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2 Introduction

Every day we are faced with decisions–what to wear, what to eat for lunch, what to spend our free
time doing. These decisions are often made quickly, and in the moment. However, occasionally a
decision comes around that cannot be quickly resolved. Perhaps we cannot easily see which choice
is best, or maybe the repercussions of choosing wrong are much higher. It would be advantageous
to have a systematic, mathematical process to aid us in determining what choice is best. This paper
examines and elucidates one of these methods, the Analytic Hierarchy Process, or AHP.

There is an entire field of mathematics dedicated to decision making processes and analytics, a
very important subject in the business world, where decisions involving millions of dollars are made
every day. For this reason, we have to be sure the decision making processes used make sense, are
efficient, and give us reasonable answers. They have to be grounded in reality, and have a method
that is backed up by mathematical theory. We will show throughout this paper that the AHP is a
useful, appropriate method for dealing with decision problems.

In order to understand what the AHP is capable of, we will first define just what a decision
problem is. Once we have this background, we will present the tools from linear algebra that we
will need going forward. This paper assumes a knowledge of basic terms from linear algebra, as
well as matrix multiplication. After developing our tools, we begin to turn our attention to the
specific workings of the AHP. We look at the types of problems it is designed to solve, the principles
guiding the process, and the mathematics at work in determining the best decision. We will then
discuss the idea of inconsistency in the AHP, that is, when we can trust the data that the process
gives us. Finally, we will work through an involved, real world example of the AHP at work from
start to finish.
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3 Linear Algebra Review

This section is essentially a toolbox for theorems and definitions we will need later when developing
the AHP. It may be skipped and referred back to as needed.

3.1 Eigenvectors and Eigenvalues

Both eigenvectors and eigenvalues are very important in how the AHP works. We define them here,
and list some of their pertinent properties we will use going forward.

Definition 1. An eigenvector of a square matrix A is a vector v such that

A× v = λv (1)

Definition 2. An eigenvalue is the scalar λ associated with an eigenvector v.

Note that if we multiply both sides of equation 1 by a scalar, we get the same eigenvalue, but
a different eigenvector, which is simply a scalar multiple of our original v. All scalar multiples of
v will have the same eigenvalue (and so are all in the same eigenspace), and so it may be a little
ambiguous to determine which eigenvector we are dealing with when we discuss a given eigenvalue.
In this paper, it can be assumed unless explicitly stated, that we are looking at the eigenvector
with entries that sum to 1.

3.2 Building Block Theorems for the AHP

With an understanding of eigenvectors and eigenvalues, we can now present a few definitions and
theorems we will use later in the paper. We present the theorems here without proof, since pre-
senting the proof would do little to help the understanding of the AHP, which is the goal of this
paper.

Definition 3. The rank of a matrix is the number of linearly independent columns of that matrix.

Theorem 1. [6] A matrix of rank one has exactly one nonzero eigenvalue.

Definition 4. The trace of some matrix A, denoted Tr(A), is the sum of the entries in the
diagonal.

Theorem 2. [6] The trace of a matrix is equal to the sum of its eigenvalues.

4 Decision Problems

As alluded to in the introduction, decision problems present themselves in a wide variety of forms
in our everyday lives. They can be as basic as choosing what jacket to buy, and as involved as
determining which person to hire for an open position [6]. However, across these different problems,
we can often present each as a hierarchy, with the same basic structure.
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4.1 The Hierarchy

Each decision problem can be broken up into three components, defined here.

Definition 5. The goal of the problem is the overarching objective that drives the decision problem.

The goal should be specific to the problem at hand, and should be something that can be
examined properly by the decision makers. For instance, in the example of hiring a new employee,
different departments would have very different goals, which could steer their decision problem to
different outcomes. Moreover, the goal should be singular. That is, the decision-makers should
not attempt to satisfy multiple goals within one problem (in practice, these multiple goals would
be broken into separate criteria, as defined below). An example of a goal with regards to buying
a jacket could be “determining the jacket that best makes me look like a Hell’s Angel”, which is
specific, singular, and something that can be determined by the decision maker.

Definition 6. The alternatives are the different options that are being weighed in the decision.

In the example of hiring a new employee, the alternatives would be the group of individuals who
submitted an application.

Definition 7. The criteria of a decision problem are the factors that are used to evaluate the
alternatives with regard to the goal. Each alternative will be judged based on these criteria, to see
how well they meet the goal of the problem.

We can go further to create sub-criteria, when more differentiation is required. For instance,
if we were to look at a goal of buying a new car for a family, we may want to consider safety as
a criterion. There are many things that determine the overall safety of a car, so we may create
sub-criteria such as car size, safety ratings, and number of airbags.

With these three components, we can create a hierarchy for the problem, where each level
represents a different cut at the problem. As we go up the hierarchy from the alternatives, we get
less specific and more general, until we arrive at the top with the overall goal of the problem. See
Figure 1 for the layout of such a hierarchy. Note that not every criterion needs sub-criteria, nor
do those with sub-criteria need the same number of sub-criteria. The benefits for structuring a
decision problem as a hierarchy are that the complex problem is laid out in a much clearer fashion.
Elements in the hierarchy can be easily removed, supplemented, and changed in order to clarify the
problem and to better achieve the goal.

4.2 Weighting the Problem

Another component in any decision problem is a mapping of notions, rankings, and objects to
numerical values [6]. Basic examples of such mappings are methods of measurement we are familiar
with, such as the inch, dollar, and kilogram. These are all examples of standard scales, where we
have a standard unit used to determine the “weight” of each measurement in the various scales. We
run into problems, however, when we analyze things for which there is no standard scale. How do
we quantify comfort? We have no set “cushiness scale” to compare one sofa to another. However,
given two sofas to compare, in most cases we will be able to determine one to be more comfortable
than the other. Moreover, we can often give a general value to how much more comfortable one is
than the other. In making pairwise comparisons between different options, we can create a relative
ratio scale, which is the scale we will use when dealing with the AHP.
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Figure 1: A generic hierarchy

With this idea of a relative ratio scale in mind, let us reexamine the idea of a standard scale.
Consider the Celsius scale, which is certainly a standard scale. Suppose now we are looking at
a decision problem with the goal of determining the optimal temperature to set the refrigerator.
Certainly a temperature of 100 degrees would be foolish, as would a temperature of -100 degrees. In
this case, our standard scale does us no good. An increase in the “weight” of degrees Celsius does
not necessarily correspond to a better temperature for reaching our goal. In this case, our standard
scale turned into a relative ratio scale, given the goal of the problem. Another very important
example to note is the standard scale of money [6]. Often, economists assume the numerical value
of a dollar to be the same regardless of the circumstances. However, when looking at buying a
new yacht, $100 is just about as useless as $10, despite being ten times as much money. However,
when buying groceries, $100 suddenly becomes a much better value, perhaps even surpassing its
arithmetic value when compared to $10. In this case, we have greatly increased our spending power,
whereas when looking at the yacht, we have done almost nothing to increase it. We may increase
our resources tenfold, but we have had no real affect on our spending power.

We can see that the way we weight a decision problem is very important. Furthermore, in
most circumstances, standard scales will do us no good. Hence, we will have to resort to pairwise
comparisons, and a relative ratio scale that we determine from these comparisons.
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5 How the AHP Works

This section will deal with the ideas at work behind the AHP, the way rankings are calculated, and
how the process is carried out.

5.1 Creating the Matrices

Recall the ideas presented in Section 4.2 about standard and ratio scales. If it were the case that we
were dealing with a standard scale, we would have a set of n objects with weights w1, w2, . . . , wn.
We could then create a matrix of comparisons, A, giving the ratio of one weight over another, as
shown in equation 2.

A =


w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 ... wn/wn

 (2)

This matrix is an example of a consistent matrix, which we will define formally here.

Definition 8. A consistent matrix is one in which for each entry aij (the entry in the ith row
and jth column), aij = akj/aki. [6]

What this implies in our matrices is that for a consistent matrix there is some underlying
standard scale. That is, each element has a set weight, which does not change when compared to
another element. Hence, we are able to do the calculation described in Definition 8, and we will
have cancellation.

Note that the ratio in entry aij is the ratio of wi to wj . This will be the standard we adopt for
the rest of the paper, where an entry in a ratio matrix is to be read as the ratio of the row element
to the column element.

Now that we have our ratio matrix, notice that we can create the following matrix equation:
w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 ... wn/wn



w1

w2

...
wn

 = n


w1

w2

...
wn

 (3)

We know that the matrix equation in 3 is valid because when we go through the matrix multipli-
cation, we see that we have an n× 1 matrix with entries:

w1(wi/w1) + w2(wi/w2) + · · ·+ wn(wi/wn)

for row i of the product matrix. As can be seen, the denominators cancel, and we are left with
nwi for row i. Hence, we can factor out the scalar n and express the product matrix as we have in
equation 3. We can see that n is then an eigenvalue for the n× n ratio matrix (which we will call
matrix A), and that the n× 1 weight matrix (which we will call matrix W ) is an eigenvector. We
know because of Theorem 2 that the sum of the eigenvalues of matrix A are simply its trace. Since

Tr(A) = (w1/w1) + (w2/w2) + · · ·+ (wn/wn) = 1 + 1 + · · ·+ 1
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we know that Tr(A) = n. Hence, we know that the sum of the eigenvalues of matrix A is equal to
n. Since we have already shown n to be an eigenvalue of A, and since matrix A is of rank one, we
know by Theorem 1 that n is the only nonzero eigenvalue. We now make the following definition.

Definition 9. The principal eigenvalue, denoted λmax, of a matrix is the largest eigenvalue of
that matrix.

As can be seen, for a standard scale ratio matrix λmax = n. However, we are not very interested
in these standard scales, since they often do not tell us much about the real world problems we will
be dealing with. Instead, we will use the ideas behind what we just did to look at a similar problem
with a relative ratio scale. We are much more interested in the ratio matrices created when we look
at comparisons between things in a relative ratio scale setting, since these are the kinds of scales
typical of decision problems. By making pairwise comparisons between alternatives, we can easily
construct a ratio matrix similar to the one in equation 2. The result is shown here.

A =


1 a12 · · · a1n

1/a12 1 · · · a2n
...

...
. . .

...
1/a1n 1/a2n ... 1

 (4)

Note that we have reciprocal values across the diagonal, since we are simply inverting the ratio.
Furthermore, we have all ones down the diagonal since comparing an alternative to itself would
result in a ratio of 1 : 1. This matrix is an example of a reciprocal matrix, which we define here.

Definition 10. A reciprocal matrix is one in which for each entry aij, aji = 1/aij.

With regards to the ratio matrices we construct, the fact that they are reciprocal stems from
the fact that the ratio does not change depending on which element you compare to another. We
assume that comparing option A to option B is the reciprocal value of comparing option B to
option A. Note that every consistent matrix is a reciprocal matrix, but not all reciprocal matrices
are consistent. However, what if the ratio matrix given in equation 4 was consistent? We would
then have an underlying standard scale, and we would be able to create a ranking of the elements
based on this scale. Thus, let us construct a similar matrix equation as that given in equation 3.

1 a12 · · · a1n
1/a12 1 · · · a2n

...
...

. . .
...

1/a1n 1/a2n ... 1



w1

w2

...
wn

 = λmax


w1

w2

...
wn

 (5)

The eigenvector corresponding to λmax in this equation is essentially our underlying standard scale,
and thus gives us the ranking of each element in the ratio matrix. Hence, determining the rankings
for a set of elements essentially boils down to solving the eigenvector problem

AW = λmaxW

where W is the weight matrix of the alternatives in question. This is, in essence, the principle
that the AHP works on–that given some group of elements, there is an underlying standard scale.
Each element has a numerical value in this scale, and can thus be compared numerically with other
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elements in the group. With the weight matrix in equation 5, we could create a new ratio matrix
based only on the weights that come from solving the eigenvector problem. This matrix would then
be consistent, and if there was indeed some kind of underlying scale, it should have entries very
close to those in the original ratio matrix. If this new matrix was too inconsistent to give a reliable
weight matrix, then it did not have much of an underlying scale to begin with. See Section 7 for a
discussion on determining if the original ratio matrix is close enough to this new ratio matrix, and
what to do if it is not.

5.2 Determining the Weights

Now that we have an idea of how to determine the weight given a ratio matrix, we have to translate
that skill into a real world problem. Specifically, we want to determine the overall weight for every
alternative in a given decision problem. In order to show how we do this, we will work through the
very simple example of buying new computers for a college lab.

First, we determine the goal of our decision problem. In this case, it is simply to choose the best
computer for a mathematics computer lab at Whitman College. Then, we determine the criteria
we will use to see how each computer meets the goal. In this example, we will use the following
criteria:

• CPU

• Cost

• Looks

• What professor Schueller wants

We could certainly add more to this list, but for this example, we decide these are the factors we
most want to look at in order to achieve the goal. We could even add more sub-criteria, creating a
larger hierarchy (for instance, under the “looks” criterion, we could have the sub-criteria “shininess”
and “color”). Finally, we determine our alternatives. In this simple example, we will simply consider
three computers, X, Y , and Z. Given these elements of our hierarchy, we can create the visual
representation given in Figure 2.

We must now determine the weight for each criterion. These values will tell us just how im-
portant each criterion is to us in our overall goal. To determine these values, we make pairwise
comparisons between the criteria and create a ratio matrix as in equation 4, using the numerical
values given in Table 15. In making these comparisons, it is important to only consider the two
criteria being compared. We can then begin to size up how important each criterion is to us.

Obviously what professor Schueller wants is vital, as is how the computer looks, because everyone
knows that is what is most important. Let’s just say we’re loaded, so cost is of less importance, and
CPU takes a position somewhere in the middle of the road. With these general rankings in mind,
we then compare each criterion pairwise with each other criterion, disregarding the others for the
moment. It is important to note that if we assign a value comparing some criterion to another, then
the comparison going the other way will have a reciprocal value. For instance, if we decide that
CPU has moderate importance over cost, we may assign a value of 3 to this comparison. Thus, the
value of cost compared to CPU would be 1

3 .
Hence, we can construct a 4×4 matrix of these values, where the criterion on the left side of the

matrix is the first criterion in the comparison. Thus, for example, we could have a matrix that looks
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Figure 2: The Hierarchy

something like Table 1. From this matrix, we can then calculate λmax and its associated eigenvector.
Normalizing this eigenvector gives us the matrix Wc, which shows the relative “weights” of each
criterion, determining how much sway they have in determining what the eventual choice will be.
The matrix Wc is given in Table 2. Note that normalizing does not change the ratio matrix or the
eigenvalue, since we are interested only in the ratio of one weight to another.

Table 1: The ratio matrix of criteria comparisons

CPU Cost Looks Schueller

CPU 1 3 1
4

1
6

Cost 1
3 1 1

6
1
8

Looks 4 6 1 1
2

Schueller 6 8 2 1

We then must calculate the weight of each alternative in regard to each criterion. That is, we
must determine how each computer stacks up in each category. Thus, we must create a separate
ratio matrix for every criterion. When creating these matrices, we are only interested in how each
computer compares to the other within the criterion in question. That is, when we create the
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Table 2: Criteria weight matrix

Criterion Weight
CPU 0.103
Cost 0.050

Schueller 0.315
Looks 0.532

“looks” ratio matrix for the alternatives, we will be comparing them based solely on their looks
and nothing else. Doing similar calculations to those we did when determining the criteria weight
matrix, we can put forth the following weight matrices, conveniently put together into one table,
Table 3.

Table 3: Weights of Computers X, Y , and Z

CPU Cost Looks Schueller
X 0.124 0.579 0.285 0.310
Y 0.550 0.169 0.466 0.406
Z 0.326 0.252 0.249 0.285

Again, these weights were created through pairwise comparisons using the Fundamental Scale
(see Table 15), and so we are dealing with a relative ratio scale. We are trying to assess how
important each criterion is with regards to our problem, and then how well each alternative satisfies
each criterion. With the weights we just found, we can then determine how well each alternative
stacks up given the original goal of the problem. To do this, we multiply each alternative’s weight by
the corresponding criterion weight, and sum up the results to get the overall weight. The calculation
is presented here.

Xscore = (0.103× 0.124) + (0.050× 0.579) + (0.315× 0.285) + (0.532× 0.310) = 0.296

Yscore = (0.103× 0.550) + (0.050× 0.169) + (0.315× 0.466) + (0.532× 0.406) = 0.429

Zscore = (0.103× 0.326) + (0.050× 0.252) + (0.315× 0.249) + (0.532× 0.285) = 0.276

This calculation gives us the overall weight of each alternative. These weights then tell us which
alternative will best achieve our goal. As can be seen, computer Y is the clear best choice, and is
thus the computer that best achieves our goal.

As can be seen, the AHP is a powerful tool for solving decision problems that can be broken
down into a hierarchy. This example was very rudimentary, but the process can be expanded to
include many more criteria, levels of sub-criteria, and a larger number of alternatives. Moreover,
we have shown that the AHP is an excellent tool for ranking very incorporeal things, such as the
“looks” of a computer, and also for incorporating more standard rankings, such as “cost”. We have
demonstrated that there is a clear process, which results in a distinct ranking of the alternatives
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compared. In the following sections, we will look deeper at the theory behind the AHP, and the
idea of consistency in our resulting weight matrices.

6 AHP Theory

In the previous section, we saw an example of how we can use linear algebra to try to get results
that make sense. But what do these results mean? Certainly we want them to represent some kind
of ranking of the alternatives, but is there any mathematical reasoning behind the calculations we
did in the previous section?

To answer these questions, we will examine some of the theory at work behind the AHP. Specif-
ically, we will look at the connection between the AHP and graph theory and the notion of domi-
nance. We will first try to get a handle on the idea of dominance.

Intuitively, dominance is a measure of how much one alternative is “better” than another. For
instance, let us consider some alternative a amongst a group of three alternatives. We can look at
the ratio matrix created by comparing each alternative pairwise. The dominance of a is then the
sum of all the entries in row a, normalized. For example, in Table 4, we see that the dominance of a
is 1+ 1

5 +3 = 4.2, normalizing gives 4.2
14.033 = 0.299. The dominance of b and c are then respectively

0.463 and 0.238.

Table 4: Ratio matrix for alternatives a, b, and c

a b c
a 1 1

5 3
b 5 1 1

2

c 1
3 2 1

This gives us a value that tells us how much a dominates the other values in a single step, which
we will call the 1-dominance. Hence, we present the following definition.

Definition 11. The 1-dominance of alternative i is given by the normalized sum of the entries
ai,j where j = 1, 2, . . . , n in the ratio matrix.

We will address the idea of other values of dominance shortly (i.e., k-dominance for some integer
k), but for now this will be our working idea of dominance. This value gives us an idea of how
much each alternative dominates the others. From this matrix, it is easy to see that b dominates
the other alternatives most. However, let us consider the following case, where dominance is not
quite as clear cut.

Consider five teams in the Northwest DIII basketball conference, namely, Whitman, Lewis
and Clark, George Fox, Linfield, and Whitworth. We want to see which team is the best in the
conference, and so we will consider games from the 2012-2013 season, looking at the most recent
match-ups of each of these teams. We can represent the results of the season in a matrix, where
a 1 in entry aij corresponds to team i defeating team j, and a 0 corresponds to team i losing to
team j. We will choose to put ones along the diagonal, since we want all teams to be winners so
they aren’t sad (we can choose ones or zeros along the diagonal. Mathematically, it will make no
difference in our final outcome). Thus, we have a matrix as in 5.
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Table 5: Conference basketball wins

Whtmn L&C GF Lin Whtw
Whtmn 1 1 1 1 1
L&C 0 1 1 1 0
GF 0 0 1 1 1
Lin 0 0 0 1 0

Whtw 0 1 0 1 1

Table 6: Weighted conference basketball wins

Whtmn L&C GF Lin Whtw
Whtmn 1 1.042 1.208 1.431 1.033
L&C 0.960 1 1.014 1.356 0.932
GF 0.828 0.986 1 1.364 1.099
Lin 0.700 0.737 0.733 1 0.616

Whtw 0.968 1.073 0.910 1.623 1

As we can see, Lewis and Clark, George Fox, and Whitworth all have a dominance value of 0.2.
How do we decide which team did better overall in the conference? The problem becomes even more
difficult when we notice that Lewis and Clark beat George Fox, who beat Whitworth, who beat
Lewis and Clark. Thus, in order to get a clearer idea of the problem, will consider the “weighted”
wins of each team, given in Table 6. This matrix was created by looking at the ratio of each team’s
final score in the given match up. Thus, we can get an idea of how much each team dominated
the others in the match ups. For instance, in the game between Whitman and Whitworth, we have
a value of 1.033 (0.968 if we look at it from the standpoint of Whitworth vs. Whitman). This
corresponds to a much closer game than the Whitman vs. Linfield game, which has a point ratio
of 1.431. In the first instance, Whitman scored 1.033 points for each point Whitworth scored, and
in the second instance, Whitman scored 1.431 points for each Linfield point.

By looking at the values in Table 6 and calculating just as we did for Table 4, we find the
dominance given in Table 7.

Let us look at the graph of this situation to try to get a better idea of the problem at hand,

Table 7: 1-dominance rankings

Whtmn 0.223
L&C 0.205
GF 0.206
Lin 0.148

Whtw 0.218
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and to see where the idea of dominance from graph theory comes into play. The graph of this
problem is given in Figure 3. Here, each vertex represents a team, and the edges represent a game
being played between teams. A green arrow pointing to a team indicates a win over that team.
For example, the green arrow pointing from Whitman to Linfield indicates a win for Whitman over
Linfield. This arrow can then be “weighted” by assigning it the corresponding value of 1.431 from
Table 6. Similarly, a red arrow indicates a loss, and is weighted as well. Now we can see that to
calculate the dominance for some vertex we simply add up the weights of all the edges leaving that
vertex and normalize.

Figure 3: The graph of the conference games

With the idea of calculating the dominance from the graph in mind, let us look at the edge
from the Lewis and Clark vertex to the George Fox vertex. It is green, and corresponds to a win,
so in our 1-dominance frame of mind, we would say that Lewis and Clark dominated George Fox.
However, let us consider a walk from George Fox to Lewis and Clark, following only green arrows.
We can see that such a walk is possible by going from George Fox to Whitworth to Lewis and
Clark. Thus, in a way, George Fox dominates Lewis and Clark. This idea is known as two-step
dominance. We can calculate this two-step dominance value by multiplying the weight of the GF
→ Whtw edge by the weight of the Whtw → GF edge.
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To get a clearer picture of who really is the best team in the conference, we would probably want
to consider these two-step dominance values as well. To calculate the total two-step dominance of
each alternative (i.e., the normalized sum of all these weighted walks of length two beginning at
a given vertex) we can square the original matrix given in Table 6 and sum across the rows [5].
Normalizing these values gives us the two-step dominance values in Table 8

Table 8: 2-dominance rankings

Whtmn 0.224
L&C 0.206
GF 0.206
Lin 0.148

Whtw 0.216

So, if we want to view a more complete picture of which alternative dominates which, we may
want to consider two-step dominance in addition to one-step dominance. One way to do this would
be to add these two values together, and then average them. But why stop at two-step dominance?
We may want to continue further, including all the way up through some k-dominance. We could
then extend even further, including every dominance step up to ∞-dominance. We then present
the following theorem.

Theorem 3. The dominance of each alternative up through ∞-dominance is given by the solution
of the eigenvalue problem AW = λmaxW , where the entries in W are the weights of ∞-dominance
corresponding to each alternative.

Notice that this is the exact eigenvalue problem we are tackling with the AHP. From this theo-
rem, we can see that the AHP is giving us a ranking based on the ∞-dominance of the alternatives.
To prove this result, we need the following definition.

Definition 12. [6] The dominance matrix of a set of alternatives up through some k-dominance,
k ≤ m is given by

1

m

m∑
k=1

Ake

eTAke
(6)

where e = [1 1 . . . 1]T , and A is the ratio matrix of the alternatives.

Notice that Ake is a matrix of the row sums of Ak, and that eTAke is the sum of all the entries
of Ak. Hence, all we are doing is finding the matrix of dominance values for each i ≤ k, normalizing
each one, and then adding them all together. We then divide this matrix by the number of matrices
we added together, essentially finding an average value of dominance for each alternative.

What Theorem 3 tells us is that we can calculate the weight matrix W by repeatedly raising
matrix A to increasing powers, normalizing, and then adding up all of our results. We can thus
calculate our weight matrix by following this process to some k value, where the difference in the
entries of matrix W resulting from k + 1 is less than some predetermined value when compared to
the W generated by k.

We will also need the following theorems.
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Theorem 4. [4] Let A be a square matrix with all entries aij > 0. Then

lim
m→∞

(ρ(A)−1A)m = L (7)

where ρ(A) is defined as the maximum of the absolute values of the eigenvalues. Furthermore, we
have the following stipulations: L = xyT , Ax = ρ(A)x, AT y = ρ(A)y, all entries in vectors x and
y are greater than 0, and xT y = 1. The vectors x and y are any two vectors that satisfy the given
conditions.

Theorem 5. [3] Let sn be a convergent sequence, that is, let

lim
n→∞

sn = L

Then

lim
n→∞

1

n

n∑
k=1

sk = L (8)

Thus, we proceed with the proof.

Proof. We can see that the ρ(A) in our case will simply be λmax, and thus the matrix x in Theorem
4 must be an eigenvector associated with λmax. Hence, we know that x is some multiple of the
normalized W matrix. With this in mind, let us examine the expression within the summation in
equation 6 as m → ∞. We can multiply the limit by one to get the following result:

lim
m→∞

1
λm
max

1
λm
max

Ame

eTAme
= lim

m→∞

Ak

λmax
e

eT Ak

λmax
e

We know by Theorem 4 that the Ak

λmax
terms are equal to xyT , as defined in that theorem.

Hence, we have:

lim
m→∞

xyT e

eTxyT e

Note that both x and y are vectors, and so yT e is a scalar, and we can cancel this scalar from
both numerator and denominator. Hence, we are left with the following result:

x

eTx

Examining the eTx term, we find that this term is simply a scalar equal to the sum of the
entries in the x vector. Hence, dividing by this scalar normalizes the vector, giving us W . Then,
by Theorem 5, we can see that when we look at the average of the summation of these terms, we
get the desired result.

Thus, we now have a theoretical backing to our process. That is, the rankings given by the AHP
actually show the ∞-dominance of the alternatives. We can see that the AHP is not just a useful
trick of linear algebra, but that it is actually calculating the ∞-dominance of all of the alternatives.

To give another example of the graphical idea of dominance and how it pertains to decision
problems, let us again consider the decision problem given in Section 5.2. We can then create a
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Figure 4: A graphical representation of dominance

corresponding directed graph where each vertex is a criteria, and each edge represents a comparison.
Thus, an edge running from CPU to Cost takes on the weight 3, whereas the edge running the other
direction has weight 1

3 . The graph of this example is shown in Figure 4.
We can then think of the weight of the edge as corresponding to dominance. Hence, a one-step

dominance value for Cost is the sum of all the edges emanating from the Cost vertex. This value
would then be

1

6
+

1

3
+

1

8
=

5

8

To find a two step dominance value, we would start at the Cost vertex and then move to another
vertex. This corresponds to one step. Then, from that vertex, we would follow another edge,
multiplying this edge’s value by the previous edge. An example of one of these walks would be
taking Cost to Looks, and then Looks to CPU. The value of this two-dominance would then be

1

6
× 4 =

2

3

Adding up all such walks through the graph, we find a value for the two-step dominance of Cost.
Similarly, we can follow the same procedure for calculating the k-step dominance.

7 Consistency in the AHP

Our whole method for determining the rankings of the alternatives is based on the idea that they
have some underlying scale. As discussed earlier, this essentially boils down to the idea that when
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we have calculated our weight matrix, a consistent ratio matrix made using these weights isn’t too
far off of our original ratio matrix. Thus, in order to determine if our results are even valid, we
have to come up with some way of measuring how far off we are. That is, how inconsistent our
ratio matrices end up being.

7.1 The CR, CI, and RI

In this section we present the method developed by Saaty [6] for determining inconsistency. To
create the tools we need to analyze the inconsistency, we will first need to prove two theorems.

Theorem 6. [6] For a reciprocal n × n matrix with all entries greater than zero, the principal
eigenvalue, λmax will be greater than or equal to n. That is, n ≤ λmax.

Proof. Consider some ratio matrix A, and its corresponding consistent ratio matrix A′, which is
created using the resulting weight eigenvector calculated from A. We know that matrix A has
entries

aij = (1 + δij)(wi/wj)

where 1 + δij is a perturbation from the consistent entry. We know that δij > −1 since none of
our ratio matrices will ever have a negative value or 0 as an entry. (This works out well for the
ratio matrices we will use, since there is no notion of a “negative preference” in the Fundamental
Scale–the lowest we can go is 1

9 ). We also know that our matrix A is a reciprocal matrix, and thus
for entry aji, we have:

aji =
1

1 + δij
(wj/wi)

Thus, setting up our matrix equation AW = λmaxW , we have matrix A as:

A =


1 (1 + δ12)(w1/w2) (1 + δ13)(w1/w3) · · · (1 + δ1n)(w1/wn)

1
1+δ12

(w2/w1) 1 (1 + δ23)(w2/w3) · · · (1 + δ2n)(w2/wn)
1

1+δ13
(w3/w1)

1
1+δ23

(w3/w2) 1 · · · (1 + δ3n)(w3/wn)
...

...
...

. . .
...

1
1+δ1n

(wn/w1)
1

1+δ2n
(wn/w2)

1
1+δ3n

(wn/w3) · · · 1(wn/wn)


Since we know matrix A is a reciprocal matrix, we know that the terms in the diagonal must all be
1.

We then multiply this matrix by W , which has entries w1, w2, ..., wn, as in the matrix equation.
The result is equal to λmaxW . For each element in this matrix, we can look to see that it is equal
to the sum of the terms in the corresponding row in matrix A, without the wj in the wi/wj term.
Hence, we can divide both sides by wi, and we have an equation giving us λmax for each row.
Adding up all of these rows, we have something that is equal to nλmax, where each (1+ δij) occurs
twice–once normally, and once as its inverse. Hence, we can find a common denominator and find
what these terms look like in the sum:
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(1 + δij) +
1

1 + δij
=

(1 + δij)
2

(1 + δij)
+

1

1 + δij

=
2 + 2δij + δ2ij

1 + δij

=
2(1 + δij) + δ2ij

1 + δij

= 2 +
δ2ij

1 + δij

Thus, summing up all of these terms, we have

n+
∑

1≤i<j≤n

2 +
δ2ij

1 + δij
= nλmax

The summation comes from the fact that we don’t want to count terms twice, so we just sum over
the elements in the super diagonal and up, which actually gets us terms from the entire matrix
except for the diagonal. The sum of these diagonal terms is n. Since we are thus summing over
n2−n

2 elements, the 2 inside the sum can be pulled out to create the equality

n+ n2 − n+
∑

1≤i<j≤n

δ2ij
1 + δij

= nλmax

n+
1

n

∑
1≤i<j≤n

δ2ij
1 + δij

= λmax

1

n

∑
1≤i<j≤n

δ2ij
1 + δij

= λmax − n

And thus, because of the way we defined δij , we know that the left side of the equation is greater
than zero, and thus, we have shown that λmax ≥ n

Theorem 7. A is consistent if and only if λmax = n

Proof. If A is consistent, then we know by definition 8 that each row of A is a multiple of the first
row, and thus we know that A has rank 1. Hence, we then know that A has only one nonzero
eigenvalue. We also know by the definition of consistent that the terms of A along the diagonal
must be 1, and therefore Tr(A) = n. Since we have shown that the sum of a matrix’s eigenvalues
is equal to its trace, A must therefore have λmax = n.

Now suppose A has λmax = n. By Theorem 6, we know that each δij must then be equal to 0.
Hence, we have matrix A of the form in equation 2, which we know to be consistent.

With these two theorems, we can now tackle the idea of measuring inconsistency. We first define
the consistency index.
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Definition 13. The consistency index (CI) is the value

λmax − n

n− 1
(9)

Let us examine what this value actually measures. We know from our theorems that an incon-
sistent matrix will have a principal eigenvalue greater than n. Hence, the numerator is essentially
measuring how far off the principal eigenvalue is from the consistent case. We then divide this value
by n− 1, which gives us the negative average of the other n− 1 eigenvalues of our matrix [6]. With
this idea of a consistency index, we can extend further to look at what the CI would be for some
completely random reciprocal matrix. Moreover, we can find the CI for a large number of these
matrices, and determine an average “random” CI. We then have the following definition.

Definition 14. The random index (RI) of size n is the average CI calculated from a large
number of randomly generated reciprocal matrices.

In our case, the RI will be determined from 500,000 matrices, randomly generated by computer.
For a discussion as to how these matrices were created, see [1]. Given these two definitions, we can
make a third, which will give us a value of the inconsistency.

Definition 15. The consistency ratio (CR) of a reciprocal n × n matrix A is the ratio of
CI(A) : RI(A), where RI(A) is the random index for matrices of size n.

This consistency ratio tells us essentially how inconsistent our matrix is. When running through
the AHP, if we ever encounter a CR greater than 0.1, we have a ratio matrix that is too inconsistent
to give reliable results [6]. In this case, there is not much of an underlying scale present, and the
process does not work. Thus, if we ever encounter a CR greater than 0.1, we will go back to the ratio
matrix and try to reevaluate our comparisons, until we get a CR that falls within our parameters.
For the purposes of this paper, when we encounter a matrix that falls within this tolerance, we will
refer to it as “consistent enough.” Similarly, a matrix that falls outside out tolerances is a matrix
which is “too inconsistent.”

7.2 Alonso and Lamata’s Approach

We have just seen Saaty’s approach to determining whether a given matrix falls within our tolerances
for inconsistency. This approach is very involved, and takes several steps after calculating the value
of λmax for the matrix in question. There is an easier way, developed by Alonso and Lamata [1],
that allows us to immediately know upon calculation of λmax whether a matrix falls within our
tolerances. This method is presented here, and is the method we will use for the remainder of the
paper when working with examples.

To begin, we first calculate the average value of λmax for a large number of n × n matrices.
We will refer to this value as λmax. In Alonso and Lamata’s study, they used 500,000 randomly
generated matrices for each n, with 3 ≤ n ≤ 13. Note that these are the only values of n we are
interested in for the AHP. For a matrix of size 2, we will always have a consistent matrix, and thus
λmax = 2. Furthermore, we split larger matrices into smaller, more manageable sizes (see Section
7.3 for a discussion of this process). By finding λmax for the matrices of each size n, Alonso and
Lamata were able to plot these values against the size of the matrix and find a least-square line to
model the relationship. The curve that fits the data best is linear, with equation

λmax(n) = 2.7699n− 4.3513 (10)
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This line fits the data very well, with a correlation coefficient of 0.99 [1].
From this data, we can easily calculate the CR for any size of matrix. However, we will argue

that it will be easier to simply use the value of λmax generated by the ratio matrix in question. This
way, we do not have to do any further calculation after we have found the weight matrix and λmax

in order to determine if the weight matrix is even valid. Hence, we do the following calculations to
show the maximum acceptable value of λmax if we want our CR to be less than 0.1.

First, we know that we can represent the RI for some matrix of size n by

RI =
λmax − n

n− 1

Using the definitions of CI and CR (which we want to be less than 0.1), we can then see that

CR =
λmax − n

λmax − n
< 0.1

Solving for λmax, we have
λmax < n+ 0.1(λmax − n)

Thus, combining this result with our equation 10, we see that

λmax < 1.17699n− 0.43513 (11)

Using this equation, we can determine the maximum allowable λmax for an n×n matrix by simply
calculating 1.17699n−0.43513. If our λmax is less than this value, then our matrix will still be within
the allowable inconsistency, and we don’t have to mess with the CI, CR, or RI at all. Furthermore,
we can follow these same calculations to determine the allowable λmax for other tolerances. If we
are less concerned with the consistency of our data, and would rather not have to go back and
reevaluate ratio matrices, we might pick a value larger than 0.1. For instance, if we were to allow
a more inconsistent matrix, we could go up to a tolerance of 20%, which would correspond to a
CR less than 0.2. Then, following through the same calculations here, we would come up with the
equation

1.55398n− 0.87026

Given equation 11 we can create a table of the maximum allowable λmax for a matrix of size n.
From this table, we can easily determine if a given ratio matrix falls within our tolerances, or if we
have to go back and try again. This table will be very useful as we go further in this paper. It is
presented as Table 9.

Table 9: The maximum accepted λmax for an n× n matrix [1]

n λmax n λmax

3 3.0957 8 8.9806
4 4.2727 9 10.1576
5 5.4497 10 11.3346
6 6.6266 11 12.5166
7 7.8036 12 13.6886
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Note that as we create larger and larger matrices, the largest allowable λmax gets further and
further from the n in question. This alludes to the idea that as we compare more and more
alternatives, our results from the AHP are “less accurate.” Methods for dealing with this problem
are dealt with in the following section.

7.3 Clustering

(note: While working through this section, readers may find it helpful to refer to the worked ex-
ample of clustering given in Section 7.3.1).

So far we have discussed AHP problems and examples with relatively few criteria and alterna-
tives. In these cases, we can proceed just as we have been without getting too worried that the
number of elements we are comparing could be contributing to error. As we look at more and more
alternatives however, there certainly is more and more room for judgment error, leading to a less
consistent result. Clustering allows us to look at the problem on a smaller scale which we are more
used to, and then expand to the rest of the elements. Because we want to minimize inconsistency,
whenever we are looking at more than 9 elements, be they alternatives or criteria, we will proceed
by clustering our elements.

Consider the following example where we would have to use clustering [6]. We want to compare
a bunch of apples, but there are so many of them that we are worried about inconsistency being
too high. Hence, we set about clustering the apples into small groups of about seven apples each.
We could, for example, cluster one way according to size, one way according to color, and another
way according to age. In this manner, when we look at the alternatives in each cluster under the
corresponding criteria, we are comparing apples that are close in respect to the common attribute. If
there was large disparity in the alternatives, it would be more difficult to get an accurate comparison
between two elements (see Figure 5). Hence, by clustering, we are making sure we are getting more
accurate ratios between the elements.

When creating the clusters, it is important to have overlap of adjacent clusters. Consider our
apple example, and the cluster of “size.” In the cluster of the seven largest apples, we would
then use the smallest apple in this cluster as the largest apple in the next cluster. For a visual
representation of this clustering overlap, see Figure 6. In this manner, once we are done comparing
within the ratios, we can find our weight matrix for all of the alternatives.

We first take the smallest element in the “largest” cluster (which we will call a, which in our
apple example was the smallest “large” apple) and look at the cluster in which it is the largest
element (i.e., the next “smaller” cluster). We then divide the weight of all the elements in this
cluster by the weight of a as it is in this “smaller” cluster. Finally, to rejoin this cluster with the
“larger” cluster, we multiply all of the weights by the weight of a in the “larger” cluster. We can
then repeat this process with a new overlapping element, and working in this manner until we have
gone through all of the clusters, we find the weights for all of the alternatives as a whole.

7.3.1 An example

To see just how clustering works, we will work through how it would work for the apples example
mentioned earlier. Suppose we have 19 apples of various sizes, and we want to compare them under
the criteria of size. We would then create three different clusters of 7 apples–namely small, medium,
and large apples. We will discuss later just how we decide which apples belong to what cluster. For
now, suppose we have made our clusters and gone through to find the weights of each alternative
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Figure 5: Circles A and B are the same size in each comparison, but when they are put with a
circle closer to their size, it is easier to estimate just how much larger one is than the other [7]

just as we always have, but only focusing on one cluster at a time. Suppose we found the weights
for the size of the apples as given in Table 10.

Note that the columns of this table are simply the normalized weight matrices that we are
familiar with. The only difference is that they aren’t the overall weights, but instead the weights
for a small sample given by each cluster. We will eventually refine the weights in this table to get the
final overall weights. Note also that the largest apple in the small cluster is also the smallest apple
in the medium cluster, even though they have different weights. This is because when compared
within either cluster, they will certainly have different weights because of the apples they are being
compared to. Similarly, the largest medium apple is the same as the smallest large apple. We can
then create a weight matrix for all of our alternatives by the following process. First, bring the
medium cluster into conjunction with the large cluster by dividing by the largest medium apple’s
weight and then multiplying by the smallest large apple’s weight (really, these two weights are the
same since they come from the same apple). We then get a weight matrix for all of the apples in
the medium cluster (given in 12) which now is a part of the large cluster, and so all the weights
make sense within that cluster.
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Figure 6: The structure of the “medium” and “large” clusters.

Table 10: The relative weights of apples under the criterion “size” by clustering

Small Medium Large

0.045 0.088 0.086

0.103 0.118 0.094

0.121 0.132 0.120

0.134 0.145 0.142

0.179 0.162 0.167

0.205 0.171 0.176

0.214 0.184 0.215

23



1

0.184



0.088
0.118
0.132
0.145
0.162
0.171
0.184


0.086 =



0.041
0.055
0.062
0.068
0.076
0.080
0.086


(12)

We then do the same thing for the small cluster, using our new value for the smallest “large”
apple, 0.041.

1

0.214



0.045
0.103
0.121
0.134
0.179
0.205
0.214


0.041 =



0.009
0.020
0.023
0.026
0.034
0.039
0.041


Hence, combining our new found weight matrices with the matrix for the large cluster, we find that
the weight matrix for size out of these 19 apples:

0.009
0.020
0.023
0.026
0.034
0.039
0.041
0.055
0.062
0.068
0.076
0.080
0.086
0.094
0.120
0.142
0.167
0.176
0.215


which we would then normalize. Note that the entries in red are the “overlapping” alternatives.

We must now figure out just how we are going to create these clusters. In the example of apples
of various sizes, it is easy to see how we could decide which apples belonged to which cluster, and
could easily place them. However, with more abstract criteria and alternatives, the decision is not
always as easy.
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Saaty gives three possible approaches to determining clusters, ranked by least to most efficient
[6]. The first of these is called the elementary approach. It is very simple and intuitive, but not
very effective. It works by simple comparison. Given n alternatives, we can pick one out from the
bunch. Then, working our way through the rest of the other alternatives, we compare pairwise
with our selected alternative. If a compared alternative beats out the one we selected (if we find
an apple bigger that the one in our hand, for example), we have a new “largest” alternative, and
we continue comparing. Once we have found the largest, we would repeat the process with this
alternative removed, trying to find the second largest. As can be seen, we would have to go through
(n− 1)! comparisons just to figure out our clustering [6].

The second proposed method is called trial and error clustering. In this process, we try to get
an idea of what the clusters would reasonably look like. We make three general groups, “large,”
“medium,” and “small.” We could look through the alternatives, see which looked to fit where
(“that apple looks pretty small, we should probably put it in the small category”), and place them
temporarily. We then place the alternatives in each group into several clusters, and make a pass
through, making comparisons. Any misfits are moved to one of the other two groups. We then
re-cluster, and make another comparison pass, again moving the misfits. After these two passes,
the clusters should be reasonable enough that we can carry out our process as in the example.

The most efficient method is clustering by absolute measurement. In absolute measurement, the
group looks at each alternative and tries to assign a weight without going through the whole AHP.
This way, general clusters can be formed and then put through the AHP. The clusters are already
comprised of elements that the group thinks go together, and the AHP simply refines the weight
that they have assigned by using pairwise comparisons between the alternatives, rather than trying
to assign some arbitrary number to each alternative.

8 Paradox in the AHP

We have now seen that there are matrices that are so inconsistent that they are weeded out before
they even make it into our calculations to determine rankings. In this way, we discard matrices that
could potentially give us rankings that aren’t consistent with the ideas behind the AHP. However,
what if we could create matrices that are within our tolerances for inconsistency, but, by their very
structure, give paradoxical results? This section will examine some examples of these paradoxes,
and will discuss the implications they have on the AHP.

8.1 Perturbing a Consistent Matrix

The first method we will examine for creating a paradox is that of simply making small alterations
to a consistent matrix. In this example we will examine 5 alternatives, with weight matrix given in
Table 11.

This weight matrix was created by assigning each alternative a weight from 2 to 6, and then
normalizing the weight matrix. From this matrix, we could then create the consistent ratio matrix.
However, in order to create a paradox, we change the preference ratio of A : B in the ratio matrix.
Hence, instead of a12 = 0.4 (which is simply 0.105/0.263, which we got from the weights of each
alternative), we have a12 = 5, which we assign. We do the same swap with a21, changing it to 0.2,
or the inverse of 5. By doing this, we want to see if making one small change will go “unnoticed”
when we calculate the new weight matrix. We then have the result shown in equation 13. Note
that the changed entries are shown in red.
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1 5 0.5 1 0.333
0.2 1 1.25 2.5 0.833
2 0.8 1 2 0.666
1 0.4 0.5 1 0.333
3 1.2 1.5 3 1



0.229
0.164
0.203
0.101
0.304

 = 5.909


0.229
0.164
0.203
0.101
0.304

 (13)

As we can see, our new weight matrix recognized the change we made, and adjusted accordingly.
Now, since we decided we preferred A to B, even though the rest of the matrix is consistent with
the case where we preferred B to A, the weight matrix tells us that A is a better choice than B.
So, we can see that the process picked up on the change we made to just one entry. This one
change does give us an eigenvalue that is outside of our acceptable range of inconsistency however,
indicating how much changing just one entry from the consistent matrix can result in relatively
large inconsistency (note also that since the original ratio matrix was consistent, it would have had
a λmax of 5 by Theorem 7).

We have now seen just how little it takes to upset a consistent matrix. Thus, we now try to
create a matrix that falls within our tolerances for inconsistency. Let us try by changing the altered
entry to 2 rather than 5, which indicates a less drastic reversal of preference. Hence, we have the
new weight matrix for our alternatives given in Table 12.

Note that this weight matrix still retains the original preference of B over A as given in Table
11, and that the matrix falls within our tolerances for inconsistency.

Let us take a moment to consider what this situation tells us. When going through pairwise
comparisons, we decided that alternative A was preferable to B. However, once we ran through
the AHP, we are told that in actuality alternative B is preferable to alternative A. On one hand,
we could argue that although alternative A is preferable to alternative B when we only consider
those two alternatives, we are comparing A to B only. We are not taking into account any of the
other alternatives, even though we are trying to decide which alternative is best out of a group of
5, not just a group consisting of A and B. While A may be preferable to B pairwise, the weight
matrix tells us that alternative B is preferable to A in the larger scheme of things. This argument
may be acceptable given certain situations. Consider the example of basketball teams playing one
another given in Section 6. Although George Fox beat Whitworth, when we take into account all
of the other teams, Whitworth actually did better in the conference.

This argument certainly makes sense for the given problem, but consider an entirely different
situation. Now suppose we are back choosing a computer for the math lab given in Section 5.2, and
we are choosing between 5 computers. Suppose we are evaluating based on the “looks” criterion,
and so are trying to determine the prettiest computer. When comparing pairwise, we note that
computer A looks better than computer B, but when we calculate the weight matrix, we find Table

Table 11: The weight matrix for our 5 alternatives

A 0.105
B 0.263
C 0.210
D 0.105
E 0.316
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Table 12: The new weight matrix: λmax = 5.336

A 0.166
B 0.201
C 0.211
D 0.105
E 0.316

12. Supposedly, given our pairwise rankings, B actually looks better than A. However, what if we
start removing alternatives? If we take away all of the computers other than A and B, we see that
the weight matrix tells us B is a more attractive option than A, which we know to be false. In this
case, the paradox found does not makes sense given the problem.

This example illustrates several aspects of a paradox of this nature. First, we see that we can
only perturb the matrix by a small amount. With a completely consistent matrix, we were only
able to change one entry by a small amount before we were suddenly outside our tolerances for
inconsistency. Moreover, we noticed that the paradoxical nature of the matrix is dependent on the
actual problem we are looking at. This idea that the results must be interpret based on the original
problem is crucial to the AHP. We cannot blindly follow our calculations without first considering
what they are telling us.

8.2 Preference Cycles

The second paradox we will look at arises from the idea of preference cycles, which we define here.

Definition 16. A preference cycle is a set of n elements with weights w1, w2, . . . , wn such that

w1 > w2 > · · · > wi > wi+1 > · · · > wn > w1

A real world example of a preference cycle is the game of rock, paper, scissors, where each
element beats exactly one other element, and loses to exactly one other element.

With this definition in mind, we will look to create a consistent weight matrix that arises from a
situation where there is a preference cycle. Note that in the previous paradox example, a preference
cycle arose when we changed the preferences of A and B. In this example, we will look what happens
with a ratio matrix created solely from preference cycles. Hence, consider the ratio matrix for six
alternatives given in Table 13.

Note that we have the preference cycle A > B > C > D > E > F > A, and that the matrix is
within our inconsistency tolerances.

The case that we have presented here is interesting because of what the AHP tells us about our
alternatives. When the weight matrix is calculated, we find that every alternative has the same
weight. That is, we see that no one alternative is any better than another, which makes sense given
the problem. Moreover, we can have alternatives that make no sense within a standard scale, but
still pass our tolerances for inconsistency and give us some kind of result that is (by way of the
AHP), in a standard scale. If we think back to our rock-paper-scissors example, the results shown
above make sense. Given two pairings, we can obviously choose one alternative over the other, or
else the two alternatives are equal (that is, neither player wins). However, before the game starts,
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Table 13: The ratio matrix for a preference cycle of six elements- λmax = 6.5

A B C D E F
A 1 2 1 1 1 1

2

B 1
2 1 2 1 1 1

C 1 1
2 1 2 1 1

D 1 1 1
2 1 2 1

E 1 1 1 1
2 1 2

F 2 1 1 1 1
2 1

we have no idea what the other player will show, and so every alternative is just as good as any.
This is represented in the weight matrix by equivalent weights for each alternative, and in the ratio
matrix by the parities entries. For the given example in Table 13, the 6 × 6 matrix is the first
instance when we are within our inconsistency tolerances.

8.3 Further Paradoxes

These two examples are interesting in their own right, but there are many more possibilities for
paradox within the AHP. Since it was not the goal of this paper to investigate paradoxes specifically,
and since there is not a lot of available research on the types of problems illustrated here, we will
stop our investigation of paradox here. We will however present some interesting extensions on the
topic, which can be explored further.

First, much of the background and ideas for creating paradoxes in this paper arose from research
into voting theory [2]. Thus, the idea of “strategic voting” (wherein an individual or small group
can exploit the voting system to a desired end) is a natural extension of the idea of paradox within
the AHP. Moreover, since the AHP is used often in business when meaningful, costly decisions are
being made, it would be important to know whether the system can be subversively exploited by an
individual or small group. As was illustrated in Section 8.1, it is possible to prefer one alternative
over another, only to have the AHP tell you that actually, the preference should be the other way
around.

Furthermore, it would be interesting to see which kinds of matrices are more susceptible to
paradox. We have seen that larger matrices allow for more inconsistency (as indicated by Table
9), so we would think that these larger matrices would have more room for giving strange results.
Another question to address would be to see if we could “spread out” the inconsistency more
throughout the matrix, or if it is solely matrices that are almost perfectly consistent that allow for
paradox.

One area of research that has been looked into, but which was not really discussed in this paper,
is that of adding and subtracting alternatives and criteria. In an ideal process, simply adding or
removing alternatives should do nothing to change the rank order of the alternatives, but this is
not always the case. We alluded to this idea with the computer’s “looks” in Section 8.1, but did
not discuss at length.
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9 An Applied AHP Problem

Now that we have a thorough understanding of the AHP, we will see just how it works in a real
world decision problem. In this section, we look at the difficult decision of deciding where to attend
graduate school given several choices. For this problem, we surveyed a senior at Whitman College
who had been accepted to five schools for graduate chemistry programs. Thus, we define the prob-
lem as follows.

The goal: to choose the best graduate school for a particular individual (Tyler, our dauntless
scholar).

9.1 The Criteria

These criteria were determined by speaking with Tyler, and figuring out what was important to
him for choosing a grad school. Within each criterion, any sub-criteria are given in italics.

Location: Simply, where the school is located. This criteria has three sub-criteria making
up what the “location” really entails. Weather is certainly an important factor to consider when
picking a school. Just look at the difference between winters in the midwest and winters in southern
California. The type of municipality the school is in also comes into play. Rural and urban schools
offer different things when it comes to life outside of campus, and it is important to consider what
kind of city or town you will be living in. Location can also mean how far away you are from the
things you care about. Distance from your family and friends can be a good thing or a bad thing
depending on how you look at it.

Financial Incentive: This criterion reflects the amount of money the school is willing to give,
as well as the cost of living in the city where the school is located.

Ranking: Certainly ranking is important when choosing a school. The name Harvard carries
much more weight than a local community college. This ranking can be looked at from two angles.
First, the prestige associated with the name and school can be considered. Second, the numerical
rankings published by various sources such as US News and World Report. Both of these factors
carry some weight when trying to evaluate a school’s rank.

Degree Program: It is important to consider what the degree program at each university
actually entails. Some may have more limiting requirements, while others may require exciting
hands-on research. Either way, it is an important factor to consider when making a decision about
what school to go to.

Campus: The school’s campus can be large or small, beautiful or ugly, and either way, it
factors into the decision of what school to go to. The grounds of the school may be beautiful, with
plenty of open fields, or they may be small and largely concrete. The buildings on campus are also
important to consider. Is there a good library? Are the classrooms nice? Is there an on campus
coffee shop where I can study? Finally, since we are dealing with a chemistry student, it is also
important to factor in the labs when making a decision.

Faculty: The school itself may be great, but without excellent faculty, it isn’t really worth
choosing. Here we look at two factors, the student’s potential advisor, and the rest of the department.

Vibe: This is a very important factor when choosing a school, but it is hard to quantify. The
intangible feeling you get when walking around campus, and how you feel when you picture yourself
going to a certain school are certainly very important in the final decision.
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9.2 The Alternatives

For this decision problem, we considered the following five schools:

• The University of California, Berkeley. We will denote this alternative as simply “Berkeley.”

• The University of Wisconsin, Madison, which we will denote “Madison.”

• The University of Chicago, which we will denote “Chicago.”

• The University of California, San Diego, which we will denote “UCSD.”

• The University of Washington, Seattle, which we will denote “UW.”

These schools comprise our alternatives. Hence, given the decision problem, we can lay out a
hierarchy as illustrated in Figure 7.

Figure 7: The hierarchy for our grad school problem
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9.3 Gathering Data

After clearly defining the decision problem, the next step is to determine the ratio matrices for
each criterion and alternative. We determined that the easiest way to do this would be through a
worksheet of sorts, where Tyler could give scores for each comparison based on Saaty’s fundamental
scale (see Table 15). An example of one of these sheets is given in Table 16. Once all of this data
was collected, we were able to create corresponding ratio and weight matrices for each criterion and
alternative. These results are presented in Tables 17 through 52. Recall that when looking at these
matrices, the preferences are read as row over column. That is, the number in entry aij represents
how much alternative i is preferred over alternative j, according to the standard scale.

9.4 Determining the Final Weight Matrix

Just as we did in the computer example in Section 5.2, we simply multiply our way back up the
hierarchy. For instance, tracing up “Madison” from its weight in the “Buildings” matrix, we first
multiply the weight of “Madison” in this matrix by the weight of “Buildings” in its sub-criteria
weight matrix. Then, this result is multiplied by the weight of “Campus” in its criteria matrix. We
do this for every school, and for every path up the hierarchy. When we have all of these results, we
add them up for each school. That is, all the weights for each school are summed separately, and
these values become the final weight of the schools, giving us our result. The final weights from
these calculations can be found in Table 14.

Table 14: Alternative Weight Matrix–“Overall”

School Weight
Berkeley 0.4350
Madison 0.2172
Chicago 0.1743
UCSD 0.0706
UW 0.1060

As can be seen, Berkeley is the school that best satisfies our original goal of choosing the best
grad school for Tyler, and by a generous margin. Before going through the process, Tyler stated
that he was not sure where he was going to go. He knew that Berkeley and Madison were the two
top contenders, and was interested to see if the process could set them apart from each other. With
the results in Table 14, it is plain to see that the AHP is a powerful tool in making tough decisions.

Note that we can look at the “intermediate hierarchies” as well. If we were interested in what
school best fulfilled the “campus resources” criterion, we could follow the same process as we did
to calculate the values given in Table 14, but taking “campus” as the goal of our problem. Hence,
the “campus resources” sub-criteria become the criteria in this problem. In this case, it turns out
that Chicago best satisfies the goal. If Tyler was making his choice exclusively on how good the
campus was, then Chicago would be the best bet. From this, we can see that Berkeley did not win
out every criterion, and yet still won overall. This goes further to show how powerful a tool the
AHP is. Even though an alternative does not win outright in every category, when everything is
taken into account, we can find that the alternative is best given the entire problem.

31



9.5 Thoughts on the Applied Problem

By working through this problem, we have discovered just how straightforward and useful a tool
the AHP is. A decision that was originally locked in stalemate was handily resolved by simple
pairwise comparisons and some linear algebra. Moreover, we have seen just how easy it is to gather
the data necessary to run through the process given just one person making the decision. If we
were instead working through a problem that dealt input from multiple people, we would have to
devise some way of fairly aggregating the responses of each individual. This aspect of the AHP
was not investigated in this paper, nor was it discussed in Saaty’s article [6]. It is certainly a very
important aspect to decision problems, and should be considered when using the AHP to resolve
group choices.

We have also shown (in our particular scenario) that it is not terribly difficult to arrive at weight
matrices that are within our tolerances for inconsistency. Working through this problem, we had
only one weight matrix out of 11 that was outside of our tolerance (the “urban/rural” alternative
matrix). For this matrix, we went back and reevaluated the corresponding ratio matrix by running
through the pairwise comparisons again, and quickly reached a weight matrix that fell within our
tolerance.

10 Conclusions and Ideas for Further Research

As we have seen, the AHP is a useful, applicable tool to many situations in life. We are faced with
decision problems every day, and often these are difficult to solve. With the AHP, we now have an
excellent method for turning these difficult, incorporeal questions into reliable mathematics, from
which we can easily determine a solution.

Furthermore, we have seen that this process is relatively easy. Solely through pairwise compar-
ison and simple linear algebra, we can arrive at some powerful results. Moreover, these results ac-
tually mean something. That is, by running through the AHP we are calculating the ∞-dominance
of the alternatives in question. Rather than a fancy trick of linear algebra, we actually have some
theoretical backing to our results.

We have also seen that the process is resistant to strange results. By creating inconsistency
tolerances, we get rid of many matrices that disagree with the principles at work in the AHP.
However, this does not mean that the process is perfect, and completely foolproof. There are still
possibilities for paradox and illogical results even with the inconsistency tolerances in place.

This is one very intriguing area of further research. While we have only presented two para-
doxes in this paper, there are certainly countless more examples that can be dreamt up. A closer
examination of some of these could prove to be very interesting indeed, as well as shedding light
on just what can go wrong in the AHP. The specific idea of “strategic voting,” a term borrowed
from voting theory, would be very interesting. Since the AHP is used often in the business world
to make important decisions, it would be worthwhile to investigate just how much one individual
or a small group could strategically affect the overall rankings of the alternatives.

Additionally, further research into the kinds of problems the AHP is used to look at could be
very interesting. Specifically, the area of sports problems (such as the basketball example given
in Section 6) would be an attractive application. As far as I know, there has not been a lot of
investigation as to using the AHP to look at these kinds of problems, but it seems like they are a
prime situation for analysis by the process.

As I only conducted an applied problem for one person, gathering the data for the comparisons
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was relatively easy. It would be interesting to research different methods of gathering this data from
a group of people, rather than an individual. This would certainly be a worthwhile investigation,
since decisions are often made by groups rather than individuals, and we need an effective way
of gathering and consolidating the opinions from everyone in the group. Moreover, it would be
interesting to look at the differences between one of these group AHP problems compared to an
individual AHP problem.
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11 Appendix

Table 15: The Fundamental Scale [6]

Intensity of importance on
an absolute scale

Definition Explaination

1 Equal importance Two activities contribute equally
to the objective

3 Moderate importance of one over
the other

Experience and judgment
strongly favor one activity over
another

5 Essential or strong importance Experience and judgment
strongly favor one activity over
another

7 Very strong importance An activity is strongly favored
and its dominance demonstrated
in practice

9 Extreme importance The evidence favoring one activ-
ity over another is of the highest
possible order of affirmation

2,4,6,8 Intermediate values When compromise is needed
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Table 16: An example worksheet given to Tyler in order to gather data for the pairwise comparisons.

Instructions: Below are a list of criteria paired off with one another. In each pairwise
comparison, circle the criteria which is more important in the decision of where to go to grad
school. In the space provided, assign the intensity of the preference using the numerical values
given in the Fundamental Scale. When making comparisons, only conisder the two criteria at a
time, without regard for any other criteria.

First Criterion Second Criterion Numerical Score
Location Financial Incentive
Location Ranking
Location Degree Program
Location Campus
Location Faculty
Location Vibe
Financial Incentive Ranking
Financial Incentive Degree Program
Financial Incentive Campus
Financial Incentive Faculty
Financial Incentive Vibe
Ranking Degree Program
Ranking Campus
Ranking Faculty
Ranking Vibe
Degree Program Campus
Degree Program Faculty
Degree Program Vibe
Campus Faculty
Campus Vibe
Faculty Vibe
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Table 17: Criteria Ratio Matrix

Loc. Fin. Rank Degree Camp. Fac. Vibe
Loc. 1 5 6 6 4 1

3
1
4

Fin. 1
5 1 1

2 2 1
3

1
4

1
7

Rank 1
6 2 1 3 1

3
1
5

1
6

Degree 1
6

1
2

1
3 1 1

3
1
5

1
7

Camp. 1
4 3 3 3 1 1

3
1
4

Fac. 3 4 5 5 3 1 1
5

Vibe 4 7 6 7 4 5 1

Table 18: Criteria Weight Matrix (Eigenvalue = 7.736)

Criterion Weight
Loc. 0.1731
Fin. 0.0383
Rank 0.0490
Degree 0.0286
Camp. 0.0838
Fac. 0.2074
Vibe 0.4198

Table 19: Location Sub-Criteria Ratio Matrix

Weather Rural/Urban Distance
Weather 1 4 1

3

Rural/Urban 1
4 1 1

6

Distance 3 6 1

Table 20: Location Sub-Criteria Weight Matrix (Eigenvalue = 3.054)

Sub-Criterion Weight
Weather 0.2704

Rural/Urban 0.0852
Distance 0.6444
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Table 21: Rankings Sub-Criteria Ratio Matrix

Prestige Rankings
Prestige 1 3
Rankings 1

3 1

Table 22: Rankings Sub-Criteria Weight Matrix (Eigenvalue = 2)

Sub-Criterion Weight
Prestige 0.75
Rankings 0.25

Table 23: Campus Sub-Criteria Ratio Matrix

Grounds Buildings Labs
Grounds 1 1

3
1
6

Buildings 3 1 1
5

Labs 6 5 1

Table 24: Campus Sub-Criteria Weight Matrix (Eigenvalue = 3.094)

Sub-Criterion Weight
Grounds 0.0883
Buildings 0.1946

Labs 0.7171
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Table 25: Faculty Sub-Criteria Ratio Matrix

Potential Advisor Rest of Department
Potential Advisor 1 1

4

Rest of Department 4 1

Table 26: Faculty Sub-Criteria Weight Matrix (Eigenvalue = 2)

Sub-Criterion Weight
Potential Advisor 0.2
Rest of Department 0.8

Table 27: Alternative Ratio Matrix–“Weather”

Berkeley Madison Chicago UCSD UW
Berkeley 1 6 7 1

3 4
Madison 1

7 1 2 1
7 2

Chicago 1
7

1
2 1 1

7 2
UCSD 3 7 7 1 8
UW 1

4
1
2

1
2

1
8 1

Table 28: Alternative Weight Matrix–“Weather” (Eigenvalue = 5.283)

School Weight
Berkeley 0.2928
Madison 0.0790
Chicago 0.0589
UCSD 0.5207
UW 0.0486
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Table 29: Alternative Ratio Matrix–“Urban/Rural”

Berkeley Madison Chicago UCSD UW
Berkeley 1 4 6 3 1

3

Madison 1
4 1 4 4 1

5

Chicago 1
6

1
4 1 1

4
1
6

UCSD 1
3

1
4 4 1 1

5

UW 3 5 6 5 1

Table 30: Alternative Weight Matrix–“Urban/Rural” (Eigenvalue = 5.436)

School Weight
Berkeley 0.2725
Madison 0.1371
Chicago 0.0404
UCSD 0.0882
UW 0.4618

Table 31: Alternative Ratio Matrix–“Distance”

Berkeley Madison Chicago UCSD UW
Berkeley 1 5 4 7 2
Madison 1

5 1 1
3 5 1

4

Chicago 1
4 3 1 5 1

4

UCSD 1
7

1
5

1
5 1 1

7

UW 1
2 4 4 7 1

Table 32: Alternative Weight Matrix–“Distance” (Eigenvalue = 5.384)

School Weight
Berkeley 0.4255
Madison 0.0870
Chicago 0.1413
UCSD 0.0343
UW 0.3119
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Table 33: Alternative Ratio Matrix–“Prestige”

Berkeley Madison Chicago UCSD UW
Berkeley 1 4 6 8 8
Madison 1

4 1 3 5 5
Chicago 1

6
1
3 1 3 3

UCSD 1
8

1
5

1
3 1 1

2

UW 1
8

1
5

1
3 2 1

Table 34: Alternative Weight Matrix–“Prestige” (Eigenvalue = 5.228)

School Weight
Berkeley 0.5614
Madison 0.2289
Chicago 0.1104
UCSD 0.0428
UW 0.0565

Table 35: Alternative Ratio Matrix–“Ranking”

Berkeley Madison Chicago UCSD UW
Berkeley 1 4 5 6 8
Madison 1

4 1 3 4 6
Chicago 1

5
1
3 1 3 5

UCSD 1
6

1
4

1
3 1 3

UW 1
8

1
6

1
5

1
3 1

Table 36: Alternative Weight Matrix–“Ranking” (Eigenvalue = 5.330)

School Weight
Berkeley 0.5293
Madison 0.2347
Chicago 0.1311
UCSD 0.0689
UW 0.0360
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Table 37: Alternative Ratio Matrix–“Buildings”

Berkeley Madison Chicago UCSD UW
Berkeley 1 3 1

4 5 5
Madison 1

3 1 1
4 4 4

Chicago 4 4 1 6 5
UCSD 1

5
1
4

1
6 1 1

UW 1
5

1
4

1
5 1 1

Table 38: Alternative Weight Matrix–“Buildings” (Eigenvalue = 5.352)

School Weight
Berkeley 0.2509
Madison 0.1452
Chicago 0.4977
UCSD 0.0517
UW 0.0546

Table 39: Alternative Ratio Matrix–“Grounds”

Berkeley Madison Chicago UCSD UW
Berkeley 1 6 4 4 3
Madison 1

6 1 1
4

1
3

1
3

Chicago 1
4 4 1 3 1

3

UCSD 1
4 3 1

3 1 1
4

UW 1
3 3 3 4 1

Table 40: Alternative Weight Matrix–“Grounds” (Eigenvalue = 5.402)

School Weight
Berkeley 0.4585
Madison 0.0515
Chicago 0.1512
UCSD 0.0869
UW 0.2519
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Table 41: Alternative Ratio Matrix–“Labs”

Berkeley Madison Chicago UCSD UW
Berkeley 1 4 1

2 6 5
Madison 1

4 1 1
5 4 3

Chicago 2 5 1 6 5
UCSD 1

6
1
4

1
6 1 1

3

UW 1
5

1
3

1
5 3 1

Table 42: Alternative Weight Matrix–“Labs” (Eigenvalue = 5.324)

School Weight
Berkeley 0.3113
Madison 0.1278
Chicago 0.4347
UCSD 0.0417
UW 0.0733

Table 43: Alternative Ratio Matrix–“Potential Advisor”

Berkeley Madison Chicago UCSD UW
Berkeley 1 1 2 6 5
Madison 1 1 2 6 5
Chicago 1

2
1
2 1 5 4

UCSD 1
6

1
6

1
5 1 1

2

UW 1
5

1
5

1
4 2 1

Table 44: Alternative Weight Matrix–“Potential Advisor” (Eigenvalue = 5.070)

School Weight
Berkeley 0.3384
Madison 0.3384
Chicago 0.2078
UCSD 0.0465
UW 0.0687
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Table 45: Alternative Ratio Matrix–“Rest of Department”

Berkeley Madison Chicago UCSD UW
Berkeley 1 4 5 6 8
Madison 1

4 1 3 5 6
Chicago 1

5
1
3 1 3 5

UCSD 1
6

1
5

1
3 1 3

UW 1
8

1
6

1
5

1
3 1

Table 46: Alternative Weight Matrix–“Rest of Department” (Eigenvalue = 5.353)

School Weight
Berkeley 0.5269
Madison 0.2431
Chicago 0.1287
UCSD 0.0659
UW 0.0353

Table 47: Alternative Ratio Matrix–“Financial Incentive”

Berkeley Madison Chicago UCSD UW
Berkeley 1 1

3
1
6 3 1

4

Madison 3 1 1
3 4 1

3

Chicago 6 3 1 7 5
UCSD 1

3
1
4

1
7 1 1

6

UW 4 3 1
5 6 1

Table 48: Alternative Weight Matrix–“Financial Incentive” (Eigenvalue = 5.410)

School Weight
Berkeley 0.0697
Madison 0.1394
Chicago 0.5174
UCSD 0.0390
UW 0.2345
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Table 49: Alternative Ratio Matrix–“Degree Program”

Berkeley Madison Chicago UCSD UW
Berkeley 1 4 5 6 6
Madison 1

4 1 3 4 5
Chicago 1

5
1
3 1 3 4

UCSD 1
6

1
4

1
3 1 2

UW 1
6

1
5

1
4

1
2 1

Table 50: Alternative Weight Matrix–“Degree Program” (Eigenvalue = 5.320)

School Weight
Berkeley 0.5231
Madison 0.2349
Chicago 0.1305
UCSD 0.0652
UW 0.0463

Table 51: Alternative Ratio Matrix–“Vibe”

Berkeley Madison Chicago UCSD UW
Berkeley 1 3 4 6 5
Madison 1

3 1 3 5 4
Chicago 1

4
1
3 1 4 3

UCSD 1
6

1
5

1
4 1 1

3

UW 1
5

1
4

1
3 3 1

Table 52: Alternative Weight Matrix–“Vibe” (Eigenvalue = 5.314)

School Weight
Berkeley 0.4704
Madison 0.2620
Chicago 0.1440
UCSD 0.0446
UW 0.0791
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