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Abstract

In multiple linear regression models, covariates are sometimes correlated with one another.
Multicollinearity can cause parameter estimates to be inaccurate, among many other statistical
analysis problems. When these problems arise, there are various remedial measures we can
take. Principal component analysis is one of these measures, and uses the manipulation and
analyzation of data matrices to reduce covariate dimensions, while maximizing the amount of
variation.

1 Introduction

We will begin by reviewing simple linear regression, multiple linear regression and matrix repre-
sentations of each model. An introduction to multicollinearity will follow, where it is important to
notice the inaccuracy and variability of parameter estimations in each of the examples. Before ex-
ploring principal component analysis (PCA), we will look into related matrix algebra and concepts
to help us understand the PCA process. Finally, as a solution to multicollinearity, we will walk
through the steps of PCA and an example showing this as a remedial measure to the parameter
estimation problem previously demonstrated.

2 Simple Linear Regression

2.1 Regression Model

In Chapter One of Applied Linear Regression Models [KNN04], a simple linear regression model is
defined as:

Yi = β0 + β1Xi + εi

where:
Yi is the value of the response variable in the ith trial;
β0 and β1 are parameters;
Xi is the value of the predictor variable in the ith trial;
εi is a random error term with mean E{εi} = 0 and variance σ2{εi} = σ2.

This model looks similar to the commonly used linear equation, y = mx + b. In simple lin-
ear regression, β0 is the y-intercept value and β1 is the slope of the model. We estimate these
parameters based on data that we are working with and the line that best fits these data. After
estimating β0 and β1, we are able to analyze many other aspects of the data. For example, we
can create confidence intervals, analyze variance, test for randomness, normality, outliers and many
other values. Essentially, these parameter values are important and interesting in analyzing the
relationship between our X and Y variables.

2.2 Matrix Approach

When a data set is very large, we need an easier way to keep track of and manipulate the data.
Chapter Five of Applied Linear Regression Models [KNN04], reviews matrix algebra and operations,
which we can then apply to analyzing simple linear regression models. Converting the simple linear
regression model, Yi = β0 + β1Xi + ε1, i = 1, ..., n, into matrix notation we get:
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Y =


Y1
Y2
...
Yn

X =


1 X1

1 X2

...
...

1 Xn

β =

[
β0
β1

]
ε =


ε1
ε2
...
εn

 .
We can now write these matrices in a similar formatted equation:

Y = Xβ + ε.

Notice the column of 1’s in the X matrix. This is to account for the constant β0 intercept that
doesn’t depend directly on any X values.

Using these matrices, we can easily find values that assist us in regression analysis such as fitted
values, residuals and sums of squares. For example, finding residuals is calculated using the vector
of residuals ei = Yi − Ŷi which is denoted:

e =


e1
e2
...
en

 .
In a matrix equation we then have:

e = Y − Ŷ = Y −Xb,

where b is the estimated vector of β. We will go into more detail about the b vector in 4, but
for now it is important to notice that it is much easier to calculate these values using matrices.
[Lay06]

3 Multiple Linear Regression

3.1 Regression Model

In Chapter Six of Applied Linear Regression Models, the general linear regression model is defined
as:

Yi = β0 + β1Xi1 + β2Xi2 + ...+ βpXi,p + εi

where:

β0, β1, ..., βp are parameters;
Xi1, ..., Xi,p are known constants;
εi are independent N(0, σ2);
i = 1, ..., n.

Some special cases of multiple linear regression include polynomial regression, transformed vari-
ables, interaction effects, or any combination of these. Each case has a specific way of transforming
the equation we have back into the familiar multiple regression model form. Even though there are
many analysis techniques that are similar to simple linear regression, there are also some special-
ized topics unique to multiple linear regression. For example, calculating extra sums of squares,
the standardized version of the multiple linear regression model, and multicollinearity. We will
specifically be focusing on multicollinearity in this paper, but each of these topics have their own
effect on data analyzation. [KNN04]
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3.2 Matrix Approach

Similar to matrix notation for simple linear regression, we will use the multiple linear regression
model

Yi = β0 + β1Xi,1 + β2Xi,2 + ...+ βpXi,p + ε

and convert this into matrix notation:

Y =


Y1
Y2
...
Yn

X =


1 X1,1 X1,2 . . . X1,p

1 X2,1 X2,2 . . . X2,p

...
...

...
...

1 Xn,1 Xn,2 . . . Xn,p

β =


β0
β1
...
βp

 ε =


ε1
ε2
...
εn

 .
So in matrix terms, the model is

Y = Xβ + ε

where:

Y is a vector of responses;
β is a vector of parameters;
X is a matrix of constants;
ε is a vector of independent normal random variables.

We again see the column of 1’s in the X matrix. Sometimes in a multiple regression model, especially
in examples we’ll be using, we will work with what is called the design matrix. The design matrix
is the X matrix without the first column of 1’s. We use this to focus specifically on the relationship
between the covariates. [KNN04]

4 Multicollinearity

Chapter Seven of Applied Linear Regression Models [KNN04] gives the following definition of mul-
ticollinearity.

Definition 4.1. Multicollinearity exists among the predictor variables when these variables are
correlated among themselves.

Notice that multicollinearity can only occur when when we have two or more covariates, or in
multiple linear regression. This phenomenon can have effects on the extra sums of squares, fitted
values and predictions, regression coefficients, and many other parts of multiple linear regression.
We will be focusing specifically on how multicollinearity affects parameter estimates in Sections 4.1,
4.2 and 4.3. [KNN04]

4.1 Example: Simulation

In this example, we will use a simple two-variable model,

Y = β0 + β1X1 + β2X2 + ε,

to get us started with multicollinearity.
Let the sample size be n = 100, and the parameter values to be β0 = 4, β1 = 2, and β2 = 8. To

create a sample, we will generate 100 X1 and X2 values each, over the Uniform distribution. We set
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the range for X1 to be 4 to 25, and the range for X2 to be 3 to 10. These minimum and maximum
values are arbitrary; we are simply generating random values in these ranges for the covariates.
Finally, we will simulate 100 different ε values, or error values over the Normal distribution. We
will consider two cases.

Case One: First let’s examine the case where X1 and X2 are uncorrelated so we can see how
the parameters are supposed to behave under a simulation of data. X1 and X2 will be randomly
generated completely independent from each other. We will look at the full model,

Y = β0 + β1X1 + β2X2 + ε,

in the R output below.

##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.95216 -0.56536 0.01235 0.55097 2.77369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.89673 0.33462 11.64 <2e-16 ***
## X1 1.99619 0.01447 137.92 <2e-16 ***
## X2 8.00489 0.01543 518.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9126 on 97 degrees of freedom
## Multiple R-squared: 0.9997,Adjusted R-squared: 0.9997
## F-statistic: 1.418e+05 on 2 and 97 DF, p-value: < 2.2e-16

Under “Coefficients” in the “Estimate” column, we will see the parameter estimates for β0, β1
and β2 in that order. The simulated data did a great job estimating the parameter values of 4, 2,
and 8 that we set. Next, let’s look at the output for the following two models:

Y = β0 + β2X2 + ε, and Y = β0 + β1X1 + ε.

##
## Call:
## lm(formula = Y ~ X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.6225 -11.4740 0.8744 10.5931 19.8163
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.9569 3.4567 10.11 <2e-16 ***
## X2 7.9319 0.2154 36.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.75 on 98 degrees of freedom
## Multiple R-squared: 0.9326,Adjusted R-squared: 0.9319
## F-statistic: 1356 on 1 and 98 DF, p-value: < 2.2e-16
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##
## Call:
## lm(formula = Y ~ X1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -85.772 -43.930 8.703 40.648 74.529
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 127.1906 12.3488 10.300 <2e-16 ***
## X1 1.7385 0.7583 2.293 0.024 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 47.84 on 98 degrees of freedom
## Multiple R-squared: 0.05091,Adjusted R-squared: 0.04123
## F-statistic: 5.257 on 1 and 98 DF, p-value: 0.024

Notice that both of these models also predict the β1 and β2 parameters very well. However, we
see that the β0 values are quite inaccurate. This just means that the regression line is shifting, so,
in fact, we expect this to change as we remove or add predictor variables to the model. We are
really concerned with the β1 and β2 values because these describe the relationship between the X
and Y variables; they shouldn’t be changing much at all. In the first model, with just X2, β2 is
almost exactly 8, and in the second model, with just X1 is also very close to it’s initial set value of
2. This is because there is very little to no correlation between X1 and X2. In case two we will see
the effects of multicollinearity on parameter estimates.

Case Two: We will now consider the case where X1 and X2 are correlated with one another.
To do this, when we are simulating data we will add the random X1 value onto the randomly
generated X2 value. This causes X2 to depend significantly on what the random X1 value is, and
causes them to be very highly correlated with one another. First, let’s consider the full model,

Y = β0 + β1X1 + β2X2 + ε.

##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.95216 -0.56536 0.01235 0.55097 2.77369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.87227 0.39317 9.849 2.84e-16 ***
## X1 1.98151 0.04802 41.265 < 2e-16 ***
## X2 8.01468 0.04629 173.156 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9126 on 97 degrees of freedom
## Multiple R-squared: 0.9998,Adjusted R-squared: 0.9998
## F-statistic: 2.497e+05 on 2 and 97 DF, p-value: < 2.2e-16

Similar to when the covariates are uncorrelated, we see that with both X1 and X2 in the model,
our parameter values are very accurately estimated. However, we will begin to see problems when
we remove either X1 or X2. Now we will consider the following two models:

Y = β0 + β2X2 + ε, and Y = β0 + β1X1 + ε.
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##
## Call:
## lm(formula = Y ~ X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.0577 -3.2520 -0.4856 3.6934 7.8949
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.81401 1.35165 -4.301 4.02e-05 ***
## X2 9.83593 0.05975 164.615 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.911 on 98 degrees of freedom
## Multiple R-squared: 0.9964,Adjusted R-squared: 0.9964
## F-statistic: 2.71e+04 on 1 and 98 DF, p-value: < 2.2e-16

##
## Call:
## lm(formula = Y ~ X1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.867 -14.955 2.536 13.394 24.971
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 58.3782 4.1272 14.14 <2e-16 ***
## X1 9.9102 0.2534 39.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.99 on 98 degrees of freedom
## Multiple R-squared: 0.9398,Adjusted R-squared: 0.9392
## F-statistic: 1529 on 1 and 98 DF, p-value: < 2.2e-16

In the first R output, the estimate for β2 is 9.835 which is not very close to it’s original set
value of 8. This tells us that there could be multicollinearity affecting the estimates, as we would
suspect.

Similarly, the β1 estimate is 9.910, which is very far away from its set value of 2. This is
suggesting a completely different relationship between X1 and Y than what we initially set. By
removing either the X1 or the X2 term from the model, we see the effects of multicollinearity on
the model due to the correlation between these two predictor variables.

4.2 Example: Parameter Estimates

Consider a set of data where the variables are defined as X1= number of pennies, nickles, and
dimes, X2= total number of coins, and Y= amount of money in pocket. Intuitively, as X1 changes,
this affects the X2 and Y values as well. We will use the following sample data and put them in
vectors we can easily work with.
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X1 =



6
15
2
2
10
5
4
12
8
5


X2 =



10
25
4
3
14
7
7
18
13
7


Y =



$1.50
$4.23
$0.45
$0.23
$2.10
$1.45
$2.75
$2.43
$1.01
$0.59


Notice when we look at the linear model with just one of the predictor variables, either X1 or

X2, then the parameter values are both positive values.

##
## Call:
## lm(formula = Y ~ X1)
##
## Coefficients:
## (Intercept) X1
## 0.1136 0.2261

##
## Call:
## lm(formula = Y ~ X2)
##
## Coefficients:
## (Intercept) X2
## 0.07181 0.14835

However, when we add both X1 and X2 to our model, then one of the parameter values turns
negative.

##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Coefficients:
## (Intercept) X1 X2
## 0.1215 -0.3077 0.3404

We know that the relationship between X1 and X2 and Y should all be positive, because if the
number of coins increases in either category, then the total number should also increase. Because
X1 and X2 are highly correlated, we have trouble estimating the parameter values accurately. This
is another one of the effects multicollinearity can have on parameter estimates, and why we need
methods to fix it.

4.3 Example: Sample From Population

As a final example of multicollinearity effects on parameter estimates, we will simulate a large
population, take multiple samples and compare the parameter values over samples. We will first
create a population of 10,000 over a uniform distribution with X1 and X2 as random values between
5 and 100. We will also set β0 = 2, β1 = 8 and β2 = 4. Now we will take 100 samples of size 100
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Figure 1: Histograms of b1 and b2 values for Y = β0 + β1X1 + β2X2 + ε model.

from these X1 and X2 populations. Figure 1 shows histograms of the estimated β1 and β2 values
from the 100 samples, when we are using the full model: Y = β0 + β1X1 + β2X2 + ε.

We should notice that all of the values estimated for β1 over the 100 samples are between 7.985
and 8.015, which are very good estimates for our β1 = 8. Similarly, we have very good estimates
for β2 = 4, as the 100 samples produced values between 3.990 and 4.005.
Now, let’s remove X2 and examine the estimates for β1 from the model Y = β0 + β1X1 + ε.

We should notice the effects that multicollinearity has on our model in Figure 2. Our estimates
for β1 are now between 6 and 9.5, a much larger range around the actual value of 8. Finally, let’s
examine the model Y = β0 + β2X2 + ε when we remove X1.

Once again we see a much larger range of values in Figure 3, from 2 to 5.5, to estimate β2 which
was originally set to 4. The original model estimated our β values very well with both X1 and X2

included, but since these two variables were correlated with one another, we begin to see problems
when one of them is removed.

5 Matrix Algebra

5.1 The b Vector

We briefly mentioned in Section 2.2, that b is the estimated vector of β. This concept can also be
used when looking at multiple linear regression. Taking a closer look at the b vector in particular,
we know we use b to compute the vector of residuals, e, but we can also use it to determine the
least squares estimator. Let A’ denote the transpose of matrix A and let

S(b) =
∑

e2
i = e’e = Y’Y-Y’Xb-b’X’Y+b’X’Xb.
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Figure 2: Histogram of b1 values for Y = β0 + β1X1 + ε model.
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Figure 3: Histogram of b2 values for Y = β0 + β2X2 + ε model.
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Then
dS

db
= −2X’Y + 2X’Xb.

Finally, since the least squares estimator is a minimum of S(b), we set

dS

db
= 0,

and solving for b we get
b = (X’X)

−1
X’Y.

Moving into a more geometric understanding of the b vector, we can rewrite the residuals as

e = MY

where
M = I-X(X’X)

−1
X’.

We can then write
e = Y + Ŷ

where the y-hat matrix, Ŷ , and the hat matrix, H, are defined as

Ŷ = Xb = HY

and
H = X(X’X)

−1
X’

respectively.
In Figure 4 we see the geometric representation of the least-squares approximation using these

vectors and matrices. We can see that the vectors Y and e are orthogonal to each other, and the
orthogonal projection of Y onto the X plane is equal to the vector Ŷ = Xb. By creating this
projection, we are minimizing the residual vector e so that we obtain the linear combination of Xb
of the independent variables that are as close as possible to Y. Relating this back to multiple linear
regression directly, we are estimating the β vector of Ŷ = Xβ̂, turning this equation into Ŷ = Xb
with the estimated b vector. [Hei+04]

5.2 Variance-Covariance Matrix of b

An interesting value to look at is the variance-covariance matrix of b, or σ2{b}. First, let us
discuss and define variance as we would for simple linear regression. The variance of the sampling
distribution of b1 is

σ2b1 = σ2 1∑
(Xi − X̄)2

and the variance of the sampling distribution of b0 is

σ2b0 = σ2

[
1

n
+

1∑
(Xi − X̄)2

]
.
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Figure 4: Geometric representation of least-squares.

[Hei+04]

Each of these σ2 values can be estimated using the s2 or MSE value defined as

s2 = MSE =

∑
e2i

n− 2
,

where the numerator is the sum of the squared residuals, and n is the number of trials in the
population.
Next, we will look at the variance-covariance matrix of b, σ2{b}, for simple linear regression. The
values inside the matrix are as follows,

σ2{b} =

[
σ2{b0} σ{b0, b1}
σ{b1, b0} σ2{b1}

]
,

and can be calculated using
σ2{b} = σ2(X’X)−1.

We can also write this as

σ2{b} =


σ2

n
+

σ2X̄2∑
(Xi − X̄)2

−X̄σ2∑
(Xi − X̄)2

−X̄σ2∑
(Xi − X̄)2

σ2∑
(Xi − X̄)2

 .
To estimate this matrix, we can again replace each σ2 value with the MSE value. The variance, σ2,
essentially tells us the spread of these estimates of regression coefficients and the covariance, σ, tells
us the relationship or correlation between the coefficients between two or more random variables.
Finally, let’s look at how we would estimate the variance-covariance matrix of b for multiple linear
regression in matrix form. This is very similar to what we just looked at in simple linear regression,
but with a larger matrix telling us the relationships between the estimated coefficients. So the
variance-covariance matrix

σ2{b} =


σ2{b0} σ{b0, b1} . . . σ{b0, bp−1}
σ{b1, b0} σ2{b1} . . . σ{b1, bp−1}

...
...

...
σ{bp−1, b0} σ{bp−1, b1} . . . σ2{bp−1}


12



can be determined by
σ2{b} = σ2(X’X)−1.

Note that this equation, confirms the issues we saw with multicollinearity in the simulations from
Sections 4.1 and 4.3. The spread of the sampling distribution of the parameter estimates depends
on (X’X)−1, since this matrix will be nearly singular when the covariates are highly correlated.
Finally, the estimated variance-covariance matrix is given by

s2{b} = MSE(X’X)−1.

[KNN04]

5.3 Eigenvalues and Eigenvectors

Let’s first consider the definition of eigenvalues and eigenvectors from Chapter 5 of Lay’s Linear
Algebra text [Lay06].

Definition 5.1. An eigenvector of an n×n matrix A is a nonzero vector x such that Ax = λx for
some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of Ax = λx;
such an x is called an eigenvector corresponding to λ.

For example, let A=

[
2 7
−1 −6

]
. Then an eigenvector of A would be u=

[
−1
1

]
and it’s corresponding

eigenvalue would be λ = −5, since

Au =

[
2 7
−1 −6

] [
−1
1

]
=

[
5
−5

]
= −5

[
−1
1

]
= −5u.

A couple of important theorems pertaining to eigenvalues and eigenvectors that may be used with
Principal Component Analysis are as follows:

Theorem 5.1. If v1,...,vr are eigenvectors that correspond to distinct eigenvalues λ1, ..., λr of an
n× n matrix A, then the set {v1,...,vr} is linearly independent.

Theorem 5.2. An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

Theorem 5.3. Let A be a real 2× 2 matrix with a complex eigenvalue λ = a− bi(b 6= 0) and an
associated eigenvector v in C2. Then

A = PCP−1, where P = [Rev Imv] and C =

[
a −b
b a

]
.

[Lay06]

5.4 Spectral Decomposition

The spectrum of a matrix A is the set of eigenvalues of A. A theorem describing the spectrum and
some of its properties follows:

Theorem 5.4. An n× n symmetric matrix A has the following properties:
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1. A has n real eigenvalues, counting multiplicities.

2. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root
of the characteristic equation.

3. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to
different eigenvalues are orthogonal.

4. A is orthogonally diagonalizable.

Suppose that A=PDP′, where the columns of P are orthonormal eigenvectors u1, ...,un of A
and λ1, ..., λn represent the eigenvalues of A. Then

A = PDP′ =
[
u1 . . . un

]

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn



u1
′

u2
′

...
un
′

 .
Using matrix multiplication between P and D, we obtain

PDP′ =
[
λ1u1 . . . λnun

] u1
′

...
un
′


which leads us to the following representation.

The spectral decomposition of A can be represented using the following equation:

A = λ1u1u1
′ + λ2u2u2

′...+ λnunun
′.

This representation breaks A into projection matrices based on the spectrum (or eigenvalues) or
A. [Lay06]

5.4.1 Example

Consider the matrix

A =

3 1 1
1 4 0
1 0 4

 .
The eigenvalues of A are λ1 = 5, λ2 = 4, λ3 = 2, and the eigenvectors of A

are v1 =

1
1
1

, v2 =

 0
−1
1

, and v3 =

−2
1
1

, respectively.

Making these eigenvectors orthonormal, we get

v1
‖v1‖

=


1√
3
1√
3
1√
3

 v2
‖v2‖

=

 0
−1√
2
1√
2

 v3
‖v3‖

=


−2√
6
1√
6
1√
6

 .
14



So our P and P’ matrices for the formula A = PDP′ are

P =


1√
3

0 −2√
6

1√
3

−1√
2

1√
6

1√
3

1√
2

1√
6

P’ =


1√
3

1√
3

1√
3

0 −1√
2

1√
2

−2√
6

1√
6

1√
6

 .
Now denote the columns of P by u1, u2 and u3, respectively. Since we have all of the components

needed for spectral decomposition, we can use the formula

A = λ1u1u1
′ + λ2u2u2

′...+ λnunun
′

to write the spectral decomposition for A as

A = 5u1u1
′ + 4u2u2

′ + 2u3u3
′.

[Lay06]

6 Principal Component Analysis

In order to avoid the problems we’ve seen in previous examples regarding multicollinearity and
predicting values, we can use a process called principal component analysis.
This process is a dimension reduction tool used to reduce a large set of correlated predictor vari-
ables to a smaller, less correlated set, called principal components, that still contains most of the
information in the larger set.
The first principal component contains as much of the variability in the data as possible, and the
principal components following the first, account for remaining variability as much as they possibly
can. The analysis is usually performed on a square symmetric matrix, such as the covariance matrix
which was explained in Section 5.2.

Definition 6.1. The principal components for a set of vectors are a set of linear combinations
of the vectors, chosen so that this captures the most information in a smaller subset of vectors.

Even though this method may seem like a foolproof way to handle problems that multicollinear-
ity causes, there is no guarantee that the new dimensions are interpretable after dimension reduc-
tion. Sometimes, when a variable is left out, important information and variance of the data is also
removed so we aren’t able to estimate parameters accurately.

6.1 Determining Principal Components: Method One

Suppose we have a random vector X with p components, and X has population variance-covariance
matrix

σ2(X) =
∑

=


σ2
1 σ12 . . . σ1p}

σ21 σ2
2 . . . σ2p

...
...

...
σp1 σp2 . . . σ2

p

 .
The first goal is to look for a linear function α′1x of the elements of x having maximum variance
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and where α1 is a vector of p constants, so α′1x = α11x1 + α12x2 + ... + α1pxp =
∑p

j=1 α1jxj . We
then continue this process until the kth α′kx for the kth principal component. Up to p principal
components can be found, but usually most of the variation in x will be accounted for by k principal
components, with k < p. [Jol02]

6.2 Determining Principal Components: Method Two

A large part of determining principal components is manipulating the X matrix. Here, we will
start with the X matrix of data and nine predictor variables and walk through the process. We
assume first that X has n rows and k + 1 columns, and the first column is the one-vector with the
next k columns are x1 through xk. We also need the columns to be centered to have mean zero.
Unfortunately with most data, this is not the case and we need to subtract out the mean of each
column to obtain mean zero for each variable. We then have

X ′X =

(
n 0

0A

)
.

Taking the eigenvalues and eigenvectors of A, we let V = diag(λ1, ..., λk) where diag() denotes the
diagonal matrix, and U have u1, u2, ..., uk as columns. Using the spectral decomposition of A, we
get U ′X̄ ′X̄U = A.
Finally, let P = X̄U , where each column of P , pi, is a linear combination of the columns of X and
we call the pi’s principal components of the predictor variables. Since these principal components
are linear combinations of the covariates, they are in the column space spanned by the covariates.

6.3 Example: Finding and Interpreting Principal Components

We will introduce a new data set for this example called Protein Consumption in Europe. [Web73]
The predictor variables in this example represent nine different food groups, namely: Red Meat,
White Meat, Eggs, Milk, Fish, Cereal, Starch, Nuts, and Fruits/Vegetables. These nine variables
measure protein consumption in 25 different European countries. We will only be working with the
predictor variables here to demonstrate how to find principal components using matrix representa-
tion.
We will use Method Two to manipulate the X matrix in R to determine the principal components
for this data. So we start with X as a 25 × 9 matrix, with the covariates in the same order as
listed above. We won’t walk through each step of the method, since it is mostly just manipulating
matrices until we reach the principal component matrix. Below is the output from our R code
looking at the matrix U , with it’s columns as the eigenvectors from the A matrix.

## [,1] [,2] [,3] [,4] [,5]

## [1,] -0.3026094 0.05625165 0.29757957 -0.646476536 -0.32216008

## [2,] -0.3105562 0.23685334 -0.62389724 0.036992271 0.30016494

## [3,] -0.4266785 0.03533576 -0.18152828 -0.313163873 -0.07911048

## [4,] -0.3777273 0.18458877 0.38565773 0.003318279 0.20041361

## [5,] -0.1356499 -0.64681970 0.32127431 0.215955001 0.29003065

## [6,] 0.4377434 0.23348508 -0.09591750 0.006204117 -0.23816783

## [7,] -0.2972477 -0.35282564 -0.24297503 0.336684733 -0.73597332

## [8,] 0.4203344 -0.14331056 0.05438778 -0.330287545 -0.15053689
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## [9,] 0.1104199 -0.53619004 -0.40755612 -0.462055746 0.23351666

## [,6] [,7] [,8] [,9]

## [1,] -0.45986989 0.15033385 -0.01985770 -0.2459995

## [2,] -0.12100707 -0.01966356 -0.02787648 -0.5923966

## [3,] 0.36124872 -0.44327151 -0.49120023 0.3333861

## [4,] 0.61843780 0.46209500 0.08142193 -0.1780841

## [5,] -0.13679059 -0.10639350 -0.44873197 -0.3128262

## [6,] 0.08075842 0.40496408 -0.70299504 -0.1522596

## [7,] 0.14766670 0.15275311 0.11453956 -0.1218582

## [8,] 0.44701001 -0.40726235 0.18379989 -0.5182749

## [9,] 0.11854972 0.44997782 0.09196337 0.2029503

For the first principal component, in the first column of U , we see that Cereal and Nuts have
the largest positive values, and RedMeat, WhiteMeat, Eggs and Milk all have large negative values.
So we could interpret this as an “overall protein consumption” variable, meaning that people who
eat a lot of all food categories will have high protein intake. In the second principal component we
see that WhiteMeat and Cereal have higher positive values, and Fish, Starch and Fruits/Vegetables
have higher negative values. Since the negative values have more weight than the positive values,
we will consider these values. We can call this the “Fish, Starch and Fruits/Vegetables” variable,
meaning when people eat only foods from these categories, then their protein intake may suffer.
Looking at the third principal component, we see that WhiteMeat and Fruits/Vegetables have high
negative values, while RedMeat, Milk and Fish all have positive values that are significant. This
indicates that the amount of RedMeat, Milk and Fish that people eat positively affects their protein
intake. [Web73]

6.4 Example: Principal Component Analysis and Linear Regression

Introducing a new example, we will be examining the response variable body fat, and the predictor
variables defined below.

FAT: based on the immersion method, expressed as a percent of total weight
SKIN: a measure of the triceps skinfold thickness in millimeters
THIGH: thigh circumference in centimeters
ARM: mid-arm circumference in centimeters

The data is based on 20 female subjects, between the ages of 25-34 years. [Jol02]

We should notice intuitively, that as any of the predictor variables increase, we should also see
an increase in the response variable. Here is the beginning X design matrix with the columns as
SKIN, THIGH, ARM, and FAT, from left to right.
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X =



19.5 43.1 29.1 11.9
24.7 49.8 28.2 22.8
30.7 51.9 37.0 18.7
29.8 54.3 31.1 20.1
19.1 42.2 30.9 12.9
25.6 53.9 23.7 21.7
31.4 58.5 27.6 27.1
27.9 52.1 30.6 25.4
22.1 49.9 23.2 21.3
25.5 53.5 24.8 19.3
31.1 56.6 30.0 25.4
30.4 56.7 28.3 27.2
18.7 46.5 23.0 11.7
19.7 44.2 28.6 17.8
14.6 42.7 21.3 12.8
29.5 54.4 30.1 23.9
27.7 55.3 25.7 22.6
30.2 58.6 24.6 25.4
22.7 48.2 27.1 14.8
25.2 51.0 27.5 21.1



.

We will be using the steps of finding principal components based on Method Two in Section 6.2.
All of the matrix manipulation steps are included in the R code and we will look at the R outputs
of the values and matrices we need.

We will first analyze the original, full model,

FAT = β0 + β1SKIN + β2THIGH + β3ARM + ε.

Regressing the data onto FAT , we obtain:

FAT = 20.20 + 4.33SKIN− 2.86THIGH− 2.18ARM + ε.

Looking at the β values for this model, we see that two of them are negative values. Based
on the original analysis of the data, we shouldn’t expect any negative relationship Using the same
matrix manipulation process from Section 6.3, we can obtain the eigenvector matrix U displayed
below:

U =

0.695 0.050 0.718
0.629 0.441 0.640
0.348 0.896 0.274

 .
Using the columns of the eigenvector matrix U, we can create three principal components that

are linear combinations of SKIN, THIGH, and ARM.
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p1 = 0.695SKIN + 0.629THIGH + 0.348ARM

p2 = −0.050SKIN − 0.441THIGH + 0.896ARM

p3 = −0.718SKIN + 0.640THIGH + 0.274ARM

We regress p1, p2 and p3 onto FAT, just as we would normally regress covariates. We then
obtain the following summary of the model.

##
## Call:
## lm(formula = y ~ p1 + p2 + p3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7263 -1.6111 0.3923 1.4656 4.1277
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.1950 0.5545 36.418 < 2e-16 ***
## p1 12.7286 1.7261 7.374 1.57e-06 ***
## p2 -7.2340 2.5682 -2.817 0.0124 *
## p3 -119.3463 91.9924 -1.297 0.2129
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.48 on 16 degrees of freedom
## Multiple R-squared: 0.8014,Adjusted R-squared: 0.7641
## F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06

Looking at the p-value for the third principal component, we see that it is significantly higher
than the other p-values. This indicates, that this third principal component isn’t as significant in
the estimation of parameters as the other two. So we will remove this principal component and
transform back to the original data using the following process.

We will use this formula:
β̂pc = Uγ̂pc,

where γ̂pc is the U matrix, with the principal component p3 replaced with 0’s. So in this case,

γ̂pc =

0.695 0.050 0
0.629 0.441 0
0.348 0.896 0

 .
Thus, we obtain β̂pc, which will generally not contain zero elements, because elimination of

variables in the orthogonal model does not result in elimination of variables in the original model.
So, after transforming back to the original data, we will create a new, full model once again.

The model is as follows:

FAT = −17.309 + 0.483SKIN + 0.479THIGH + 0.037ARM + ε.

Notice that with this new model, all of the parameter estimates are positive, which is what we
expected originally. The process of analyzing and removing principal components in the model has
worked, and we have found a model and parameter estimates that correctly summarize the data.
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6.5 Other Uses for Principal Component Analysis

Principal component analysis is used in almost all scientific disciplines to analyze data. For example,
in neuroscience, this method is used to detect coordinated activities of large neuron ensembles. Some
of the other disciplines that use principal component analysis include biology, forestry, business,
chemistry, criminology, educational research, psychology, sociology, and sports for example. There
are also extensions of this process such as Correspondence Analysis and Multiple Factor Analysis.

7 Conclusion

Highly correlated covariates in a multiple regression model cause many issues with analysis of data.
Realize that principal component analysis cannot always fix the parameter estimation problems
caused by multicollinearity, but this process is often effective. Not only is PCA used in statistics
but also in many other disciplines and real world applications.
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