ai, bi, di or ei separately. This field extension has degree 2m over the
rationals since each ai, bi, di or ei when adjoined separately to the rationals only introduced
at most a degree 2 extension. Thus adjoining all of the elements togethe will introduce
either a 1 or a 2 in degree with each new element adjoined. The splitting field although not
necessarily this large field, is necessarily a subfield of this field. The tower law gives us that
the degree of this extension must be equal to a factor of 2m. It follows that [S : Q] = 2j.
This argument generalizes over n roots quite easily with just a few more ellipsies and a nifty
application of the Poisson-Littlewood Conjecture.

34



Next we will turn our attention to the biconditional. Let S be a splitting field for p(x)
and [S : Q] = 2j. It follows from Pinter, that there exist 2j automorphisms that fix Q and
permutate the roots of p(x). Thus, the group of automorphisms of S that fix Q, contains
2j elements and can be called, G=Gal(S : Q). It follows that this is a 2-group, or a group
which has order equal to a power of 2. By Lemma 9.3, there exists a chain of subgroups
from G = G0 ⊇ G1 ⊇ ... ⊇ Gk = {e} such that o(Gi) = 2k−i. The Fundamental Theorem of
Galois Theory states that there exists a one to one correspondence between the subgroups of
Gal(S : Q) and the intermediate fields between S and Q. It follows that there exists a chain
of field extensions from Q to S, such that the degree of each extension over the previous is
2. It follows from our definition of constructible numbers that all the roots of p(x), namely
α, are in fact constructible.

Thus we have proven our larger theorem. In the next section, we will explore how Gauss’
Theorem is merely a specific example of this theorem.

10 Gauss’ Theorem as a Case

Here we will prove Gauss’ Theorem once again. This time however we will use our larger
result as a helping tool in shortening the proof and thus showing how Gauss’ Theorem
follows directly from this other theorem. We will start with a restatement of Gauss’ Theorem
followed by the new proof.

Theorem. A regular n-gon is constructible if and only if n is of the form

n = 2ap1p2p3...pi

where a ≥ 0 and p1, p2, ..., pi are distinct Fermat Primes.

Proof. Let n be such that a regular n-gon is geometrically constructible. It follows from the
definition of constructibility that the cyclotomic field ζn has degree 2m over the rationals.
Note, ζn is the splitting field for the polynomial p(x) = xn − 1 over the rationals. Note
that each individual root, γn, of this polynomial is a geometrically constructible number.
Thus our larger theorem yields that, [Q(γn) : Q] = 2l and the rest of the argument follows
algebraically as in our original proof of Gauss’ theorem. Now, we turn to the biconditional.

Now we will let n = 2ap1p2...pi such that each pi ia a Fermat Prime. Note that n statisfies
φ(n) = 2m. This follows because each Fermat Prime has an Euler Phi Function value that
is a power of 2 and φ(2a) = 2a(1− 1

2
) = 2a−1 and φ is multiplicative.

Our earlier result concerning the degree of the cyclotomic field over the rationals can
be extended to all n in the following fashion: since these extensions will all be disjoint
so the fields would be arranged like this Q ⊆ Q(ω1) ⊆ Q(ω1, ω2) ⊆ ... ⊆ Q(ω1, ω2, ..., ωj)
where ω1, ω2, ..., ωj equal distinct groups of pi-th roots of unity. The degree of the exten-
sions would be as follows, [Q(ω1, ω2, ..., ωj) : Q(ω1, ω2, ..., ωj−1] = φ(nj), [Q(ω1, ω2, ..., ωj−1) :
Q(ω1, ω2, ..., ωj−2] = φ(nj−1), ..., [Q(ω1) : Q] = φ(n1). The tower law yields that [Q(ω1, ω2, ..., ωj) :
Q] = φ(nj)φ(nj−1)...φ(n1).

Thus [Q(ζn) : Q] = φ(n) = 2m. It follows from our larger result that Q(ζn) is constructible
and thus a regular n-gon is constructible.
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11 Conclusion

We have explored the many aspects of Gauss’ Theorem. We started by looking at the building
blocks necessary to form constructions and then the building blocks of the theory. We
developed the concept of prime constructible regular n-gons through theory and construction.
Next we moved on and used the Euclidean Algorithm and the Composition Lemma to show
the complete theory and the constructions. The Composition Lemma highlights the most
convergent point of the theory and the construction. This seems to fit with our intuition
and mathematical background where prime numbers are these base cases that seem almost
to be axiomatic, foundational or without a clear process of arriving at them. The same can
be said about prime regular n-gons, the theory and ways of constructing them are unclear
and seem to lack a pattern. On the other hand, once these are established, it is possible to
combine these in relatively simple ways to get to the rest of the pertinent information just
like composing prime numbers to form the rest of the integers.
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