
CLASSIFICATION TREES

by

Maya McNichol

A senior project submitted in partial fulfillment of the requirements
for graduation in Mathematics.

Whitman College
2018

ABSTRACT

A classification (or decision) tree is a predictive model used to analyze
data. This method allows us to assign a classification to a data point, using a
tree that was grown on data from the same measurement space. In this paper,
we discuss the methodology for growing these trees. We review background
material in probability and information theory, consider the accuracy of a
tree, and discuss the advantages of random forests. Finally, we grow a tree
using data about mushrooms and use this to classify mushrooms as either
edible or poisonous.

i

ACKNOWLEDGEMENTS

This paper would not be possible with the support of Professor Doug
Hundley. Thank you for the help feedback and guidance throughout this
project. Thank you to Luke Adams for his many edits and comments on
this paper, and thank you to Professor Patrick Keef for providing constant
advice and encouragement. Finally, thank you to all of the math majors of
2018 for all the support and enthusiasm in our final year together.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Probability Theory . 3
2.2 Information Theory . 13

3 Classifiers 16
3.1 Structure of the Trees . 18
3.2 Impurity . 20
3.3 Best Split . 22
3.4 Splitting vs. Stopping . 25
3.5 Class Assignment . 26
3.6 Pruning . 27

3.6.1 Iris Example . 28

4 Post Training Analysis 31
4.1 Error Estimation . 32
4.2 Confusion Matrix . 34

5 Forests 36
5.1 Bagging . 36
5.2 Ionosphere Example . 37

6 Applications 39

7 Further Research 44

iii

1 Introduction

We will be looking at classification trees as a way to analyze data. By the

end of this project, we hope to understand the algorithms for building these

decision trees as well as look at real world examples of where this method

is useful. We will work to understand the algorithms behind building the

decision trees by working in MATLab with data as well as looking at the

mathematics behind the decisions, placing a strong emphasis on probability

theory to build a strong foundation.

A classification (or decision) tree is a predictive model to classify data.

Each new data point, which can be regarded as a vector with components,

we wish to classify enters the tree at the root node. This node then splits

based on the value of some component of the data point, sending the data

point to a smaller node. The nodes are then repeatedly split until the data

point ends up in a node with no further splitting. Whatever the classification

of this node, we assign it to the data point. To initially grow a tree, we use

a sample of data points whose classifications are known.

To gain a firm understanding of the algorithms used to build the trees,

we will be looking at specific criteria. On one extreme, we could split the

data repeatedly so that after the last split there was a single data point in

each node. This would be computationally inefficient and would undermine

the whole purpose of our model. Therefore we want to minimize our com-

putations while maintaining an acceptable output. The first criterion is the

1

Figure 1: Structure of a generic classification (or decision) tree.

function that determines the ‘best split’ or the best partition of the data in

a single node in order to minimize our total number of splits. The second

major criterion is when to stop splitting and use the current partitions of the

data to determine our classes. We also need to determine what is ‘acceptable’

in order to work with both of these criteria.

We will discuss methods to determine the accuracy of a decision tree

as well as looking at a real world example. Lastly, we will discuss what

happens when we put many tress together to make a forest. The resulting

classifier can be compared to a single decision tree, both in the structure of

the actually tree and its accuracy for classifying data. Overall, we hope to

give a comprehensive overview of decision trees from the ground up.

2

2 Background

Before we grow a tree, we need some groundwork to get us on solid footing.

2.1 Probability Theory

We will begin our groundwork with an introduction to probability theory

where we will use the notation from A Primer on Information Theory, with

Applications to Neuroscience [3]. Consider tossing a regular 6-sided die. It

will either result in 1, 2, 3, 4, 5, or 6. In this case, the set {1, 2, 3, 4, 5, 6} form

the sample space for the experiment. That is, the sample space is the set

of all possible outcomes from an experiment, where an outcome is the result

of a single experiment. An event is a set of outcomes (i.e. {1, 2, 3} is the

event that the outcome is less than 4). According to Pierre-Simon Laplace:

“The probability of an event to occur is the number of cases favorable for

the event divided by the number of total outcomes possible.” In terms of our

definitions, the probability for an event to occur is the number of outcomes

in the sample space that correspond to that event divided by the size of the

sample space. Throughout our discussion of probabilities, it is important to

remember that the values are theoretical and are used to analyze data but

cannot be directly observed in real life.

Thus, the probability for an event to occur is a number between 0 and 1,

where 0 corresponds to the event never happening and 1 corresponding to the

event definitely happening. Since at least one outcome must always occur,

3

the sum of the probability of each outcome in the sample space is 1. While

we note the distinction between discrete samples spaces (like the 6-sided die

described above) and continuous sample spaces (like R) where the outcomes

form a continuum, we will primarily be considering discrete sample spaces in

this paper.

In order to formally define probability, we need to define a probability

space. However, this relies on some knowledge of measure spaces which

brings us farther from the point than necessary. Therefore, we suggest that

the interested reader do more research on the subject while we use only the

parts that we need.

We let a probability space be a triple (Ω,F , P) where

• Ω is a nonempty set of individual outcomes,

• F is the set of events, where each event is a set containing 0 or more

outcomes,

• P is a function called a probability measure, meaning that P : F → [0, 1]

such that

– P (∅) = 0,

– if Ei ∈ F for i = 1, 2, 3, ... are pairwise disjoint sets, then we find

P (∪iEi) =
∑

i P (Ei),

– noting that Ω ∈ F , we let P (Ω) = 1.

4

Going back to our 6-sided die, we let Ω = {1, 2, 3, 4, 5, 6}, the set of

all outcomes, and F = P(Ω), the set of all events or all combinations of

outcomes. The probability that we roll a 3 is P ({3}) = 1
6

and the probability

of rolling an odd number is

P ({1, 3, 5}) = P ({1}, {3}, {5}) = P ({1})+P ({3})+P ({5}) =
1

6
+

1

6
=

1

6
=

1

2
.

We can also look at the example of a fair coin toss. Here Ω = {heads, tails}

and F = {∅, {heads}, {tails},Ω}. Since this is a fair coin, we find that

P (∅) = 0, P ({head}) =
1

2
, P ({tails}) =

1

2
, and P (Ω) = 1.

This makes sense because we would expect the chance of getting a heads or

tails to be equal, while the probability that we get neither a heads or a tails

is zero and the probability that we would get either a heads or a tails when

flipping a coin is 1.

Now we will consider more than one event. Say there are two events we

want to consider, A and B, where A,B ∈ F . These two events are either

independent or conditional. We will first consider independent events. Two

events are independent if the occurrence of one does not effect the occurrence

of the other. Suppose we saw a bird today and it is Friday. Since birds are

around every day, not just certain days of the week, these two events are

independent. Therefore, we can say that the probability that we saw a bird

5

today, P (bird), and the probability that it was Friday, P (Friday), is

P (bird and Friday) = P (bird) · P (Friday).

To formalize this, we say two events A and B are independent if and only

if P (A ∩ B) = P (A)P (B). Then we can define conditional probability such

that the probability of A given B with P (B) > 0 is

P (A|B) =
P (A ∩B)

P (B)
. (1)

Notice that if A and B are independent, then

P (A|B) =
P (A ∩B)

P (B)
=
P (A)P (B)

P (B)
= P (A).

Now that we have formally defined independent and conditional proba-

bilities, we can look at Bayes’ Theorem:

Theorem 2.1 (Bayes’ Theorem). If A and B are two events, in F with

P (B) > 0, then the conditional probability of A given B is stated:

P (A|B) =
P (A)P (B|A)

P (B)
.

Proof. By Equation 1 we know P (B ∩A) = P (A)P (B|A) and we also know

P (A ∩ B) = P (B)P (A|B). Since A ∩ B = B ∩ A, we can equate the two

6

[H]

Figure 2: For the two events, A and B, we can observe their intersection and
their union.

prior equations:

P (B)P (A|B) = P (A)P (B|A)

P (A|B) =
P (A)P (A|B)

P (B)
,

completing the proof.

To more concretely understand Bayes’ Theorem (or Bayes’ rule) consider

the following example:

A student has some homework she needs to do. There is a 40% chance

she will do her homework on Monday. If she does her homework on Monday,

there is a 10% chance she does homework on Tuesday. If she does not do her

homework on Monday, there is an 80% chance she will do it on Tuesday. She

7

is not a model student. If we let A be the event that she does her homework

on Monday (and A′ be the even that she does not) and B be the event that

she does her homework on Tuesday, then:

P (A) = 0.4 P (A′) = 0.6 P (B|A) = 0.1

P (B′|A) = 0.9 P (B|A′) = 0.8 P (B′|A′) = 0.2

Given what we know, we can calculate the probability that she did home-

work on Tuesday or P (B), where the two disjoint possibilities are: “she did

homework on Monday and she did homework on Tuesday” and “she did not

do homework on Monday and she did homework on Tuesday.” Then we find

P (B) = P (B ∩ A) + P (B ∩ A′)

= P (A)P (B|A) + P (A′)P (B|A′)

= 0.4 · 0.1 + 0.6 · 0.8

= 0.52

= 52%.

From here, we have enough information to calculate the probability that she

did homework on Monday given that she did some on Tuesday. Using Bayes’

rule with the values P (B|A) = 0.1, P (A) = 0.4, and P (B) = 0.52, we find

P (A|B) =
0.4 · 0.1

0.52
= 0.0769,

so there is a 7.69% that she did homework on Monday if she did on Tuesday.

8

Moving on to more probability theory, we will define a random variable

X to be a function that maps every element in Ω to a number (generally an

integer for discrete probabilities or real number for continuous) in Ω′, the set

of values corresponding to Ω. We will primarily consider real valued random

variables that map an outcome E ∈ Ω to a number X(E) ∈ R.

To illustrate this concept we will again use the example of a fair coin toss

with Ω = {heads, tails}, F = {∅, {head}, {tails},Ω}, where ∅ means that

neither heads nor tails occurs and Ω means that either heads or tails occurs,

and P is the probability distribution that assigns both heads and tails to the

probability of 1
2
. One way to define a random variable X1 is

X1 =

0 if heads

1 if tails.

We can define another random variable on a similar set, Ω3. Define X2 as

the number of heads in 3 tosses.

Given our random variables, we can define the probability distribution

such that the probability distribution on the random variable is induced by

the actual probability. For example, the distribution for X1 induced from P

is

P (X1 = 0) = P ({heads}) =
1

2

P (X1 = 1) = P ({tails}) =
1

2
.

9

For the second example of a random variable, we can define the probability

distribution based on the following outcomes:

heads heads heads P (X2 = 0) = 1
8

tails heads heads heads heads tails tails heads tails P (X2 = 1) = 3
8

heads tails heads tails tails heads heads tails tails P (X2 = 2) = 3
8

tails tails tails P (X2 = 3) = 1
8

We will assume that P , the probability function for F , can be used on the

random variable as well, in order to simplify notation and because they result

in the same value. Thus, P (X = x) = P (x).

Since our random variables take on integer or real values, we can use their

total ordering to define a cumulative distribution function or cdf correspond-

ing to X such that F (x) := P (X ≤ x), where for continuous probabilities

P (X ≤ x) =

∫
τ≤x

P (X = τ)dτ

and for discrete probabilities

P (X ≤ x) =
∑
k≤x

P (X = k).

We will now consider two important properties of random variables: the

expected value and the variance. The expected value, or expectation, for the

10

random variable is the theoretical mean and is given by

E[X] :=

∫
R
xP (x)dx,

for continuous probability distributions and

E[X] :=
∑
x∈Z

xP (x),

for discrete probabilities. This is the average value of the random variable,

X, with each numerical value weighted according to the probability density

function. Next, we define the variance of X, which is a measure for how far

the values of the random variable are spread from the expectation value, to

be

σ2 = var[X] := E[(E[X]−X)2].

While these are both very important terms, in this paper we will generally

consider the applications of these: the sample mean and sample variance.

The sample mean is the observed mean for a set of data and can be calculated

x̄ =
1

n

n∑
i=1

xi.

The sample variance is the measure of the observed distance between the

11

observed values and the sample mean and can be calculated

s2 =
1

n− 1

n∑
i=1

(x̄− xi)2.

Looking back at some of our examples, we can calculate the expectation

value and variance for the coin toss:

E(X) =
1

2
· 0 +

1

2
· 1 =

1

2

and

var(X) =
1

2
(0− 1

2
)2 +

1

2
(1− 1

2
)2 =

1

4
.

For the 6-sided die example, we find:

E(X) =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5

and

var(X) =
91

6
− 49

4
≈ 2.92.

It is worth noting again, that many of the terms we discuss are purely

theoretical values and cannot be directly observed. For example, we cannot

roll a 3.5 with one roll of a standard 6-sided die. However, these values can

often be estimated by taking sample measurements of a random process.

12

2.2 Information Theory

We need some sort of measure to determine the information we gain from

some event. We can read information in a newspaper or observe some event.

Reading about an earthquake in California does not give us an much infor-

mation as an earthquake on the East Coast, where earthquakes are much

less likely. Therefore events that are less common provide more informa-

tion. Also, consider reading a three news paper articles: one about a shoe

company, and two about a city council election. Chances are, some of the

information in one of the articles about the city council election was also in

the other, while the information in the article about the shoe company was

completely different. Therefore, independent events should add information

while events with elements in common should be sub-additive. Lastly, we

do not lose information so the amount of information we gain from an event

should never be negative. We will use these three rules to define a function

h : F → R+ such that:

• For all events E1, E2 ∈ F , we find

– h(E1 ∩ E2) ≤ h(E1) + h(E2),

– h(E1 ∩E2) = h(E1) +h(E2) if and only if E1 and E2 are indepen-

dent.

• h(x) = 0 for all x ∈ F with P (x) = 1, meaning that if an outcome is a

‘sure thing,’ we gain no information from it.

13

• The function h is continuous and decreasing with respect to the proba-

bility distribution function P, meaning the more unexpected the event,

the higher the information from it. As the probability decreases, the

information increases.

Figure 3: Negative base 2 logarithmic function.

We notice that a negative logarithmic function fits each of these conditions

if we restrict the domain between to 0 and 1. We know that for independent

events E1 and E2,

P (E1 ∩ E2) = P (E1)P (E2).

Then we can observe

log(P (E1 ∩ E2)) = log(P (E1)P (E2)) = log(P (E1)) + log(P (E2)),

14

revealing that the information from independent events is the sum each in-

formation from each event, as desired.

It is important to note that we are not attempting to define any one

function. We are using the above statements as properties we need in an

information function. Therefore, we can use this to mathematically define

information.

Definition 2.1. Let (Ω,F , P) be a triple. Then the information h of an

event E ∈ F is

h(E) := h(P (E)) = − logb(P (E)).

We will use b = 2 as it is convenient to store information in ‘bits.’

Let us again go back to the 6-sided die. Since any roll provides us with

the same amount of information, we find that for x ∈ {1, 2, 3, 4, 5, 6}, the

information gain h(x) = − log2(
1
6
) = 2.58. In our 2 bit system, this is the

number of bits we need to store this information.

We can also consider the information as the smallest number of yes or no

questions we need to ask to determine what event occurred. We could first

ask if the roll was less that or equal to 3. Either answer gets rid of one half

of the possible events. Then we only have 3 events to choose from. Thus, on

average, it would take about 2.58 questions to determine which number was

rolled.

Now that we have defined information, we can consider the expected value

of information for an event, or the average of the information. We call this

15

the entropy.

Definition 2.2. Let X be a random variable on a triple (Ω,F , P). Then

the entropy is

H(X) := E[h(X)] =
J∑
j=1

−pj log2(pj),

where p1, ..., pJ is the set of discrete probabilities of events in F .

The entropy is the amount of information we expect to gain from looking

at the realizations of the random variable X.

This completes the background discussion. More information and details

can be found in [3].

3 Classifiers

In this section we will use the notation from Classification And Regression

Trees [1]. Suppose you are doctor working in the emergency rooms and a

patient comes in after having a heart attack. When this patient entered the

emergency room, 19 variables were measured about the patient’s age, blood

pressure, and other information about their medical history. These variables

were all measured within the first 24 hours of observation. We can use this

data to classify the patients as high or low risk, where high risk patients

tend to not survive more more than 30 days. The aim of this study was to

create an accurate classifier. This is a useful tool because, not only can we

accurately and quickly classify patient, but we can discover which variables

16

Figure 4: Classification tree for heart attack patients.

are needed to predict an outcome. We will discuss how such a classification

tree is produced, but for now we can see that such a tree was created using

only two of the measured variables, as shown in Figure 4

Suppose we have a set of measurements. We can refer to the information

about one patients as (x1, x2, x3, ..., xk), where if we were referring to the

medical study above, k would be 19. We call x = (x1, x2, x3, ..., xk) the

measurement vector and the measurement space X is the collection of all

possible measurement vectors. Referring to the same medical study, X is a

19-dimensional space. Each dimension in the measurement vector can either

be ordered if the values are real number or categorical if the values are from a

finite set with no natural ordering. From the previous example, we suppose

that the 1st dimension, from which the variable x1 comes, is age, an ordered

variable since the values come from the integers. The second dimension could

17

be the whether or not the patient has experienced a prior heart attack; in

this case x2 is either yes or no, a categorical variable.

In the medical study, a patient was classified as either high risk or low

risk: one of two classes. This is not always the case, so we will let C be the

set of classes such that C = {1, 2, 3, ..., J}, when there are J classes. We

want a rule that assigns each x ∈ X to some class in C.

Definition 3.1. [1] A classifier or classification rule is a function d : X → C

such that for every x ∈ X, we find d(x) = j for some j ∈ C.

We can also consider a classification as a partition of X where X =
⋃
j

Aj

and each Aj = {x|d(x) = j}.

It is important to note that classifiers are constructed using past data, not

created out of thin air. The data that we use to construct a classifier is called

a learning sample. The learning sample for the heart attack patients was the

past data from 215 patients including whether or not they survived the first

30 days, i.e. their classification. Mathematically, the learning sample, L, is

a set of ordered pairs (xn, jn) consisting of the measurement vector and its

assigned class; that is, L = {(xi, ji)|xi ∈ X, ji ∈ C}.

3.1 Structure of the Trees

In this work, we will concern ourselves only with binary trees. This means

that given a data set t, each decision will split that set into two smaller sets,

tl and tr, where t = tl ∪ tr.

18

In order to construct a tree, the first thing we need to consider is how to

use the learning sample L to make a set of binary splits on L. We want a

tree structure that eventually splits the whole learning sample into smaller

subsets, each having only one class label contained in it. Before we get too

far, we will define some terminology:

Definition 3.2. A node is a subset of the measurement space X, denoted t.

We begin with all of X, which we call the root node,. Next, we split the

measurement space with binary splits, creating more and more nodes. A

split is the resulting partition of a binary question that depends on only one

variable from a measurement vector. When a node is split into two smaller

nodes, the original node is referred to as the parent node, while the two

smaller are referred to as the daughter nodes. Eventually we reach a point

where splitting any further is not beneficial.

Definition 3.3. The nodes at the bottom of a tree, those that are not split

into smaller nodes, are called the terminal nodes, or leaves, and every data

point in that node is assigned to the same class.

The terminal nodes are important because when we put a data point

with an unknown class into the tree in order to predict its class, the terminal

node is where that label will be assigned. Therefore, choosing which nodes

are terminal is critical to the accuracy the of tree.

The last thing to mention is that we can look at a branch of the tree, or a

subtree. A branch begins with any single node and contains every node that

19

forms the partition of the initial node.

When growing a tree, we need it to act according to the following steps:

1. Begin with the entire learning sample and examine every possible split

on every variable.

2. Select the split with the greatest decrease in impurity (which will be

discussed in the sections entitled Impurity and Best Split) up to the

stopping rule (which will be discussed in the Splitting vs. Stopping

section)

3. Apply the split

4. Repeat these steps on the two child nodes

We will now look at these steps in more detail.

3.2 Impurity

An important property of a node relates to its elements. We want to know

how ‘pure’ a node is when deciding whether or not to split it further, meaning

how much are distinct classes mixed in that node.

Definition 3.4. Let t be a node. We define the node proportion p(j|t), where

j ∈ C, to be the proportion of the cases in t belonging to class j.

Given a node t, we will refer to the node proportion p(j|t) as pj. This

definition is useful because it allows us to quantify the proportion of each

class in a single node.

20

Next, we want to consider the impurity of a node. We can this of this

as, given a set of data, what is the chance of being incorrect if we were to

randomly assign a class to a randomly selected data point from that set?

Let us consider the two extremes. First, suppose all the the elements

of the set have the same class label. Then there is no chance that we can

incorrectly classify our data point since there is only one class label to choose

from. On the other hand, suppose that we have n elements in our data set,

each with a distinct class label. Then there is a 1
n

of choosing correct label

so a 1− 1
n

chance of picking the incorrect label.

This is called the Gini Impurity measure, and we will refer to it as simply

impurity. Given a node t with J classes and node proportions pj where

j = 1, 2, ..., J, there is a pj chance of an element of class j being chosen and

a 1− pj chance of incorrectly classifying it. Then we can formally define the

impurity as follows:

Definition 3.5. The impurity of a node t is given as

it =
J∑
j=1

pj(1− pj) = 1−
J∑
j=1

p2j .

Now that we have the concept impurity, we can see that more impure a

node, the less likely that we will assign it as a terminal node.

21

3.3 Best Split

When we want to split a node into two smaller nodes, we want a way to

measure how good the split was. There are two ways we can do this. First,

we can use the impurity. As we build the tree from the root node, we want to

split each node in a way that decreases its impurity. We want the impurity

of the parent node to be larger than that of the daughter nodes.

Letting t be the parent node and s the split that gives tl and tr as the

daughter nodes, we want to find the split that give the greatest decrease in

impurity. We do this by looking that the change in impurity, ∆it(s), for the

split s of node t. We find that

∆it(s) = it − (itl + itr) (2)

is the change in impurity of the given split. We want to find the split that

gives the greatest decrease in impurity.

The second way to measure the goodness of a split uses the entropy.

Recall from Definition 2.2 that the entropy in node t is given by

H(t) =
J∑
j=1

−pj log2(pj)

where pj is the given node proportion. From here we can find the difference in

entropy from the parent node to the daughter nodes. This is similar to what

we calculated with impurity; we want the split that results in the largest

22

decrease in entropy. We will use a weighted average of the entropy from the

daughter nodes to calculate the change, resulting in the following:

∆H = H(t)−
(
|tl|
|t|
H(tl) +

|tr|
|t|
H(tr)

)
. (3)

Let us look at both of these concepts through an example. Suppose our

node t has 12 elements: 2 from class a, 4 from class b and 6 from class c. The

node t is split into tl and tr, where tl has 7 elements (2 from class a, 3 from

class b and 1 from class c) and tr has 5 elements (5 from class c).

We can calculate the impurity of t:

it = 1−
J∑
j=1

p2j = 1−
(

2

12

)2

−
(

4

12

)2

−
(

6

12

)2

=
11

18
.

Similarly, we find that itl = 4/7 and itr = 0, since there is only one label in

tr. Now we can calculate the change on impurity of our split:

∆it(s) = it − itl − itr =
11

18
− 4

7
− 0 =

5

126
,

revealing that the impurity decreased.

23

We can also calculate the change in entropy from the split. We find that

H(t) = − 2

12
log2

(
2

12

)
− 4

12
log2

(
4

12

)
− 6

12
log2

(
6

12

)
≈ 1.46,

H(tl) = −2

7
log2

(
2

7

)
− 4

7
log2

(
4

7

)
− 1

7
log2

(
1

7

)
≈ 0.98,

H(tr) = −5

5
log2

(
5

5

)
= 0.

Using Equation 3, we find

∆H = H(t)−
(
|tl|
|t|
H(tl) +

|tr|
|t|
H(tr)

)
= 1.46−

(
7

12
· 0.98 +

5

12
· 0
)

= 0.48,

revealing that the entropy also decreased after the split.

Now that we have defined these two methods and explored both methods

through an example, we will focus our attention to the impurity. To find the

best split for each node, we must look at every possible split and pick the

one with the largest decrease in impurity.

In order to formally define the best split, we need the notion of the set

of all possible splits of a node t. The set of splits, S, is the set of all yes or

no questions that can be asked about a single variable. Then we define the

best split as follows:

Definition 3.6. Let s∗ ∈ S. Then s∗ is the best split when

∆it(s
∗) = max{∆it(s)|s ∈ S}.

24

We want to find the question about a specific variable such that a split

of the node based on how each measurement vector in that node responds to

the question, results in the maximum decrease in impurity.

3.4 Splitting vs. Stopping

Once we have split the root node into smaller nodes and the tree has grown,

we want a way to decide when it is big enough. Thus, we need a measure

that tells us when to stopping splitting a node.

If a node is completely pure, it only contains measurement vectors of a

single class; splitting it further would only add to the complexity of the tree

without increasing accuracy at all. Therefore, if a node is pure, we stop

splitting on that node.

There are three other criteria we use to decide when to stop splitting an

impure node. These are numerical values that we set to avoid over-fitting the

learning sample. Over fitting is when the tree grows so big that the terminal

nodes are so small that the tree has basically memorized the data. This leads

to more error when trying to predict the class of an unknown measurement

vector. To avoid this, we use these three numerical restrictions:

1. A minimum parent size. When a node has less than this number of

cases from the learning sample in it, we do not split it further.

2. A minimum leaf size. When a split will create a daughter node with

fewer than this number of cases from the learning sample, we do not

25

make that split.

3. A maximum number of splits. When the tree has more than the max-

imum number of splits, we do not split further.

Whenever any of these three conditions or the condition that the node is

pure are met, we stop splitting that node and call it a terminal node.

3.5 Class Assignment

Once we have built a tree and have a set of terminal nodes, we need to assign

each terminal node a class. It is simple when the terminal node is pure; we

assign the only class that occurs in that node to every measurement vector

in that node.

If more that one class occur in the terminal node, we assign every mea-

surement vector in that node to the class with the highest node proportion.

For example, if we had 2 elements from class a, 4 from class b, and 6 from

class c, we would assign the node to class c. If there is more that one class

with equal and highest node proportion, we randomly choose between those

classes. Whichever class is randomly selected is assigned to every measure-

ment vector in the terminal node.

Going back to the heart attack example, consider the split based on the

systolic blood pressure. For patients with a systolic blood pressure greater

than or equal to 91, the node proportion was higher for high risk patients

than low risk. Thus, that terminal node was classified as high risk. The same

26

comparison of node proportions was done for the other two terminal nodes,

resulting in the tree shown in Figure 4.

3.6 Pruning

When growing a decision tree, we can grow a large, intricate tree with smaller

node sizes and more nodes, or we can grow a smaller, simpler tree. In theory,

we can grow a tree in which every terminal node only has one element from

the learning sample. As we mentioned before, this tree would over fit and

essentially memorize the learning sample. This would result in a highly

accurate tree when tested with the same learning sample, but when tested

with new data, the accuracy would be much lower. On the other hand, we

can grow a smaller tree with less splits and fewer nodes. This tree will seem

less accurate when tested on the same learning sample but will maintain that

accuracy when tested on a new data set; the tree will be more robust.

There are two ways to adjust the size of our trees. The first is by adjusting

the parameters we used for the stopping criteria. Recall, we used minimum

parent size, minimum leaf size, and maximum number of splits to determine

when to stop growing the tree. If we were to decrease the minimum parent

size and minimum leaf size and increase the maximum number of splits, the

tree would grow larger before reaching any of these cutoffs. This leads to a

bigger, more complex tree. Conversely, if we were to increase the minimum

parent size and minimum leaf size and decrease the maximum number of

splits, we would get a smaller, simpler tree.

27

The second method is called pruning. Here, we set the three conditions

to their extremes and grow a large tree. Consider a branch of that tree. We

cut off the branch just below root node, making that root node a terminal

node. Then use the class assignment rule to assign a class to that node; that

is, assign the class the occurs with greatest frequency within that node.

We can do this to many levels of branches to achieve different pruning

levels. These will all result in trees of varying complexity. To choose the best

pruned tree, we will test all possible pruning levels using cross validation (see

Error Estimation section) and choose the one with the smallest error.

3.6.1 Iris Example

To better understand pruning, we will look at an example about iris flowers.

We have a set of data about three species of irises from MATLAB. Each

measurement has four predictors: sepal length, sepal width, petal length and

petal width. The sepal is the small green piece that encases the flower bud.

Based on these predictors, each flower is classified as one of three iris species:

virginica, setosa, or versicolor. Using MATLAB to build a complex tree, we

get Figure 5.

28

Figure 5: Classification tree for the iris data.

This tree has four levels of pruning. We can graph the cross-validated

error vs. the level of pruning to see where the error is the smallest. We find

that three is the best level of pruning for this tree.

29

Figure 6: Plot of pruning level versus error for the iris tree.

Going back to the first method of controlling the tree complexity, we can

look at the accuracy of the tree versus the minimum leaf size.

30

Figure 7: Plot of the minimum leafs size versus error for the iris tree.

From here, we can see that, keeping all the other parameters constant,

the most accurate tree occurs when the minimum leaf size is between 30 and

40.

4 Post Training Analysis

After we grow a tree, it is useful to know how accurate that tree is at clas-

sifying new data. We often want to know the percent of cases that were

misclassified. However, we may also want to see which cases were misclassi-

31

fied and what they were misclassified as. We will look at these two problems

separately.

4.1 Error Estimation

When trying to determine the overall misclassification rate, we need to know

the class of every case in the measurement space. Unfortunately, we often do

not have more data with known classes (much less the whole measurement

space), since we used the known data to grow the tree. Therefore, we have

to find a way to estimate the error.

One way to do this is using the resubstitution estimate. This is the

difference between the known class of a measurement vector and the class

assigned by the tree. The higher the resubstitution error, the more cases

that were misclassified and the less accurate the tree. This method tends to

be overly optimistic in its error estimation, due to the fact that it is being

test on the same data that trained it.

To more formally define the resubstitution estimate, suppose we have

a learning sample of size N with J classes and a classification rule d(x).

Letting xn be a measurement vector from the learning sample and jn be its

corresponding class from the set of J classes, we define the following:

Definition 4.1. Let X (·) be 1 when the statement inside the parentheses is

32

true and 0 otherwise. Then the resubstitution estimate, R(d), is

R(d) =
1

N

N∑
n=1

X (d(xn) 6= jn).

An example of an extreme case is letting Aj include all vectors xn ∈ L

with jn = j and all other vectors in X are randomly assigned to one or the

other of Aj. This gives us a resubstitution error R(d) = 0. However, it is

probably not the case that the actual accuracy of the tree is perfect.

Another type is called the test sample estimate. Here, we partition the

learning sample into two subsets L1 and L2, making sure that the cases

in each subset are independent of each other. We use L1 to construct the

classifier d and then use L2 to estimate the accuracy of the tree. Letting N2

be the number of cases in L2, the test sample estimate is

Rts(d) =
1

N2

∑
(xn,jn)∈L2

X (d(xn) 6= jn).

Although there is no theoretical justification for this, the common practice is

to let L1 be 2
3

of L and L2 be 1
3

of L. One of the drawbacks of this estimation

is that it limits the sample size used to construct the tree. Therefore, this is

a good method to use for a large data set.

For smaller data sets, another method called V-fold cross-validation esti-

mate can be used. Here, the elements of L are randomly partitioned into V

subsets of roughly equal size L1,L2, ...,LV . We will construct V classifiers;

33

for each v ∈ {1, 2, ..., V }, we will construct a classifier d(v)(x) on L \ Lv and

use the remaining elements of L, namely Lv, to calculate the test sample

estimate of the accuracy of the classifier d(v)(x). We find

Rts(d(v)) =
1

|Lv|
∑

(xn,jn)∈Lv

X (d(v)(xn) 6= jn).

Since each d(v)(x) classifier is built from almost all of L, each of these estimate

is approximately equal to the true accuracy of the tree. Using this, the cross-

validation estimate is

Rcv(d) :=
1

V

V∑
v=1

Rts(d(v)).

This gives us several ways to estimate the accuracy of a tree.

4.2 Confusion Matrix

While knowing the overall accuracy of a tree is important, we might also want

to consider how the cases were misclassified. In the heart attack example

discussed previously, there is a crucial distinction on how the patients could

be misclassified. If a patient who was actually low risk was misclassified as

high risk, that would result in more monitoring and medical attention which

would not put the patient in any danger. On the other hand, if a high risk

patient were accidentally classified as low risk, resulting in less monitoring

and medical attention, then the patient’s life could be at risk. Therefore, we

34

want a way to understand how this misclassifications occur.

We do this using a confusion matrix. This is a matrix with the predicted

class on the horizontal axis and the true class on the vertical axis. It allows

us to see which classes were misclassified as which other classes.

Going back to the iris data from section 3.6.1, we can discuss the confusion

matrix for the classification tree.

Figure 8: Confusion matrix for the iris classification tree.

From Figure 8, we can see that we classified 141 cases correctly. There

were three cases we predicted were versicolor but were actually viginica and

35

six cases we predicted were virginica but were actually versicolor.

While the ramifications for misclassifying irises is minimal, imagine we

had been predicting the species of mushrooms, where some are tasty and

some are deadly.

5 Forests

Now that we understand and can grow trees, we will consider multiple trees,

or a forest.

5.1 Bagging

Although there are a few different type of forests, we will only consider

one method of using multiple trees. This is called bootstrap aggregating or

bagging.

Suppose we have a data set where the correct classification of each mea-

surement vector is known, and we call this the learning sample, L. Let

|L| = n. Now we take a random sample from L that has approximately

2n/3 cases and call this D1, or a bag. Repeat this m times. We now have m

subsets of L, where |Dm| ≈ 2n/3.

Using each Di, we build a classification tree. Now, when we input an

unknown measurement vector into the forest, each classification tree gives a

class for that case. We let each tree have one vote and the class with the

most votes is the class we assign to the measurement vector.

36

This method takes the emphasis off building a highly accurate tree but

still results in an effective classifier.

5.2 Ionosphere Example

We will look at an example to see how a forest can be more accurate. We

have data about the ionosphere built into MATLAB. There are 351 measure-

ment vectors with 34 predictors. We want to classify each case as either a

good (g) or bad (b) radar return. Using MATLAB, we can build a complex

classification tree (Figure 9), a pruned tree (Figure 10), and a forest of 50

bagged trees.

Figure 9: Complex classification tree for ionosphere data.

37

Figure 10: Pruned classification tree for ionosphere data.

We can then plot the out-of-bag classification error versus the number of

trees grown for the forest. The out-of-bag classification error is the misclassi-

fication rate for a tree that is tested using the samples from L that were not

in the bag used to build the tree. It is shown in [1] that using the out-of-bag

samples to estimate the true misclassification rate is as accurate as using a

test sample.

38

Figure 11: The out-of-bag classification error vs. number of trees.

As we can see, the more trees in the forest, the lower the error. That is,

although the individual trees were not always highly accurate at classifying

new data, when we put many of these trees together, we were able to build

a classifier that could much more accurately predict the class of an unknown

measurement vector.

6 Applications

By now, we understand the methods and motivations behind building trees.

We will use what we have learned to build a classifier for mushrooms, classi-

39

fying each mushroom as either poisonous or edible.

This data comes from the Adubon Society Field Guide to North Amer-

ican Mushrooms [2]. In this data, there are 8124 cases and 22 categorical

predictors. We hope to classify each mushrooms as either edible or poisonous.

We begin by building a simple tree in MATLAB.

Figure 12: Simple tree for the mushroom data.

40

Here, the tree splits the data first according to the odor, then spore print

color, stalk color below the ring, and finally cap surface. This gives a tree

with 99.7% accuracy.

Figure 13: Confusion matrix for the simple mushroom tree.

This 99.7% accuracy appears to be a good result. However, looking at

the confusion matrix, we can see that of the 24 cases that were misclassified,

all of the were classified as edible but were actually poisonous. Therefore,

this would not be a reliable way to determine if a mushroom were edible or

41

poisonous, because the 0.3% chance of being incorrect could be deadly.

We can build a more complex tree from the same data and we arrive at

Figure 14.

Figure 14: Complex tree for the mushroom data.

This tree is 100% accurate according to MATLAB. We can compare the

confusion matrix of this tree to the confusion matrix in Figure 13.

42

Figure 15: Confusion Matrix for the complex mushroom tree.

Here we can see that since there were no misclassified mushrooms, there

were none accidentally classified as edible that were actually poisonous.

Therefore, this would be a much better classifier to use if one were to eat

there mushrooms (which we do not recommend).

The mushroom example illustrates why a decision tree can be useful.

There are many reasons why classification trees are useful as a predictive

model. One is the flexibility of the type of data, categorical (binary or not)

43

or numerical. Another is the easy graphical interpretation. We can represent

the tree on a piece of paper, as we did with the mushrooms trees above,

and we can use that tree to classify new cases; we do not have to imagine

some n-dimensional space. We can use decision trees on any sort of general

classification problem.

7 Further Research

We should now have a solid understanding of what a decision tree is and

how we build one. We also looked at some basic probability and information

theory in section 2 to create a solid foundation from which to build. Now,

we will consider ways to improve our models.

In this paper, we only considered binary trees. To make our trees more

accurate, we could split three or more times. However, as stated above,

one of the advantages of decision trees is their ease of visual interpretation.

Making our trees more complicated by adding more splits would make them

less easily interpreted.

This same trade off is valid for forests versus single trees. While one tree

is easy to visualize and even write down, things get more complicated when

looking at multiple trees, especially when we build a forest on the order of

100 trees. There is always a balance between simplicity and accuracy that

needs to be struck.

One last improvement that could be made is adding a cost to misclassi-

44

fications. While we want to minimize the overall misclassification rate, from

looking at the mushroom example, we can see that some misclassifications

are more consequential then others. Then, making it more ‘expensive’ to

incorrectly classify a mushroom as edible than to incorrectly classifying one

as poisonous, we could build a tree that would be less likely to misclassify in

that way.

Decision trees can be used for any sort of classification problem. Despite

their simplicity, decision trees prove to be robust and accurate, especially

when built together into a forest. Overall, decision trees are an effective and

efficient method of predictive analysis that can be visually interpreted and

easily understood.

References

[1] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. Classifica-
tion and Regression Trees. Boca Raton, FL: Chapman & Hall, 1984.

[2] Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repos-
itory http://archive.ics.uci.edu/ml. Irvine, CA: University of Cal-
ifornia, School of Information and Computer Science.

[3] Effenberger F. “A Primer on Information Theory with Applications to
Neuroscience.” In: Rakocevic G., Djukic T., Filipovic N., Milutinović
V. (eds) Computational Medicine in Data Mining and Modeling, April
2013. Springer, New York, NY.

[4] The Mathworks, Inc. (2018). Statistics and Machine Learning Toolbox,
R2018a. Retrieved from https://www.mathworks.com/help/pdf_doc/

stats/

45

