
Applications of Expander Graphs in
Cryptography

Aleksander Maricq

May 16, 2014

Abstract

Cryptographic hash algorithms form an important part of information secu-
rity. Over time, advances in technology lead to better, more efficient attacks
on these algorithms. Therefore, it is beneficial to explore either improvements
on existing algorithms or novel methods of hash algorithm construction. In
this paper, we explore the creation of cryptographic hash algorithms from
families of expander graphs. We begin by introducing the requisite back-
ground information in the subjects of graph theory and cryptography. We
then define what an expander graph is, and explore properties held by this
type of graph. We conclude this paper by discussing the construction of hash
functions from walks on expander graphs, giving examples of expander hash
functions found in literature, and covering general cryptanalytic attacks on
these algorithms.

Contents

1 Introduction 1

2 Fundamental Graph Theory 4
2.1 Basic Concepts . 4
2.2 Cayley Graphs . 7

3 Fundamental Cryptography 9
3.1 Hash Functions . 9
3.2 Computational Security . 11
3.3 The Merkle-Damgård transform 14
3.4 Cryptanalysis . 16

3.4.1 Generic Attacks . 17
3.4.2 Attacks on Iterated Hash Functions 18
3.4.3 Differential Cryptanalysis 19

3.5 Examples of Hash Functions 20
3.5.1 MD5 . 21
3.5.2 SHA-1 . 25

4 Expander Graphs 29
4.1 Graph Expansion . 29
4.2 Spectral Graph Theory . 33
4.3 Eigenvalue Bound and Ramanujan Graphs 35
4.4 Expansion in Cayley Graphs 37
4.5 Expanders and Random Graphs 38

5 Random Walks and Expander Hashes 40
5.1 Introduction to Random Walks 41
5.2 Expander Hashes . 43

5.2.1 General Construction 44
5.2.2 Cayley Hashes . 44

i

5.2.3 Security considerations 45
5.3 Examples of Expander Hashes 48

5.3.1 Zémor’s first proposal 48
5.3.2 Zémor-Tillich hash function 49
5.3.3 LPS hash function . 50
5.3.4 Morgenstern hash function 52
5.3.5 Pizer hash function . 53
5.3.6 ZesT hash function . 55

5.4 Cryptanalysis of Expander and Cayley Hashes 56

6 Conclusion 60

References 61

A Finite Fields 64

B Elliptic Curves 66

C Expander Graphs in Riemannian Geometry 68

ii

List of Figures

1 (a) Directed Graph. (b) Simple Graph. (c) k-Regular Graph
(k = 2). (d) Multigraph. 5

2 Merkle-Damgård transform [Pet09] 14
3 One round of MD5. F is one of the functions (not necessarily

F (X, Y, Z) itself) defined in our functions section, Mi is M [i],
Ki is T [i], <<<n denotes the circular left shift by n positions,
and � denotes addition modulo 232. 22

4 One round of SHA-1. F is one of the functions f defined in our
functions section, Wt is the expanded message word of round
t, Kt is K(t) as defined in our constants section, <<<n is Sn

as defined in our functions, and � denotes addition modulo 232. 27
5 The Petersen graph is an example of a Ramanujan graph. . . . 36

iii

1 Introduction

How does one keep a secret? The obvious answer to this question is to only
tell the recipient, but what if that secret needs to be transmitted in the
presence of a third party? How can one ensure that the intended recipient
knows the secret while simultaneously preventing anyone unintended from
discovering it? The field of Cryptography attempts to provide answers to
the previous question by making interception of a secret message essentially
a non-issue. A message is transformed via a process known as encryption,
making the result seemingly completely unrelated to the original message,
and is then transmitted to be decrypted by the intended recipient. Thus, all
any third party, or adversary, would see is the encrypted message, which is
worthless to them unless they happened to know the decryption technique.

Consider the following scenario. France decides it is tired of Switzer-
land’s neutrality and goes to war with them. Swiss command wants to be
able to transmit messages to the front lines without the French being able to
see the content of the messages. The Swiss, therefore, encrypt their messages
before transmitting them to the front lines, so that even if those messages
were intercepted, they’d have no way of knowing what the messages said with-
out a way of decrypting them. That way, the Swiss military can transmit
attack plans, troop movements, and so on, without France knowing about
them. This general wartime scenario has been repeated in various forms
throughout history. One of the earliest instances of encryption, for instance,
was the Caesar cipher, or shift cipher, used by Julius Caesar to send messages
to his generals.

With every encryption algorithm, however, there comes somebody look-
ing to break it. If an adversary continuously intercepts messages, the en-
cryption can be broken given enough time. The time it takes is prohibitively
long for most generic attacks on encryptions, so cleverer and more specific

1

attacks are required to bring the time requirement down to acceptable levels.
The study of breaking encryption is known as cryptanalysis, and there is a
constant struggle between cryptanalysis and cryptography. When a new en-
cryption technique is developed by cryptologists, cryptanalysts will attempt
to break it by brainstorming attacks against it. In response to those attacks,
the encryption technique is strengthened or a new encryption technique al-
together is invented, which prompts the cryptanalysts to figure out new and
better attacks, and so on and so forth.

To revisit our wartime example, while Switzerland is encrypting its mes-
sages so that France can’t read them, France is almost certainly intercepting
Switzerland’s messages, and is using a team of mathematicians to attempt
to decrypt them. Perhaps one of the most famous examples of this in his-
tory was during World War II, with the British attempt to decrypt German
transmissions that had been encrypted using both Enigma and Lorenz ma-
chines. Great Britain employed numerous cryptologists and mathematicians
at Bletchley Park to decode German transmissions, and it worked. The ef-
forts of the men and women at Bletchley Park are considered one of the most
important contributions to the war effort, and have been credited with an
earlier end to the war.

Nowadays, message encryption is still very important for military and
wartime purposes, but with the advent and explosive growth of the inter-
net, encryption has become necessary for essentially anybody who uses the
internet. For instance, people who check their finances online, use a credit
or debit card to purchase things, or submit sensitive personal information
over the web benefit from encryption as it allows them to avoid such prob-
lems as identity theft and fraud. Cryptography, therefore, has become more
important and widespread than ever before. With advances in computers,
the development of advanced encryption methods has become a lot easier.
However, these same technologic advances can be employed by cryptanaly-

2

sis to develop more advanced attacks on these methods. Thus, the struggle
between cryptography and cryptanalysis continues, and cryptography must
always be changing and improving.

This leads to the topic of this paper: We aim to explore the use of a
specific class of graph in the field of graph theory to develop new encryption
techniques. If these techniques have advantages over more commonly used
techniques, then more research and development of that area may lead to
better encryption techniques. We will start, then, by introducing requisite
topics in graph theory, cryptography, and cryptanalysis. From there, we
will introduce expander graphs, discuss expansion and properties of graphs
that affect it, and introduce the Ramanujan class of graphs. Finally, we will
explore the use of expander graphs to construct cryptographic hash functions,
including a general construction method, published examples, and general
cryptanalytic attacks on expander hashes.

3

2 Fundamental Graph Theory

If we want to introduce the concept of an expander graph, we must first talk
about the field of graph theory. Graph theory has been around at least since
the days of Leonhard Euler, who is considered to have laid the foundation
of graph theory with his famous paper concerning the problem of the seven
bridges of Königsberg. It has since grown into a mathematical field with
many important applications in fields such as computer science, physics,
chemistry, and even linguistics.

This section will introduce important concepts in graph theory that will
lay the foundation for introducing expander graphs later on in the paper.
Section 2.1 provides a general introduction to graph theory, where the def-
inition of a graph, specific graph types, and other basic concepts in graph
theory are discussed. Section 2.2 introduces a specific type of graph called a
Cayley graph, which combines the fields of graph theory and group theory.

2.1 Basic Concepts

A graph in its most abstract form is a set of objects and a set of connections
between some pairs of those objects. We give a more formal definition below:

Definition 2.1.1. A graph is an ordered pair G = (V,E) where V is a set
of vertices and E is a set of subsets e ⊂ V of cardinality 1 or 2.

There are many different categories of graphs. We will define some of
the more common categories below and provide visual examples in figure 1:

A directed graph G = (V,E) is a graph in which the elements of E are
ordered pairs, and an undirected graph is a graph in which the elements

4

1

2 3

4 5

1

2 3

4 5

(a) (b)

1

2 3

4 5

1

2 3

4 5

(c) (d)

Figure 1: (a) Directed Graph. (b) Simple Graph. (c) k-Regular Graph
(k = 2). (d) Multigraph.

of E are non-ordered pairs. Among undirected graphs, a graph G = (V,E)

is simple if there exist one or fewer edges between any two vertex pairs and
if there exist no edges connecting a vertex to itself. A multigraph allows
multiple edges, and while some definitions allow loops, ours will not allow
loops in multigraphs.

Another concept that will be important is regularity in graphs:

Definition 2.1.2. A graph G = (V,E) is k-regular if every vertex in V is
contained in exactly k edges, excluding loops, in E. Furthermore, a directed
graph must satisfy the additional property that the number of edges leaving

5

each vertex must equal the number of edges approaching each vertex.

The number of edges in E that a vertex vn ∈ V is contained in is also
known as the degree of vn. Additionally, we will say a graph has degree k
if it is k-regular. A simple k-regular graph with maximum connectivity has
every vertex connected to n− 1 other vertices, and is called the Complete
Graph on n vertices, denoted by Kn.

While there are many different types of graphs, some will certainly be
more useful to us than others in the coming sections. For instance, the use
of k-regular graphs ends up simplifying an important relation in expander
graph theory. Unless stated otherwise, we will be working with k-regular,
undirected multigraphs in our introduction to expander graphs. Additionally,
we will usually be working with families of graphs rather than individual
graphs, where a family of graphs is simply a set of graphs that share one or
more common characteristics.

It is also important to mention terms dealing with the connectivity of
graphs. Informally, a graph with many edges is dense, and a graph with
relatively few edges is sparse. A more formal definition follows, which also
extends the notion of the density of edges to families of graphs:

Definition 2.1.3. Consider a sequence of graphs {Gi}i∈N = {(Vi, Ei)}i∈N of
number of vertices increasing with i. Then

• If |Ei| = Θ(|Vi|2) for all i, then {Gi}i∈N is a family of dense graphs.

• If |Ei| = Θ(|Vi|) for all i, then {Gi}i∈N is a family of sparse graphs.

Where Θ represents the asymptotic behavior of |Ei|. [Pre99]

In simpler terms, the number of edges in a sparse graph should be on
the order of the number of vertices in the graph, and the number of edges in

6

a dense graph should be on the order of the number of vertices in the graph
squared.

Now that we’ve introduced graphs and their general structure, we can
introduce the idea of moving between vertices on a graph. A walk on a
graph is an alternating sequence of vertices and edges, beginning and ending
with a vertex. Additionally, each edge in the walk must directly connect
the preceding and following vertices in the sequence. A walk is closed if the
beginning and ending vertices in the sequence are the same, and open if they
are not.

The diameter of a graph G is defined as the maximum of the set of
lengths of the shortest-length walks between every pair of vertices in the
graph. A similar property of the graph is its girth. The girth of a graph
G(V,E) is simply the length of a shortest cycle in the graph. These three
concepts will be important in our later discussion of expander hashes.

2.2 Cayley Graphs

A Cayley graph is a graph that contains the structure of a group. For a group
G and a subset S of that group, the Cayley graph CG,S is constructed as
follows: V contains a vertex vg associated with each element g ∈ G, and E
contains the directed edge (vg1 , vg2) if and only if there is an s ∈ S such that
g2 = g1 ◦ s [Pet09].

Certain aspects of the set S of G determine certain properties that CG,S
will hold:

• The graph is connected if and only if the elements of S generate the
whole group.

7

• The graph is k-regular when |S| = k.

• The graph is undirected when S is symmetric, where a set is symmetric
if s ∈ S ⇐⇒ s−1 ∈ S.

Regardless of the properties of S, the elements of S are referred to as the
graph generators. Cayley graphs are also vertex transitive as for any
g1, g2 ∈ G the mapping vx → vg2g−1

1 x is a graph automorphism that sends g1
to g2 [Pet09].

Cayley graphs also hold interesting properties with regards to their di-
ameter. We find that for Cayley graphs of finite non-Abelian groups, the
diameter is often small. In fact, for finite simple non-Abelian groups, this
follows from Babai’s conjecture [Pet09]:

Conjecture 2.2.1. (Babai) There exists a constant c such that for any non-
abelian finite simple group G, for any symmetric set S ⊂ G that generates
G,

D(CG,S) < (log |G|)c.

8

3 Fundamental Cryptography

Before we talk about expander graphs, we will shift our focus over to the
field of cryptography to introduce hash functions. This is necessary in order
to provide some background for our later discussions of hash functions from
expander graphs. Hash functions form a very important part of the field
of cryptography, and there are many applications in pseudorandom number
generators, file verification, password verification, and they form a part of
many cryptographic authentication systems.

This section is constructed as follows. Section 3.1 will provide a basic
introduction to hash functions, as well as some basic requirements for a hash
function to be cryptographically secure. Section 3.2 will give an overview
of computational security in the context of cryptographic algorithms. Sec-
tion 3.3 will introduce the Merkle-Damgård construction for hash algorithms.
Section 3.4 will discuss general attacks on cryptographic hash functions, as
well as some attacks designed for iterated hash functions such as those uti-
lizing the Merkle-Damgård construction. Sections 3.1-3.4 were derived from
Christophe Petit’s dissertation on graph-based cryptographic hash functions
[Pet09]. Finally, section 3.5 gives examples of the construction of two hash
functions, MD5 and SHA1, utilizing the Merkle-Damgård construction.

3.1 Hash Functions

A hash function is a function that maps messages of large, arbitrary size
to hash values of small, constant size:

H : {0, 1}∗ → {0, 1}λ.

9

Often times, especially when considering security definitions, we will be in-
terested in not just single hash functions, but in families of hash functions
{Hn}n∈N parametrized by a security parameter n:

Hn : {0, 1}∗ → {0, 1}λ(n)

for some function λ(n). Additionally, it is useful to define a family of keyed
hash functions:

Hn : {0, 1}κ(n) × {0, 1}∗ → {0, 1}λ(n)

for some functions κ(n) and λ(n). If we are dealing with fixed-length input
messages, then the hash function is known as a fixed-length hash function:

Hn : {0, 1}κ(n) × {0, 1}µ(n) → {0, 1}λ(n)

for some functions κ(n), µ(n), and λ(n). While any number of hash functions
all share the common characteristics outlined above, they may differ greatly
both in terms of the function used and their construction. There exist many
possible hash functions, not all of them feasible: they may range from easy
to construct but not useful, to very useful in theory but hard or practically
impossible to build. For the sake of cryptography, we are interested in only
hash functions that are easy to construct yet cryptographically useful. That
is, we want a hash function where it is easy to compute the hash value from
any given message yet is also cryptographically secure. The most common
security requirements for hash functions are as follows:

• Preimage resistance: For essentially all pre-specified outputs, it is
computationally infeasible to find any input which hashes to that out-
put, i.e., to find any pre image m′ such that H(m′) = h for which a
corresponding input is not known.

10

• Second preimage resistance: It is computationally infeasible to find
any second input which has the same output as any specified input, i.e.,
given m, to find a second preimage m′ 6= m such that H(m) = H(m′).

• Collision resistance: It is computationally infeasible to find any two
distinct inputs m, m′ which hash to the same output, i.e., such that
H(m) = H(m′).

Roughly, collision resistance implies preimage and second preimage resis-
tance, but the converse is not true. More rigorous explorations of these
concepts can be found in section 2.2 of [Pet09].

3.2 Computational Security

We have now defined our system of security requirements, but what does it
mean for something to be “computationally infeasible”? To illustrate what
it means for something to be computationally infeasible or hard, consider
a collision-resistant hash function based on the definition outlined above.
Consider two algorithms that attempt to find collisions:

• Algorithm A1 constructs a database of couples (mi, H(mi)). Until it
finds a collision, A1 picks a random message mi, computes hi = H(mi),
checks the database for a previous occurrence of hi (in which case it has
found a collision). If hi has not yet appeared it stores the new couple
(mi, hi) in the database, otherwise it returns the collision found.

• Algorithm A2 picks two random messagesm andm′; it returns (m,m′)

if H(m) = H(m′) and returns ⊥ otherwise, where ⊥ indicates that the
two messages don’t hash to the same value.

11

Algorithm A1 always finds collisions after 2λ + 1 hash computations, and
about 2λ/2 in mean, and Algorithm A2 produces collisions with a probability
at least 1/2λ. We can see that once λ becomes sufficiently large, these algo-
rithms no longer become feasible. In particular, Algorithm A1 would require
a long time and prohibitively huge memory to execute, and the probability of
Algorithm A2 succeeding becomes so low as to become negligible in practice.

As we have alluded to above, we tend to consider our cryptographic def-
initions within the scope of computational security since unconditional
cryptographic security cannot be practically achieved. The above two al-
gorithmic examples reflect two main approaches for computational security,
which we will identify and formalize:

• Concrete approach: Some protocol will be (ε, t,m)-secure in some
sense if any algorithm running in time less than t and using a memory
smaller than m succeeds in some task with probability smaller than ε.

• Asymptotic approach: The hash family {Hn} is secure if each Hn is
(ε(n), t(n),m(n))-secure, the functions t(n) and m(n) do not grow too
fast with n, and the function ε(n) decreases fast enough with n.

To further explore concepts in cryptographic hash functions, it is useful to
define the following:

• An algorithm A is efficient or probabilistic polynomial time or
ppt if it can be solved in polynomial time by a probabilistic Turing
machine, or in other words, if there exists a polynomial p such that for
every input x ∈ {0, 1}∗, the computation of A(x) terminates within at
most p(|x|) steps, where x denotes the length of the string x.

• A function f is negligible if for every polynomial p there exists an N
such that for all integers n ≥ N it holds that f(n) < 1

p(n)
.

12

• A function f is noticeable if there exists a polynomial p such that for
all sufficiently large integers n it holds that f(n) > 1

p(n)
.

It is important to note that a ppt algorithm cannot use more than a poly-
nomial amount of memory, and that the notions of negligible and noticeable
functions are strong negations to one another. That is, there exist func-
tions that are neither noticeable nor negligible. The prior definitions allow
us to introduce the general form of an asymptotic security definition:

The cryptographic scheme X is secure in the sense Y if for any
ppt algorithm given an input of size n, there exists a negligible
function ε(n) such that the algorithm succeeds with probability
smaller than ε(n) in performing some task Z.

It ends up that many theorems in cryptography have a similar form:

If the computational assumption X holds, then the cryptographic
scheme Y is secure in the computational sense Z.

The consequence of having cryptographic theorems in that form is that it
reduces the question of whether Y is secure down to whether or not X is
true. The following are widely-used examples of computational assumptions
in cryptography:

• Integer Factorization Problem: given a large integer n = p·q where
p, q are prime, it is computationally hard to find p and q.

• Discrete Logarithm Problem: given a prime p, an element g of Fp
with large prime order, and the element gk mod p for some randomly
chosen k, it is computationally hard to return the k value.

• Elliptic Curve Discrete Logarithm Problem: given an elliptic
curve E defined over a prime field Fp, a rational point P ∈ E with

13

some large order, and the point Q = k · P for some randomly chosen
k, it is computationally hard to return the k value..

Many cryptographic algorithms base their security on the fact that no algo-
rithms exist to solve these problems in any feasible amount of time.

3.3 The Merkle-Damgård transform

Typically, cryptographic hash functions are built upon two main compo-
nents. The compression function hashes messages of a fixed size to hash
values of fixed, smaller size. The domain-extension transform uses the
compression function as a building block to construct hash functions with
arbitrary-length inputs.

Figure 2: Merkle-Damgård transform [Pet09]

The Merkle-Damgård transform, as seen in figure 2, is a common
example of a domain-extension transform. It is utilized in a variety of families
of hash functions, most notably in the SHA and MD families. Consider a
collision-resistant compression function f that takes as input a key s and a
message of size µ+λ, and returns a bitstring of size λ. The Merkle-Damgård
transform of f takes as input a key s and a message m of length L smaller
than 2λ, and returns a bitstring of size λ.

14

For the sake of collision-resistance, we use theMD-strengthening pro-
cess on our message m. This process produces N + 1 bitstrings m0, . . . ,mN

of size µ, where N = dL/µe. The message m is first decomposed into N
blocks of µ consecutive bits. If L is not a multiple of µ, the last block is
completed with zeroes. An additional block is constructed that contains a
binary representation of L on λ bits.

Let h0 = IV be some fixed initial value. The Merkle-Damgård trans-
form of f is defined as Hf (s,m) = hN+1, where hi = f(s, hi−1‖mi−1) and
x‖y denotes the concatenation of x and y. The Merkle-Damgård transform
satisfies the following property:

Theorem 3.3.1. (Merkle-Damgård) If (Gen, f) is a fixed-length collision-
resistant hash function, then (Gen,H) is a collision-resistant hash function.

Proof. Suppose an adversary finds m 6= m′ such that Hf (s,m) = Hf (s,m
′).

Write mi and m′i for the output blocks of the MD-strengthening of m and m′,
and hi and h′i for the intermediate values of the computation of Hf (s,m) and
Hf (s,m

′). Then there exists i ≤ n + 1 such that hi = h′i but hi−1‖mi−1 6=
h′i−1‖m′i−1, so the adversary has found a collision

(
hi−1‖mi−1, h

′
i−1‖m′i−1

)
on

the compression function.

The Merkle-Damgård transform is a domain-extending transform that
preserves collision resistance: it transforms a fixed-length collision-resistant
hash function into an arbitrary-length collision-resistant hash function. It is
important to note, however, that it does not preserve other properties such
as preimage resistance and second preimage resistance. For hash functions
utilizing the Merkle-Damgård transform, those properties will need to be
obtained from other aspects of their construction.

15

3.4 Cryptanalysis

An attack on a cryptographic protocol is a proof that this protocol does
not satisfy its claimed security properties. Attacks on hash functions tend
to target the collision and preimage-resistance properties. In the asymptotic
setting, a theoretical attack against the collision resistance of a hash function
is a ppt algorithm that finds collisions for asymptotically large values of
the security parameter. In practice, however, many hash functions are only
defined for a finite small set of values of the security parameter.

The feasibility of an attack is largely dependent on the resources the
attacker is willing to invest in an attack. The feasibility is usually estimated
in terms of time and memory complexities, to which we add the lengths of
hashed messages. By the standards of 2014, attacks running in time greater
than approximately 280 are considered infeasible (per DES standards), and
attacks with memory requirements greater than approximately 260 (approxi-
mately an Exabyte) or 270 (approximately a Zettabyte) are considered infea-
sible due to storage costs. That is, if a Terabyte hard drive is $50, then to
get an Exabyte worth of storage, $50, 000, 000 is required.

Since the codomain of any concrete hash function is a finite set, there
exist unavoidable generic attacks that can only be mitigated by fixing large
enough parameters. In practice, a preimage or collision attack is often con-
sidered successful if it computes preimage or collisions faster than generic
attacks. For iterated hash functions, such as those based around the Merkle-
Damgård transform, more efficient attacks exist. We will use this section to
identify and define both generic attacks and attacks on iterated hash func-
tions.

16

3.4.1 Generic Attacks

Brute force attack. Given the value h of a randomly chosen message, an
adversary can find a preimage m such that H(s,m) = h (where the key is
known by the adversary) by trying successive values m = 1, 2, . . . until he
finds a preimage. If the output is of size λ, then the attack is expected to
succeed in time 2λ.

Birthday attack. This attack is based on the birthday paradox, which
is concerned with the probability that two people have the same birthday
given a set of n people. We know by the pigeonhole principle that when
n = 366 (we are excluding February 29th), the probability that two people
have the same birthday is 100%. Surprisingly, we find that when n = 23

this probability is approximately 50.73%, and when n = 57 this probability
is approximately 99.01%.

Similarly, if the codomain of a hash function is of size 2λ, an adversary
can find collisions after 2λ/2 hash computations on random messages. Let
N = 2λ be the number of output values. The probability of finding collisions
after N ′ = 2λ/2 random trials is

P [col] = 1−
N ′−1∏
i=0

N − i
N

= 1−
N ′−1∏
i=0

1− i

N
.

From Taylor’s first-order approximation ex ≈ 1 + x we obtain

P [col] ≈ 1− e−
∑N′−1
i=1 i/N ≈ 1− e

N′2
2N = 1− 1√

e
≈ 0.39.

17

The birthday attack requires time and memory 2λ/2. However, by translat-
ing the collision problem to the problem of detecting cycles in an iterative
mapping, the memory requirement becomes negligible while the time require-
ment remains essentially the same. In this modified birthday attack, instead
of choosing the messages randomly, the adversary chooses them determin-
istically according to the previous hash value. This induces a deterministic
mapping on a finite set that will eventually repeat, resulting in cycles. The
main advantage of this approach is that there is no need to store all of the
hash values.

3.4.2 Attacks on Iterated Hash Functions

Meet-in-the-middle attack. If the compression function is invertible,
pre-images can be computed in time approximately 2λ/2 by extending the
birthday attack as follows: Apply the compression function to 2λ/2 random
messages and apply it backward to 2λ/2 other random messages. By the birth-
day paradox, there is a large probability that the adversary finds a common
value “In the middle”. This attack also has a memory-free version, but it is
not feasible if the compression function is preimage resistant.

Fixed point attack. This attack looks for an intermediate value hi−1 and a
message block mi such that f(s, hi−1‖mi) = hi. The attack allows inserting
any number of blocks mi without changing the hash value. In a Merkle-
Damgård construction, it becomes very practical if the initial value can be
selected by the adversary.

Multicollision attack. The birthday attack allows a collision to be found
to a compression function in time 2λ/2. Repeating the collision search λ/2

18

times, an adversary can find message blocks m1,m
′
1,m2,m

′
2, . . . ,mλ

2
,m′λ

2
−1

such that

h1 := f(s, h0‖m1) = f(s, h0‖m′1),

h2 := f(s, h1‖m2) = f(s, h1‖m′2),

. . .

hλ
2
−1 := f(s, hλ

2
−1‖mλ

2
) = f(s, hλ

2
−1‖m

′
λ
2

).

These message blocks can be combined into 2λ/2 messages of λ/2 blocks that
hash to the same value. Finding these multi collisions hence requires time
only λ

2
2λ/2 while on an ideal function it would require a time 2λ(2

λ/2−1)/2λ/2 ≈
2λ.

This observation has been used to improve the birthday attack on a
class of hash functions. Suppose G and H are two hash functions with ideal
collision-resistance (the best attack has expected time 2λ/2). If G and H were
ideal, the function F (s,m) := G(s,m)‖H(s,m) would have ideal collision-
resistance (the best attack has expected time 2λ). However, if G is an iterated
hash function, an adversary can construct 2λ/2 collisions for G in time λ

2
2λ/2.

By the birthday paradox, these 2λ/2 messages are likely to give one collision
for H, hence for F .

3.4.3 Differential Cryptanalysis

The basic premise of differential cryptanalysis is that a small difference in
only one of the input variables can be controlled in such a way that the
differences occurring in the computations of the two associated hash values
are compensated for at the end. The goal is to find good differential paths
through the whole algorithm computation.

19

Differential cryptanalysis is mostly applied on Merkle-Damgård based,
unkeyed hash functions to find collisions of the form f(s, h‖m) = f(s, h‖m′)
on the compression function. Since the targeted functions are unkeyed, the
key s can be considered to be fixed. The value h is considered as random
since in a Merkle-Damgård construction it is the output of the compression
function from the previous round.

The compression functions of recent hash algorithms have many rounds
that improve the bit interdependencies through non-linear functions. Thus,
it is no longer possible to find a full differential path resulting in a collision
for the compression function with probability 1. However, the attacker can
search in all stages of the algorithm for particular differences in the input bits
that with a large probability on the value h will result in small differences
a few stages later. Combining these differentials to cancel differences may
lead to a collision at the end of the hash computation with some probability.
When the attack is repeated, it is likely to succeed after a time inversely
proportional to this probability.

Near-collisions are also targeted by differential cryptanalysis, in which
case a full collision is obtained by iterating the attack, to produce a pair of
colliding messages whose lengths are a few blocks long.

3.5 Examples of Hash Functions

This section will describe two hash functions, MD5 and SHA-1, utilizing
Merkle-Damgård construction. These hash functions in particular are both
extensions of the MD4 algorithm and are, or were, commonly used in such
applications as TLS, SSL, PGP, and SSH. While MD5 in particular is no
longer secure, we include it in this section as a relatively simple example.

20

3.5.1 MD5

The following description of MD5 is taken from the Internet Enginering Task
Force (IETF) Request For Comments (RFC) 1321 [Riv92].

Begin by assuming a b-bit message as input, where b < 264 is a non-
negative arbitrary-size integer. The following five steps are performed to
compute the message digest of the message.

Padding. First, the message is padded so that is length in bits is congruent
to 448 mod 512: A single 1 bit is appended to the message, and then 0 bits
are appended until the length of the padded message is congruent to 448

mod 512. The message is padded in this way so we are 64 bits away from
being a multiple of 512.

A 64-bit representation of b is appended to the padded message from
above. The resulting message will have a length that is an exact multiple of
512 bits, or equivalently, an exact multiple of sixteen 32-bit words. We can
represent the resulting message as a series of 512-bit blocks, which we denote
as M [0 . . . n] for some integer n where M [i] is a 512-bit block.

Functions and Constants. We define the following functions that each
take as input three 32-bit words and produce one 32-bit word as output:

F (X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z),

G(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z),

H(X, Y, Z) = X ⊕ Y ⊕ Z,

I(X, Y, Z) = Y ⊕ (X ∨ ¬Z),

21

Figure 3: One round of MD5. F is one of the functions (not necessarily
F (X, Y, Z) itself) defined in our functions section, Mi is M [i], Ki is T [i],
<<<n denotes the circular left shift by n positions, and � denotes addition
modulo 232.

Source: http://en.wikipedia.org/wiki/File:MD5.svg

where the operations in the above functions are bitwise logical operations on
the 32-bit words.

Additionally, we will be using a 64-element table T [0 . . . 63] which is
constructed as follows: The integer part of 232|sin (i+ 1)| is the i-th element
of the table T , where i is in radians.

22

http://en.wikipedia.org/wiki/File:MD5.svg

We will also use another 64-element table X[0 . . . 63] which contains
elements:

X[t] = 7, (t = 0, 4, 8, 12),

X[t] = 12, (t = 1, 5, 9, 13),

X[t] = 17, (t = 2, 6, 10, 14),

X[t] = 22, (t = 3, 7, 11, 15),

X[t] = 5, (t = 16, 20, 24, 28),

X[t] = 9, (t = 17, 21, 25, 29),

X[t] = 14, (t = 18, 22, 26, 30),

X[t] = 20, (t = 19, 23, 27, 31),

X[t] = 4, (t = 32, 36, 40, 44),

X[t] = 11, (t = 33, 37, 41, 45),

X[t] = 16, (t = 34, 38, 42, 46),

X[t] = 23, (t = 35, 39, 43, 47),

X[t] = 6, (t = 48, 52, 56, 60),

X[t] = 10, (t = 49, 53, 57, 61),

X[t] = 15, (t = 50, 54, 58, 62),

X[t] = 21, (t = 51, 55, 59, 63).

For our hash computation, we need to define a set of four 32-bit registers
(A, B, C, D). Since the initial values (A0, B0, C0, D0) are based off of the
hash calculation of the previous 512-bit block, we are required to set values
for these registers for the computation for the first block. These values,
represented in little-endian (least significant byte first) hexadecimal, are as
follows:

A0 = 01 23 45 67,

23

B0 = 89 AB CD EF,

C0 = FE DC BA 98,

D0 = 76 54 32 10.

The last constant used, g, is defined as:

gt = t, (0 ≤ t ≤ 15),

gt = (5t+ 1) mod 16, (16 ≤ t ≤ 31),

gt = (3t+ 5) mod 16, (32 ≤ t ≤ 47),

gt = 7t mod 16, (48 ≤ t ≤ 63).

Futhermore, we will define the circular left shift operation as follows:

Sn(X) = (X << n) ∨ (X >> 32− n)

where X << n discards the left-most n bits of X and pads the result with
n zeroes on the right, and X >> n discards the right-most n bits of X and
pads the result with n zeroes on the left.

Finally, consider the addition of two 32-bit words X and Y , X +Y . Let
words X and Y represent integers 0 ≤ x < 232 and 0 ≤ y < 232. Compute
z = (x+ y) mod 232, and convert z to a word Z. Then X + Y = Z.

Computation of the Message Digest. For each 512-bit block, M [i], of
the padded message, we perform the following steps:

1. Break the block into sixteen 32-bit words, which we denote as W [j],
0 ≤ j ≤ 15.

2. Initialize the 32-bit registers A, B, C, and D to the following values:

24

A = A0,

B = B0,

C = C0,

D = D0.

3. For t = 0 to 63 do

(a) Define a variable dTemp = D.

(b) Let D = C, C = B, and A = dTemp.

(c) Set B according to the following:

B += SX[t](A+ F (B,C,D) + T [t] +W [gt]), (0 ≤ t ≤ 15),

B += SX[t](A+G(B,C,D) + T [t] +W [gt]), (16 ≤ t ≤ 31),

B += SX[t](A+H(B,C,D) + T [t] +W [gt]), (32 ≤ t ≤ 47),

B += SX[t](A+ I(B,C,D) + T [t] +W [gt]), (48 ≤ t ≤ 63).

4. Set A0 += A. B0 += B, C0 += C, and D0 += D.

The MD5 process can be visualized in figure 3 which pictures one it-
eration of the MD5 function. The resulting message digest of our original
b-length is A0‖B0‖C0‖D0 in little-endian notation.

3.5.2 SHA-1

The following description of SHA-1 is taken from the IETF RFC 3174 [rJ01].

25

Padding. The padding scheme for SHA-1 is the same as the padding
scheme for MD5. A message of length l will be padded so that its length in
bits is a multiple of 512, and it will contain 16 ·n words for some n > 0. The
padded message can be regarded as a sequence of n blocks M [1 . . . n].

Functions and Constants. A sequence of logical functions is used in
SHA-1, denoted by f(0), f(1), . . . , f(79), where each f(t), 0 ≤ t ≤ 79, op-
erates on three 32-bit words B,C,D and produces a 32-bit word as output.
We define f(t;B,C,D) as follows:

f(t;B,C,D) = (B ∧ C) ∨ (¬B ∧D), (0 ≤ t ≤ 19),

f(t;B,C,D) = B ⊕ C ⊕D, (20 ≤ t ≤ 39),

f(t;B,C,D) = (B ∧ C) ∨ (B ∧D) ∨ (C ∧D), (40 ≤ t ≤ 59),

f(t;B,C,D) = B ⊕ C ⊕D, (60 ≤ t ≤ 79).

A sequence of constant words K(0), K(1), . . . , K(79) is used in SHA-1, where
K(t) is defined in hexadecimal, big-endian (most significant byte first) nota-
tion as:

K(t) = 5A 82 79 99, (0 ≤ t ≤ 19),

K(t) = 6E D9 EB A1, (20 ≤ t ≤ 39),

K(t) = 8F 1B BC DC, (40 ≤ t ≤ 59),

K(t) = CA 62 C1 D6, (60 ≤ t ≤ 79).

Finally, we will use the circular left shift and addition modulo 232 operations,
which are both defined in the same manner as we used for our overview of
MD5.

26

Figure 4: One round of SHA-1. F is one of the functions f defined in our
functions section, Wt is the expanded message word of round t, Kt is K(t)
as defined in our constants section, <<<n is Sn as defined in our functions,
and � denotes addition modulo 232.

Source: http://en.wikipedia.org/wiki/File:SHA-1.svg

Computation of the Message Digest. The message digest of the padded
message is described using two buffers, each consisting of five 32-words, and
a sequence of eighty 32-bit words. The words in the first buffer are labeled
A,B,C,D,E and in the second buffer are labeled H0, H1, H2, H3, H4. The
words of the 80-word sequence are labeled W (0),W (1), . . . ,W (79). Addi-
tionally, a single word buffer TEMP is used.

First, initialize the words in the second buffer in big-endian hexadecimal
notation as follows:

H0 = 67 45 23 01,

H1 = EF CD AB 89,

27

http://en.wikipedia.org/wiki/File:SHA-1.svg

H2 = 98 BA DC FE,

H3 = 10 32 54 76,

H4 = C3 D2 E1 F0.

Now we process M [1],M [2], . . . ,M [n] by processing M [i] as follows:

1. Divide M [i] into 16 words W (0),W (1), . . . ,W (15) where W (0) is the
left-most word.

2. For t = 16 to 79 let
W (t) = S1(W (t− 3)⊕W (t− 8)⊕W (t− 14)⊕W (t− 16)).

3. Let A = H0, B = H1, C = H2, D = H3, E = H4.

4. For t = 0 to 79 do
TEMP= S5(A) + f(t;B,C,D) + E +W (t) +K(t);
E = D; D = C; C = S30(B); B = A; A =TEMP.

5. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D,
H4 = H4 + E.

The SHA-1 process can be visualized in figure 4 which pictures one
iteration of the SHA-1 function. After processing M [n], the message digest
is the 160-bit string represented by the 5 words H0, H1, H2, H3, H4.

28

4 Expander Graphs

Now that we have introduced the requisite graph-theoretic concepts, we can
discuss expander graphs. Expander graphs are a class of graph that hold the
seemingly contradictory properties of being both sparse and well-connected
(we will introduce the notion of a graph being well-connected in this section).
These graphs turn out to have many applications in computer science, such as
the construction of optimized network configurations and, as we will discuss
later, the construction of graph-based cryptographic hash functions.

The section is organized as follows. Section 4.1 will introduce expander
graphs and their properties, families of expander graphs and examples, and
the explicit construction of expander graphs. Section 4.2 will introduce con-
cepts in spectral graph theory, as well as relate the edge expansion ratio of
an expander graph to its spectral gap. Section 4.3 will further restrict the
relation of the edge expansion ratio of an expander graph to its spectral gap,
as well as introduce the Ramanujan class of expander graphs. Section 4.4
will discuss the analogous theory of expansion in graphs for Cayley graphs.
Finally, section 4.5 will introduce the notion of random graphs, and relate
them to expander graphs.

4.1 Graph Expansion

An expander graph is a graph in which every subset S of vertices is con-
nected to many vertices in the complementary set S̄ of vertices. Expander
graphs are sparse graphs that have many useful properties, such as low di-
ameter, high connectivity, and a high chromatic number [Tao11].

Suppose a graph G = (V,E) has n vertices. Consider a subset S of the
vertices V in G, and its complement S̄. The edge boundary of S, denoted

29

∂S, is defined as the set of edges (v, w) ∈ E such that v ∈ S and w ∈ S̄

[Nie05]. We can use the edge boundary to define the following:

Definition 4.1.1. The edge expansion ratio of a graph G = (V,E) on n
vertices is given by

h(G) = min
S⊂V :1≤|S|≤n/2

|∂S|
|S|

.

The edge expansion ratio of a graph gives in part an idea of the connec-
tivity of the graph: A higher value of h(G) means a higher minimum value
for the ratio of the edge boundary of a vertex subset S and the size of the
subset |S|. Since we define our subsets to be of size |S| ≤ n

2
, this implies

that subsets of vertices that comprise less than half of the total number of
vertices will be well-connected to larger subsets of vertices. This means that
G itself will be well-connected.

As mentioned previously, it is important for expander graphs to be
sparse in addition to well-connected. A complete graph on n vertices Kn,
for instance, is an example of a graph that is well-connected, but not sparse:
Each subset of the vertices in Kn is connected to every vertex in the comple-
ment, so the edge boundary is |∂S| = |S| · |S̄| = |S|(n− |S|), which leads to
the following edge expansion ratio [Nie05]:

h(Kn) = min
S⊂V :1≤|S|≤n/2

(n− |S|) =
⌈n

2

⌉
.

Contrary to the prior example, we typically do not consider a single
graph when discussing the expansion properties of graphs. Instead, we look
at families of expander graphs which are constructed in accordance with the
following criterion:

Definition 4.1.2. A sequence of k-regular graphs {Gi}i∈N of size increasing

30

with i is a Family of Expander Graphs if there exists ε > 0 such that
h(Gi) ≥ ε for all i [HLW06].

So when we talk about k-regular expander graphs, we usually mean an
infinite collection, or family, of k-regular graphs that satisfy the properties
of Definition 4.1.2. The idea is that a family of expanders should allow us to
construct arbitrarily large graphs which are both sparse and well-connected
[Kow13].

Example 4.1.3. The following are examples of families of expander graphs
[HLW06]:

1. A family of 8-regular graphs Gm for every integer m is a family of
expander graphs. The vertex set is Vm = Zm × Zm. The neighbors of
the vertex (x, y) are (x+ y, y), (x− y, y), (x, y + x), (x, y − x), (x+ y +

1, y), (x−y+1, y), (x, y+x+1), and (x, y−x+1) where all operations
are modulo m.

2. A family of 3-regular p-vertex graphs for every prime p is a family
of expander graphs. Here Vp = Zp, and a vertex x is connected to
x+ 1, x− 1, and to its inverse x−1, where all operations are modulo p,
and the inverse of 0 is 0.

When we apply expander graphs to the field of computer science, we
become increasingly interested in the explicit construction of expander
graphs from families of expander graphs and the efficiency of these ex-
plicit constructions. The performance of an algorithm that employs expander
graphs is at least partially dependent on how efficiently the graphs can be
constructed, so we can see why this topic is important.

There are two natural levels of efficiency to be considered in the con-
struction of such graphs. In the first we require that an n-vertex graph should

31

be generated “from scratch” in time polynomial in n. In the stronger version
we demand that the neighborhood of any given vertex should be computable
in time that is polynomial in the description length of the vertex, which is
usually polynomial in log n. A more rigorous definition follows [HLW06]:

Definition 4.1.4. Let {Gi}i∈N be a family of expander graphs where Gi is
a k-regular graph on ni vertices and the integers {ni} are increasing with i
such that ni < ni+1 ≤ n2

i .

1. The family is called Mildly Explicit if there is an algorithm that
generates the j-th graph in the family Gj in time polynomial in j.
(That is, Gj is computed in time < AjB for some constants A,B > 0).

2. The family is called Very Explicit if there is an algorithm that on
input of an integer i, a vertex v ∈ V (Gi), and m ∈ {1, · · · , k} computes
the m-th neighbor of the vertex v in the graph Gi. This algorithm’s
run time should be polynomial in its input length (the number of bits
needed to express the triple (i, v,m)).

The explicit construction of expander graphs is important, but we must
be certain that our expander graphs are truly good expanders. To that end,
being able to compute the edge expansion ratio is important. However, for
most graphs, computation of h(G) is not nearly as simple as it was in our
Kn example. For a graph G = (V,E) on n vertices, finding the minimum
value of |∂S|/|S| for all S ⊂ V, 1 ≤ |S| ≤ n/2 can be very difficult and
time-consuming, as the total number N of subsets that fit those criteria is:

N =

n/2∑
k=1

(
n

k

)
.

Since this number is equal to the total number of subsets S of the vertices
of G of size between 1 and n/2, and since binomial coefficients follow the

32

relation
(
n
k

)
=
(

n
n−k

)
, we can say that N is approximately half of the total

number of subsets of V .

We know that the total number of subsets of a set of size n is 2n, so
N ≈ 2n−1. Thus, the number of subsets to look at in our computation of
h(G) increases exponentially with n, which makes finding h(G) prohibitively
difficult at sufficiently large n. Thankfully, there exists a method for ap-
proximating h(G) that is much easier. This method involves the spectrum
of graphs, which we will introduce in the following section.

4.2 Spectral Graph Theory

A graph G = (V,E) on n vertices can be expressed in terms of an n×nmatrix
with the rows and columns indexed by V and the elements determined by
the number of edges between each pair of vertices [Kow13]. A more formal
definition follows:

Definition 4.2.1. Let G = (V,E) be an undirected graph on n vertices.
Then the adjacency matrix AG is an n×nmatrix with elements determined
by:

a(i, j) = |{(vi, vj) ∈ E}|

Since G is undirected, edges in E are unordered pairs, which means
a(i, j) = a(j, i) for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ n. As a result, AG is
a symmetric matrix, which means that the eigenvalues of AG are all real.
That is, all values λm(G) that satisfy the relation AGvm = λm(G)vm, where
vm ∈ RV is called the eigenvector of AG corresponding to the eigenvalue
λm, are real. For a symmetric graph, vm 6= 0, and the eigenvectors form an
orthonormal basis for RV [Spi11]. Additionally, the set of eigenvalues of AG
is called the spectrum of the graph. In the case of k-regular graphs, the

33

eigenvalues of AG hold some interesting properties:

Theorem 4.2.2. Let G = (V,E) be a k-regular undirected multigraph, and
let AG be its corresponding adjacency matrix. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the
real eigenvalues of AG. Then

1. λ1 = k and λn ≥ −k.

2. λ2 = k if and only if G is disconnected.

3. λn = −k if and only if at least one of the connected components of G
is bipartite.

A proof of this theorem can be found in the following resource: [Tre11].
Interestingly enough, we find that the edge expansion ratio of a graph is
related closely to the second largest eigenvalue, λ2, of AG. Before we get into
the exact relation, it is useful to define the following:

Definition 4.2.3. If G = (V,E) is an undirected graph with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn, then ∆(G) ≡ λ1 − λ2 is the Spectral Gap of G.

This leads to the relationship between h(G) and λ2 [Nie05]:

Theorem 4.2.4. (Cheeger’s Inequality) The edge expansion ratio h(G) for
a k-regular graph is related to the spectral gap ∆(G) by:

∆(G)

2
≤ h(G) ≤

√
2k∆(G).

Since we know that λ1 = k for a k-regular, we can also write this in-
equality as:

k − λ2
2
≤ h(G) ≤

√
2k(k − λ2).

34

The Cheeger constant for graphs is actually analogous to a theory in Rie-
mannian geometry concerning Riemannian manifolds. As such, Cheeger’s
Inequality for graphs can be considered a discrete version of Cheeger’s in-
equality for Riemannian manifolds. For a more in depth discussion of the
Cheeger constant and Cheeger inequality in Riemannian geometry, we direct
the reader to Appendix C.

4.3 Eigenvalue Bound and Ramanujan Graphs

Theorem 4.2.4 leads to an interesting question concerning the size of the
spectral gap. We know that the spectral gap of a k-regular, n-vertex graph
is dependent on both k and n, but exactly how big can the spectral gap be?
The answer to that question not only depends on k and n, but also their
relationship to each other. In the context of expander graphs, we are mostly
interested in graphs with fixed k and large n where n� k [HLW06].

First, consider a k-regular, n-vertex graph G. Let k = λ1 ≥ λ2 ≥ · · · ≥
λn ≥ −k be the real eigenvalues of AG. Define

λ(G) = max
|λi|<k

|λi|.

Simply put, λ(G) is the maximum of the absolute value of all eigenvalues
of AG excluding those equal to ±k [Lub11]. The bound for λ(G) is given by
the Alon-Boppana result:

Theorem 4.3.1. (Alon-Boppana) Let {Gi}i∈N be an infinite family of k-
regular connected graphs on n vertices where k is fixed and n increases with
i. Then for all i:

λ(Gi) ≥ 2
√
k − 1− o(1)

35

where o(1) tends to zero for every fixed k as n→∞ [Lub11].

Figure 5: The Petersen graph is an example of a Ramanujan graph.

This definition leads to the following classification of graph, as seen in
figure 5, where the Alon-Boppana bound is tight:

Definition 4.3.2. (Ramanujan Graph) A k-regular finite graph G is called
a Ramanujan Graph if

λ(G) ≤ 2
√
k − 1.

The work of Lubotzky, Phillips, and Sarnak [LPS88] proved that the
explicit construction of infinite families of k-regular Ramanujan graphs is
possible when k − 1 is prime. Their use of the Ramanujan conjecture in the
proof, which will not be discussed here, provides the origin for the name. The
work of Morgenstern [Mor94] extended the construction of infinite families
of k-regular Ramanujan graphs to the case when k − 1 is a prime power
[HLW06]. We can see from both the Alon-Boppana bound and the definition
of Ramanujan graphs that Ramanujan graphs define a classification of graph
where the spectral gap is almost as large as possible.

36

4.4 Expansion in Cayley Graphs

The ideas we have previously explored regarding expander graphs in the
general case can be applied rather effectively to the specific case of Cayley
graphs. An infinite family of groups {Gn} can be made into a family of
expanders if there is some constant k and a generating set Sn of size k in
each Gn so that the family {CGn,Sn} is a family of expanders. That said,
not all classes of groups are suitable to be made expanders. Abelian groups,
for instance, generally cannot be made expanders with generating sets of
bounded size. Most simple groups, however, can be made into families of
expanders, as well as the special linear groups SLd(Fpm) for any d ≥ 2,
m ≥ 1, and prime p [Pet09].

The study of expanding properties in a Cayley graph constructed from
an Abelian group G is the same as the study of its characters, where the
character on a group G is a group homomorphism from G to the multiplicative
group of a field, which in our case is the field of complex numbers C [Pet09].

Proposition 4.4.1. Let A be the normalized adjacency matrix of a Cayley
graph CG,S. Let χ be a character of G. Then the vector (χ(g))g∈G is an
eigenvector of A with eigenvalue 1

|S|
∑

s∈S χ(s).

This approach is generalized in non-Abelian groups G by the study of
the representations of the groups, where a representation of a group is a
homomorphism from G to matrix groups over C [Pet09].

The notion of expansion in graphs is translated to group theory by the
Kazhdan constant. Let the regular representation r of a group G be
the representation where any g ∈ G is associated with a matrix of size |G|
which is 1 at the entries corresponding to (u, ug) for all u and 0 elsewhere.

37

The Kazhdan constant of G and S is defined as [Pet09]

K(G, S) = min
v∈C|G|,v⊥1

max
s∈S

‖r(s)v − v‖2

‖v‖2
.

For a group G and a symmetric subset S of size k of G, the Kazhdan constant
K(G, S) is related to the spectral gap of CG,S by [Pet09]

K(G, S)

2k
≤ k − λ2 ≤

K(G, S)

2
.

4.5 Expanders and Random Graphs

While expander graphs can be covered from combinatorial and algebraic
perspectives, they can also be looked at probabilistically and statistically.
For instance, random walks (which will be covered later) are very important
with regard to cryptographic applications of expander graphs. It also turns
out that expander graphs are rather closely related to random graphs. We
will take this section to introduce what random graphs are and a simple
example of how they are related to expander graphs.

A random graph on n vertices starts as a set of n isolated vertices, and
develops by successively acquiring edges at random. The aim of construct-
ing such graphs is to determine at what stage of random graph evolution a
particular property of the graph is likely to arise [Bol85].

The most studied model of random graphs is the Erdös-Rényi model,
of which two closely related variants exist. The first variant, the G(n,m)

variant, chooses a graph uniformly at random from the set of all graphs on n
vertices with m edges. The second variant, the G(n, p) variant, constructs a
graph on n vertices by choosing each edge independently with probability p.
In this variant, a graph on n vertices and r edges is chosen with probability

38

pr(1− p)(
n
2)−r [Chu08].

The following lemma provides a connection between expander graphs
and random graphs:

Lemma 4.5.1. (Expander Mixing Lemma) Let G = (V,E) be a k-regular
graph with n vertices. Then for all S, T ⊆ V :∣∣∣∣ |E(S, T)| − k|S||T |

n

∣∣∣∣ ≤ λ(G)
√
|S||T |.

This result shows that a small second eigenvalue in a graph implies
that its edges are “spread out”, which is a hallmark of random graphs. The
left-hand side of the previous equation measures the deviation between the
number of edges between S and T , and the number of expected edges between
S and T in a random graph of edge density k/n. A small λ(G) (or large
spectral gap), which is the case for good expanders, implies that the deviation
between these two values is small, which makes the graph nearly random
[HLW06].

The converse of this result turns out to have useful applications as well.
When the spectral gap of a k-regular graph G is much smaller than k, the up-
per and lower bounds in theorem 4.2.4 differ considerably. A converse to the
Expander Mixing Lemma captures the spectral gap more tightly [HLW06]:

Lemma 4.5.2. (Converse of the Expander Mixing Lemma) Let G = (V,E)

be a k-regular graph with n vertices and suppose that∣∣∣∣ |E(S, T)| − k|S||T |
n

∣∣∣∣ ≤ p
√
|S||T |

holds for every two disjoint sets S, T and for some positive p. Then λ(G) ≤
O(p · (1 + log(k/p))). The bound is tight.

39

5 Random Walks and Expander Hashes

Many applications of expander graphs focus around random walks on the
graphs. On a k-regular expander graph G, a random walk involves starting
at some chosen vertex and moving at random to one of the k neighbors. This
step is repeated for each new vertex, and is performed independently of any
prior choices [Nie05]. An interesting aspect of these random walks is that a
length t random walk on an expander graph is similar to a set of t vertices
sampled uniformly and independently. The computational significance of this
is that fewer random bits are required for a length t random walk than for
an independent sampling of t vertices, so applications which would require
such a sampling can be performed with greater speed [HLW06].

We find that for hash functions using message input to perform walks on
a graph, these walks are very similar to random walks when these graphs are
good expanders. As such, we will structure this section as follows. Section
5.1 will discuss random walks on graphs, as well as discuss properties of
random walks on expander graphs. Section 5.2 will introduce the concept of
an expander hash, or a hash function based on a walk on an expander graph.
Section 5.3 will give an overview of expander hash functions from original
proposals to more recent constructions. Finally, section 5.4 will take the
attacks discussed in 3.4 and apply them to expander hash functions, as well
as introduce some attacks designed specifically for expander hashes. This
section assumes knowledge of finite fields, a summary of which can be found
in Appendix A.

40

5.1 Introduction to Random Walks

A vector p ∈ RV is called a probability distribution vector if its co-
ordinates are nonnegative and

∑n
i=1 pi = 1. The probability vector that

corresponds to the uniform distribution on {1, . . . , n} is denoted by u =

(1, . . . , 1)/n. A random walk on a graph G = (V,E) is usually initiated by
selecting the first vertex v1 from some initial probability distribution p1

on V . This induces a sequence of probability distributions pi on V so that
the probability that vi = x ∈ V equals pi(x) for every i and x. For every
finite connected nonbipartite graph G, the distributions converge to a limit,
or stationary, distribution. Furthermore, if G is a k-regular graph, then
this distribution is simply u [HLW06].

When we apply one step of the random walk procedure on a k-regular
graph G = (V,E), moving from the i-th to the (i+ 1)-th vertex in the walk,
the updated probability distribution is:

pi+1 = ÂGpi

where ÂG = AG/k is the normalized adjacency matrix. More generally,
we say that the probability distribution after performing a random walk of
length t is:

pt = ÂtGp1.

A more rigorous definition of the random walk on G = (V,E) is that it
is a Markov Chain with state set V and transition matrix ÂG. Something
we are interested in is the rate at which the Markov Chain converges to its
stationary distribution. The following theorem shows that when the uni-
form distribution is a stationary distribution for the chain, then the Markov

41

chain converges to the uniform distribution exponentially quickly at a rate
determined by λ2(M) [Nie05]:

Theorem 5.1.1. Suppose M is a normal transition matrix for a Markov
chain on n states with the uniform distribution u as a stationary point Mu =

u. Then for any starting distribution p:

‖M tp− u‖1 ≤
√
nλ2(M)t.

The expression ‖ · ‖1 denotes the L1-norm, and the Lp-norm gives the
length of a vector in a Lebesgue space Lp, and is defined as follows:

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

.

The fact thatM is a symmetric matrix allows us to make the connection
to expander graphs by considering the case M = ÂG. For a k-regular graph
G:

‖ÂtGp− u‖1 ≤
√
n

(
λ2(G)

k

)t
.

Using the Cheeger inequality, Theorem 4.2.4, we can obtain the rate of con-
vergence as it relates to the edge expansion ratio:

‖ÂtGp− u‖1 ≤
√
n

(
1− h(G)2

2k2

)t
.

Thus we can see that for a family of expander graphs, the rate of convergence
of the Markov chain is exponentially fast in the number of steps t [Nie05]. We
can also see that the Markov chain converges faster when the ratio h(G)/k

is large, which occurs both when k is small and when h(G) is large.

Another useful property of random walks on expander graphs is that

42

the probability that they stay within a given subset of vertices decreases
exponentially with every step unless that subset is very large. The general
result for Markov chains states:

Theorem 5.1.2. Let X0 be uniformly distributed on n states, and suppose
there is a time-homogeneous Markov chain X0, . . . , Xt with transition matrix
M . Suppose the uniform distribution (u) is a stationary point of M . Let
B be a subset of the states, and B(t) be the event that that Xj ∈ B for all
j ∈ 0, . . . , t. Then

Pr(B(t)) ≤
(
λ2(M) +

|B|
n

)t
where Pr(B(t)) is the probability of B(t) [Nie05].

When applied to random walks on expander graphs, X0 becomes some
vertex chosen uniformly at random from the graph. We useX0 as the starting
point for a random walk X0, . . . , Xt where Xt is the vertex after the t-th step.
Given a subset of vertices B, B(t) becomes the event that the entire random
walk is in B after the t-th step. From this, we obtain

Pr(B(t)) ≤
(
λ2(G)

k
+
|B|
n

)t
.

The probability exponentially decreases provided λ2(G)
k

+ |B|
n
< 1. For a family

of expander graphs, there exists some constant ε > 0 such that we get an
exponential decrease for any B such that |B|/n < ε [Nie05].

5.2 Expander Hashes

At its simplest, an Expander Hash is a hash function where the input to
the hash is used as directions for walking around an expander graph without
backtracking, and the output of the hash function is the ending vertex of the

43

walk. For a fixed hash function, the walk starts at a fixed vertex in the given
expander graph, and a family of hash functions can be defined by allowing
this starting vertex to vary.

5.2.1 General Construction

To execute a walk on a k-regular undirected expander graph, the input to
the hash function must be broken into chunks of size c such that 2c = k− 1.
Starting at the first vertex, each step of the walk chooses an edge emanating
from that vertex to follow to get to the next vertex where the choice of the
edge to follow is determined by the next c bits of the input. Since we do not
allow backtracking, there are only k − 1 choices for the next edge at each
step [CGL09]. Directed k-regular graphs, on the other hand, cannot have
backtracking in them unless the graph has multiple edges, so the input of
the hash function must be broken into chunks of size c such that 2c = k, as
there are k choices for the next edge at each step.

As we have explored previously, we know that random walks on ex-
pander graphs converge quickly to the uniform distribution, so the output
of an expander hash employing a random walk will be uniform provided the
input was uniformly random [CGL09]. We also know that random walks on
expander graphs tend not to stay in any small subset of vertices for a long
time, which means that our expander hash construction will not take place
in a significantly smaller portion of the graph than the entire graph.

5.2.2 Cayley Hashes

As we have applied general expander graphs to the construction of hash func-
tions, we can also construct hash functions based on Cayley graphs. To con-

44

struct a Cayley hash from a directed Cayley graph CG,S, let {1, . . . , k}∗ be
the set of arbitrary-length sequences (m1,m2, . . . ,ml) consisting of elements
of {1, . . . , k}. Fixing an initial value g0 in G and an ordering σ : {1, . . . , k} →
S, determines a Cayley hash function H : {1, . . . , k}∗ → G defined by H() =

g0, H(m1) = g0σ(m1) and H(m1,m2, . . . ,ml) = H(m1,m2, . . . ,ml−1)σ(ml).
The successive computations of g0σ(m1), g0σ(ml)σ(m2), etc... correspond
to a walk from vg0 to vg0σ(ml), vg0σ(ml)σ(m2), etc... in the Cayley graph CG,S
[PLQ07].

If S is stable under inversion, the corresponding Cayley graph CG,S is
undirected, which makes backtracking on our walk an issue. To rectify this,
the messages are decomposed in chunks of size (k − 1) bits rather than k

bits, and H is defined as H(m1,m2, . . . ,ml) = H(m1,m2, . . . ,ml−1)σl with
σ1 = σ(m1) and σi =

∑
(σi−1,mi) := σ(σ−1(σ−1i−1)+mi mod k), i ∈ {2, . . . , l}

[PLQ07].

A hash function H ′ : {0, 1}∗ → {0, 1}log2 |G| sending bitstrings to bit-
strings is derived from H as H ′ = π2 ◦H ◦π1, where π1 : {0, 1} → {1, . . . , k}∗

and π2 : {0, 1} → {0, 1}log2 |G| are respectively initial and final mappings. A
keyed Cayley hash is constructed similarly, by letting the element g0 be a
function of the key [PLQ07].

5.2.3 Security considerations

Based on our prior exploration of expander graphs, we gather that the fol-
lowing requirements should hold for graphs used in expander hashes [Pet09]:

• Large expansion: This requirement guarantees that the hash values
of relatively short messages are well-distributed in the output set.

45

• Short diameter: A short diameter implies that all vertices are the
output of short messages.

• Large girth: A large girth guarantees that no short collision exists
and it bounds the distance between any two colliding messages. This
requirement may not be necessary if the initial vertex is chosen ran-
domly, but for Cayley hashes a large girth is necessary.

• Efficiency: Computing the neighbors of any given vertex must be very
efficient.

• Collision, preimage, and second preimage resistances: The fol-
lowing problems must be hard:

– Constrained two-paths problem: Given a randomly selected
starting point v0 in a randomly selected graph G, find two paths
in G of length at most l that start in v0 and end at the same
vertex.

– Constrained cycle problem: Given a randomly selected start-
ing point v0 in a randomly selected graph G, find a cycle in G of
length at most l that goes through v0.

– Path problem: Given a randomly selected starting point v0 and
an ending point v in a randomly selected graph G, find a path in
G of length at most l that starts in v0 and ends in v.

– Two-path problem: Given a randomly selected graph G, find
two paths in G of length at most l that start and end at the same
vertices.

– Cycle problem: Given a randomly selected graph G, find a cycle
in G of length at most l.

46

Interestingly, some of the above problems can be interpreted as problems
in group theory. First, we define the length of a product of group elements
g0g1 . . . gµ−1 as µ. This product is said to be a reduced product if gigi+1 6= 1

for 0 ≤ i ≤ µ − 2. In particular, the cycle problem, two-path problem,
and path problem are respectively equivalent to the following three group-
theoretical problems for Cayley hashes [Pet09]:

• Factorization problem: Given a group G, a subset S of G, and a
group element g, find a reduced product of subset elements of length
at most l that is equal to g, that is∏

0≤i<µ

si = g

with si ∈ S, sisi+1 6= 1, and µ ≤ l.

• Balance problem: Given a group G and a subset S of G, find two
reduced products of subset elements of lengths at most l that are equal,
that is ∏

0≤i<µ

si =
∏

0≤i<µ′
s′i

with si, s′i ∈ S, sisi+1, s
′
is
′
i+1 6= 1, and µ, µ′ ≤ l.

• Representation problem: Given a group G, a subset S of G, and a
group element g, find a reduced product of subset elements of length
at most l that is equal to the unit element of the group, that is∏

0≤i<µ

si = 1

with si ∈ S, sisi+1 6= 1, and µ ≤ l.

47

5.3 Examples of Expander Hashes

5.3.1 Zémor’s first proposal

The first exploration of expander hashes was performed by Gilles Zémor in
the early 1990s. His scheme was a Cayley hash on a directed Cayley graph
built from the group G = SL2(Fp), or the set of 2× 2 matrices over the field
Fp with determinant 1 under the group operations of matrix multiplication
and matrix inversion. The graph generator set is

S1 = {A1, B1} =

{(
1 1

0 1

)
,

(
1 0

1 1

)}
.

Computation of a message of length µ for CG,S1 requires µ multiplications
by A or B, and each of these multiplications requires 2 additions modulo p,
which makes this scheme reasonably computationally efficient [Pet09].

This scheme, however, is no longer secure due to an attack utilizing a
lifting strategy: The representation problem is lifted from SL2(Fp) to SL2(Z)

by exploiting the fact that A and B generate the set SL2(Z+) in SL2(Z). This
allows for the representation problem to be solved easily using the Euclidean
algorithm. To rectify this, two other generator sets were proposed [Pet09]:

S2 = {A2, B2} = {A2
1, B

2
1} =

{(
1 2

0 1

)
,

(
1 0

2 1

)}
,

S3 = {A3, B3} = {A1, A1B1} =

{(
1 1

0 1

)
,

(
2 1

1 1

)}
.

These changes in A and B affect the efficiency of computation of a message.
For CG,S2 , each bit of message requires 2 additions and 2 multiplications by
2 modulo p. For CG,S3 , each bit of messages requires on average 3 additions

48

modulo p. No known attacks exist for the schemes utilizing S2 and S3 [Pet09].

5.3.2 Zémor-Tillich hash function

Three years after the first proposal of an expander hash, Jean-Pierre Tillich
and Gilles Zémor proposed a new family of hash functions based on compu-
tations over a finite field of characteristic 2 [TZ94]. Rather than construct
the expander hash using the group SL2(Fp), the duo opted to use SL2(F2n),
or the group of 2× 2 matrices of determinant 1 in the finite field K := F2n ,
which may also be represented by the quotient field K = F2[X]

Pn(X)
where Pn(X)

is an irreducible binary polynomial of degree n [Pet09].

The Zémor-Tillich hash function has as its defining parameter an irre-
ducible polynomial Pn(X) of degree n, has as its starting point the 2 × 2

identity matrix I2, and has the following graph generator set [Pet09]:

S = {A0, A1} =

{(
X 1

1 0

)
,

(
X X + 1

1 1

)}
.

Now define the mapping

π : {0, 1} → {A0, A1},

A0 7→ 0,

A1 7→ 1.

Then the hash code of a binary message m = m0m1 . . .mµ−1 is the matrix
product HZT (Pn(X),m) := π(m0)π(m1) . . . π(mµ−1), and thus some element
of the group SL2(F2n) [TZ94]. More compactly, we can say that the Zémor-

49

Tillich hash value of a bitstring m = m0m1 . . .mµ−1 is given by [Pet09]:

HZT (Pn(X),m) :=

µ−1∏
i=0

(
X 1 +miX

1 mi

)
.

Since this hash function uses only arithmetic in a field of characteristic 2 in
its computation, it is even more efficient than Zémor’s previous proposals.
Although attacks on this hash function exist, the function remains fundamen-
tally unbroken to this day if the parameters are large enough and well-chosen
[Pet09]. A full cryptanalysis of the Zémor-Tillich hash function can be found
in [Pet09], Chapter 5.

5.3.3 LPS hash function

Around 15 years after the Zémor-Tillich hash function was proposed at
the 14th Annual International Cryptology Conference, the team of Charles,
Goren, and Lauter rediscovered expander hashes [CGL09]. Charles et al.
proposed two constructions of expander hashes based on undirected graphs,
in contrast with the directed graphs of Zémor’s first proposal and the Zémor-
Tillich hash function, and solved the issue of trivial backtracking collisions
by explicitly forbidding backtracking in their construction [Pet09]. This sec-
tion will focus on the scheme based on the non-bipartite LPS Ramanujan
graph construction described in the paper of Lubotsky, Phillips and Sarnak
[LPS88].

We define the previously mentioned graph construction as follows. Let
l and p be primes, where l is a small prime and p is relatively large, such
that p, l ≡ 1 (mod 4) and l is a quadratic residue mod p (there exists an
integer x such that x2 ≡ l (mod p)). We will denote the LPS graph, with
parameters l and p, by Xl,p. It is easy to see why LPS graphs were picked
for this scheme, as they are Ramanujan, they have a large girth, and they

50

have a small diameter:

g(Xl,p) ≥ 4 logl p− logl 4,

D(Xl,p) ≤ 2 logl

(
p(p− 1)(p+ 2)

2

)
+ 2 logl 2 + 1.

The vertices of Xl,p are the matrices in PSL2(Fp), which is the quotient
group of SL2(Fp) by the equivalence relation M ∼ −M for any matrix M
[CGL09, Pet09]. An equivalent definition follows: PSL2(Fp) is the group
of 2 × 2 matrices over Fp with non-zero square determinant, modulo the
equivalence relation M1 ∼ λM2, λ ∈ F∗p [Pet09]. A matrix M is connected to
the matrices gM , where the g’s are the following explicitly defined matrices.
Let j be an integer satisfying j2 ≡ −1 (mod p). There are exactly 8(l + 1)

solutions (g0, g1, g2, g3) to the equation

g20 + g21 + g22 + g23 = l.

Among these solutions, we will consider those with odd g0 > 0 and even
g1, g2, g3. To each such solution, we associate the matrix

g =

(
g0 + jg1 g2 + jg3

−g2 + jg3 g0 − jg1

)
.

This gives us a set S of of l+1 matrices in PGL2(Fp), but their determinants
are squares modulo p and hence they lie in the index 2 subgroup of PGL2(Fp),
which is PSL2(Fp). Thus we can see that the LPS graph is Cayley, and
Xl,p := CSL2(Fp),S. Additionally, this graph is undirected since S is stable
under inversion. Since l is small, the set of matrices in S can be found
by exhaustive search very quickly [Pet09]. The graph Xl,p has p(p2 − 1)/2

vertices and is (l + 1)-regular. Recommended parameters are l = 5 and p a
1024-bit number [CGL09].

51

Collisions for the LPS hash functions have been found by Tillich and
Zémor [TZ08], and their algorithm has been extended to a preimage attack
by Petit [Pet09]. Both attacks can be defeated with a small modification to
the graph generator set. The details of these attacks can be found in [TZ08],
in [Pet09], Chapter 6, or in [PLQ08].

5.3.4 Morgenstern hash function

Morgenstern’s Ramanujan graphs generalize LPS graphs from an odd prime
p ≡ 1 mod 4 to any q which is an even power of 2 or a power of another
prime. Arithmetic in fields of characteristic 2 is typically more efficient and
easier to implement than arithmetic modulo a large prime integer. This led
to the proposal of the Morgenstern hash function, which uses Morgenstern
graphs for small even q [Pet09].

Morgensterm graphs for even q are defined as follows. Let q be a power
of 2 and let ε ∈ Fq such that f(x) := x2 + x + ε is irreducible in Fq[x]. Let
Pn(X) ∈ Fq[X] be irreducible of even degree n and let Fqn be represented by
Fq[X]/Pn(X). We denote the Morgenstern graph by Γq,n. Like LPS graphs,
Morgenstern graphs are Ramanujan, have a large girth, and have a small
diameter [Pet09]:

g(Γq,n) ≥ 2

3
logq[q

n(q2n − 1)],

D(Γq,n) ≤ 2 logq[q
n(q2n − 1)] + 2.

The vertices of the graph are elements of the group PSL2(Fqn), which is the
group of 2× 2 matrices over Fqn with non-zero square determinant, modulo
the equivalence relation M1 ∼ λM2, λ ∈ F∗qn [Pet09, PLQ08]. Let j ∈ Fqn be

52

a root of f(x). The set S is taken to be S = {sk}k=0,...,q, where

sk =

(
1 γk + δkj

(γk + δkj + δk)X 1

)
, j = 0, . . . , q;

and γk, δk ∈ Fq are all the q + 1 solutions in Fq for γ2k + γkδk + δ2kε = 1.
The Cayley graphs Γq,n := CPSL2(Fqn),S are undirected as each sk has order
2 [Pet09, PLQ08].

The collision and preimage attacks against the LPS hash function can
be extended to the Morgenstern hash function, and a variation can be made
to the Morgenstern hash that makes it immune to these attacks. This can
be seen in more detail in [Pet09], Chapter 6, or [PLQ08].

5.3.5 Pizer hash function

The second of two expander hash schemes proposed by Charles et al. [CGL09]
is the Pizer hash function. This expander hash uses the Ramanujan graph
family of Pizer, which, unlike previous proposals we have explored, is not a
family of Cayley graphs. This section assumes knowledge of basic results on
elliptic curves, a summary of which can be found in Appendix B.

The graphs. Let l be a small prime and let p be a large prime such that
p ≡ 1 (mod 12). The vertices of the Pizer graph Πl,p are the members of
the set V of all supersingular elliptic curves over the finite field Fp2 up to
isomorphism. This set has bp/12c+ε elements, where ε ∈ {0, 1, 2} depending
on the congruence class of p modulo 12. For the case where p ≡ 1 (mod 12),
ε = 0. The elements of V can be labeled by their j-invariants, where we
write E(ji) for an elliptic curve with j-invariant ji. There is an edge from
j1 to j2 if and only if there is an l-isogeny from E(j1) to E(j2). The Pizer

53

graph Πl,p is a Ramanujan (l+ 1)-regular graph, and it is undirected with no
multiple edges if p ≡ 1 (mod 12) [Pet09, CGL09].

Walking around the graph. To take a step in a walk on the graph, we
compute isogenies as described in [CL05], algorithm 1, by explicitly writing
down generators for the rank 2 l-torsion and listing the l + 1 subgroups of
order l. For a subgroup H of the group of points on an elliptic curve E, we
give the formulas for determining the equation of the isogeny E → E/H and
the Weierstrass equation of the curve E/H when l is an odd prime. Let E
be given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We define the following two functions in Fq(E) for a point Q = (x, y) on
E − {O}

gx(Q) = 3x2 + 2a2x+ a4x+ a6,

gy(Q) = −2y − a1x− a3,

and set

t(Q) = 2gx(Q)− a1gy(Q),

u(Q) = (gy(Q))2,

t =
∑

Q∈(H−{O})

t(Q),

w =
∑

Q∈(H−{O})

(u(Q) + x(Q)t(Q)).

Then the curve E/H is given by the equation

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6

54

where

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5t, A6 = a6 − (a21 + 4a2)t− 7w.

From the Weierstrass equation of E/H we can determine the j-invariant of
E/H by applying our formulas for subgroups of order l. This procedure can
be done using O(l) elliptic curve operations for each of the l + 1 groups of
order l [CGL09].

The collision and preimage resistances of this function are implied by,
but not equivalent to, the hardness of some isogeny problems for supersin-
gular elliptic curves that were previously studied by Galbraith [CGL09]: the
best algorithm today has a time complexity O(p log p) [Pet09]. More detailed
security considerations for the Pizer hash function can be found in [Pet09],
Chapter 7.

5.3.6 ZesT hash function

Christophe Petit, in his 2009 PhD dissertation [Pet09], constructed the ZesT
expander hash function as an improvement to the Zémor-Tillich hash func-
tion. This section is derived from said dissertation, and contains a brief
overview of the ZesT hash.

A binary polynomial Pn(X) and a vector (a b) ∈ F2
2n can be represented

as bit sequences of sizes n and 2n respectively. In this section, we will
often identify a polynomial Pn(X) = Xn + pn−1X

n−1 + · · · + p1X + p0 to
its corresponding bit sequence pn−1 . . . p1p0. Moreover, the elements of F2n

can be seen as polynomials of degree less than or equal to n − 1 once an

55

irreducible polynomial has been fixed, hence the vector

(a b) = (an−1X
n−1 + · · ·+ a1X + a0 bn−1X

n−1 + · · ·+ b1X + b0) ∈ F2
2n .

will be identified to the bit sequence an−1 . . . a1a0bn−1 . . . b1b0.

The ZesT algorithm takes as entry a key made of an irreducible binary
polynomial Pn(X) and of a starting point (a0 b0) ∈ F2

2n\(0 0), and a bitstring
m = m0m1 . . .mµ−1 of arbitrary length µ. We define the vectorial Zémor-
Tillich hash function on parameters Pn(X) and (a0 b0) by

Hvec
ZT (Pn(X)‖(a0 b0),m) := (a0 b0)HZT (Pn(X),m).

where HZT is the Zémor-Tillich hash function. The ZesT hash function is
defined by

HZesT(Pn(X)‖(a0 b0),m) := Hvec
ZT (Pn‖(a0 b0), (m‖Hvec

ZT (Pn(X)‖(a0 b0),m))).

The ZesT algorithm is made of two rounds of the vectorial Zémor-Tillich
hash function: After the first round, the intermediary result

(a b) := Hvec
ZT (Pn(X)‖(a0 b0),m)

is seen as a bit sequence of 2n bits that are processed as a continuation of
the message bits.

5.4 Cryptanalysis of Expander and Cayley Hashes

An entire paper could be written on the cryptanalysis of any one of the pre-
viously discussed hash functions, and as such, we do not have room to fully
discuss any or all of them. However, we can, and will, discuss general crypt-

56

analytic attacks on Expander and Cayley Hashes. Several improvements can
be made to generic collision and preimage attacks, which leads to the au-
tomorphism attack, subgroup attacks, meet-in-the-middle preimage attacks,
improved multicollision attacks, and trapdoor attacks specific to small-girth
expander hashes. We then discuss differential cryptanalysis in the context of
expander hash functions. This section is derived from [Pet09].

Automorphism Attack. Let G = (V,E) be a k-regular graph. The au-
tomorphism attack assumes that there exists an efficiently computable au-
tomorphism of the graph such that the average distance from a vertex v to
its image f(v) is small. The attack works as follows. Take a random walk
w of length µ from the initial point v0, and let vµ be the last vertex reached
by this walk. Take a random walk w′ of length µ′ from vµ, and let vµ+µ′ be
the last vertex reached by this walk. By a brute force attack, search for two
paths wµ from vµ to f(vµ) and wµ+µ′ from vµ+µ′ to f(vµ+µ′). The two paths
w‖wµ‖f(w′) and w‖w′‖wµ+µ′ solve the constrained two-paths problem with
large probability.

Subgroup Attacks. The group structure of Cayley hashes allows for sub-
group attacks, a very powerful collision attack technique. Suppose there
exists a subgroup tower sequence G = H0 ⊃ H1 ⊃ · · · ⊃ HN = {I} such that
|Gi−1|/|Gi| ≤ B for all i and some computational bound B. By successively
moving from Gi−1 to Gi, it is possible to reach the identity faster than the
birthday attack.

The attack first computes two sets of size about
√
B of random prod-

ucts of length at most µ1 of the graph generators si. The length µ1 of the
products is chosen in such a way that by taking random products of length
at most µ1 in an appropriate way we roughly get

√
B different random coset

representatives.

57

Choosing for each left coset of H1 a representative x, each element g
of the first set can be written as g = xh1, h1 ∈ H1. This element is stored
in a hash table of size

√
B which is used to store g and its corresponding

message at the address lblog2(B)/2(x) (the integer given by the log2(B)/2 least
significant bits of x). Choosing for each right coset of H1 a representative x,
each element g′ of the second set can be written as g′ = h1x, h1 ∈ H1. If an
element g has been stored at the address lblog2(B)/2(x

−1), then the product
s0,1 := g′g belongs to H1. This operation is repeated with another choice
for the second set to get a second product s1,1 of the graph generators which
belongs to H1.

This trick is iterated from i = 1 toN : Two elements s0,i and s1,i ofHi are
obtained by random products of s0,i−1 and s1,i−1 of length at most µi. In the
last step, the identity is produced from two elements s0,N−1, s1,N−1 ∈ HN−1.
The collision size is about 2N

∏N
i=1 µi, the storage cost is of order

√
B, and

the computational cost is about 2N
√
B.

Meet-in-the-Middle and Multicollision Attacks. The expander hash
design may be seen as a Merkle-Damgård transform of a very simple compres-
sion function with message blocks made of only one digit. Because of this,
collisions can easily be combined into multi-collisions. For Cayley hashes, if
H(m1) = H(m′1) and H(m2) = H(m′2), then

H(m1‖m2) = H(m1‖m′2) = H(m′1‖m2) = H(m′1‖m′2),

H(m2‖m1) = H(m2‖m′1) = H(m′2‖m1) = H(m′2‖m′1).

Additionally, as the compression function is invertible, meet-in-the-middle
attacks compute pre images in a time equal to the square root of the output
size.

58

Trapdoor attack. For graphs of small girth, the collision resistance of
the hash function is not necessarily broken, as the existing small cycles may
be hard to find from a given, randomly chosen starting point v0. However,
these graphs are more susceptible to the trapdoor attack if it is possible to
find the starting points of short collisions. Suppose that message m and
m′ have the same hash values when starting from v. An attacker who is
given the ability to choose the starting point can choose v0 = v. More
generally, if the compression function is efficiently invertible, as is typically
the case with expander hashes, the attacker can produce collisions of the
form (m1‖m‖m2,m1‖m′‖m2) by computing the hash function backward from
v according to the digits of m1, then choosing the last vertex reached as a
starting point for the hash function.

Differential Cryptanalysis. Differential cryptanalysis is unlikely to work
on expander hashes, especially when the expander graph girth is large. We
recall that these attacks are typically applied to compression functions made
of several rounds. The structure of expander hashes, however, is very dif-
ferent, so the attack requires adaptation. In differential cryptanalysis, the
attacker searches for combinations of bit flips in the message whose changes
a few rounds later are compensated with a high probability. It exploits the
fact that after a small number of rounds, the change induced by some bit
flips remain local: it does not influence the whole state of the algorithm.
However, for expander hashes, the whole state is updated at each bit, and
two states may coincide only after considering a number of rounds equal to
the girth. Thus we can see that this attack is rendered impractical for graphs
with large girth. For Cayley hashes, differential attacks are best replaced by
subgroup attacks.

59

6 Conclusion

Over the course of this paper we have successfully introduced the notion of
an expander hash, discussed the general construction of such a hash function,
given examples of expander hash functions in published literature, and iden-
tified weaknesses that these hash functions have to certain types of cryptana-
lytic attack. In this review of the use of expander graphs in cryptography, we
aimed to identify the benefits of the cryptographic use of expander graphs
as well as some shortcomings they might have. While we were unable to
delve deep into the cryptanalysis of published expander hash functions due
to space considerations, we were able to direct the reader towards resources
that provide full cryptanalysis of each example, as well as identify general
cryptographic strengths and weaknesses of expander hash functions.

As long as there is information to protect, there will always be a demand
for more secure, more efficient hash algorithms. As such, when a new poten-
tial avenue for hash function construction is found, it should be explored as
much as possible. With current and future cryptanalysis of expander hash
functions, it is our hope that the area of expander hash functions will con-
tinue to grow and be explored, and will lead to better cryptographic hash
functions.

60

References

[Bol85] Béla Bollobás, Random graphs, Cambridge Studies in Advanced
Mathematics, Cambridge University Press, 1985.

[CGL09] Denis Charles, Eyal Goren, and Kristin Lauter, Cryptographic hash
functions from expander graphs, Journal of Cryptology 22 (2009),
no. 1, 93–113.

[Chu08] Fan Chung, A whirlwind tour of random graphs, Web, April 2008.

[CL05] Denis Charles and Kristin Lauter, Computing modular polynomials,
LMS Journal of Computational Mathematics 8 (2005), 195–204.

[Gal14] Jean Gallier, Notes on Differential Geometry and Lie Groups, Web,
January 2014.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson, Expander graphs
and their applications, Bulletin of the American Mathematical So-
ciety 43 (2006), no. 4, 439–561.

[Jud12] Thomas W. Judson, Abstract algebra: Theory and applications,
Orthogonal Publishing L3C, 2012.

[Kow13] E. Kowalski, Expander Graphs, Web, March 2013.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak, Ramanujan
graphs, Combinatorica 8 (1988), no. 3, 261–277.

[Lub11] Alexander Lubotzky, Expander graphs in pure and applied mathe-
matics, Bulletin of the American Mathematical Society 49 (2011),
no. 1, 113–162.

61

http://www.math.ucsd.edu/~fan/wp/randomg.pdf
http://www.seas.upenn.edu/~jean/diffgeom.pdf
http://www.math.ethz.ch/~kowalski/expander-graphs.pdf

[Mor94] Moshe Morgenstern, Existence and explicit constructions of q +

1 regular ramanujan graphs for every prime power q, Journal of
Combinatorial Theory, Series B 62 (1994), no. 1, 44–62.

[Nie05] Michael A. Nielsen, Introduction to expander graphs, Web, June
2005.

[Pet09] Christophe Petit, On graph-based cryptographic hash functions,
Ph.D. thesis, Catholic University of Louvain, May 2009.

[PLQ07] Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater,
Cayley Hashes: A Class of Efficient Graph-based Hash Functions,
Web, 2007.

[PLQ08] , Full cryptanalysis of lps and morgenstern hash functions,
Security and Cryptography for Networks 5229 (2008), 263–277.

[Pre99] Bruno R. Preiss, Data structures and algorithms with object-
oriented design patterns in c++, John Wiley and Sons, 1999.

[Riv92] R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321 (Infor-
mational), April 1992, Updated by RFC 6151.

[rJ01] D. Eastlake 3rd and P. Jones, US Secure Hash Algorithm 1 (SHA1),
RFC 3174 (Informational), September 2001, Updated by RFCs
4634, 6234.

[Sil08] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed.,
Graduate Texts in Mathematics, Springer, 2008.

[Spi11] Daniel A. Spielman, Spectral Graph Theory and its Applications,
Web, March 2011.

[Tao11] Terence Tao, 254B, Notes 1: Basic theory of expander graphs, Web,

62

http://michaelnielsen.org/blog/archive/notes/expander_graphs.pdf
http://perso.uclouvain.be/christophe.petit/files/Cayley.pdf
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc3174.txt
http://www.cs.cmu.edu/afs/cs/user/glmiller/public/Scientific-Computing/F-11/RelatedWork/Spielman/SpectTut.pdf
https://terrytao.wordpress.com/2011/12/02/245b-notes-1-basic-theory-of-expander-graphs/

December 2011.

[Tre11] Luca Trevisan, Graph Partitioning and Expanders Lecture 2, Web,
January 2011.

[TZ94] Jean-Pierre Tillich and Gilles Zémor, Hashing with SL2, Tech. re-
port, Ecole Nationale Superieure des Telecommunications, 1994.

[TZ08] , Collisions for the lps expander graph hash function, Ad-
vances in Cryptology - EUROCRYPT 2008, 27th Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceed-
ings, Lecture Notes in Computer Science, vol. 4965, Springer, 2008,
pp. 254–269.

63

http://theory.stanford.edu/~trevisan/cs359g/lecture02.pdf
https://www.rocq.inria.fr/secret/Jean-Pierre.Tillich/publications/HashingSL2.pdf

A Finite Fields

A group (G, ◦) is a set G together with an operation ◦ : G × G → G on the
elements of G such that the following axioms are satisfied [Jud12]:

• Associativity: For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c).

• Identity: There exists an element e ∈ G such that e ◦ a = a = a ◦ e
for all a ∈ G.

• Inverse: For each element a ∈ G, there exists an element a−1 such
that a ◦ a−1 = e = a−1 ◦ a.

Furthermore, a group is abelian if for all a, b ∈ G, a ◦ b = b ◦ a, and non-
abelian otherwise. The order of a group is its number of elements, and the
group is finite if the number of elements is finite. A group homomorphism
is a map between two groups that preserves the group structure: If (G, ◦) and
(H, •), a group homomorphism φ : G → H satisfies φ(g1 ◦ g2) = φ(g1) • φ(g2)

for all g1, g2 ∈ G [Pet09].

A field (K,+, ∗) is a setK together with two operations + : K×K → K

and ∗ : K ×K → K such that the following axioms are satisfied [Pet09]:

• (K,+) is a group with identity element written 0.

• (K?, ∗) is a group with identity element written 1, whereK? := K\{0}.

• Distributivity: For any a, b, c ∈ K, a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

The operations + and ∗ are called addition and multiplication, and the op-
erations together with the set K are respectively called additive and mul-
tiplicative groups of the field K. A finite field is any field whose number
of elements is finite, and an isomorphism between two fields K1 and K2 is

64

a bijective map that is a group homomorphism for both the additive and
multiplicative groups. For each prime p, the set of integers modulo p is a
finite field denoted Fp for the typical addition and multiplication operations
[Pet09].

Amonic irreducible polynomial P (X) over a field K is a polynomial
with coefficients in K whose coefficient of highest degree is e ∈ K and cannot
be factored. For each prime p and monic irreducible polynomial Pn(X) of
degree n over Fp, the set of polynomials over Fp modulo Pn(X) is a finite
field denoted Fpn for the typical addition and multiplication operations on
polynomials. Fp is a subfield of Fpn and is thus called an extension field of
Fp. The characteristic of such a field is p [Jud12, Pet09]. For more infor-
mation on finite fields, refer to chapter 22 of Thomas W. Judson’s Abstract
Algebra textbook [Jud12].

65

B Elliptic Curves

Under some conditions, the discrete logarithm problem on elliptic curves
is believed to be much harder than the discrete logarithm problem on the
multiplicative group of finite fields of equal size. As a result, Elliptic curves
have cryptographic applications in hash functions, public key cryptosystems,
symmetric key cryptosystems, and random number generators. This section
provides a basic overview of elliptic curves as a requisite for our introduction
of the Pizer hash function in section 5.3.5, and is mostly taken from [Pet09].

An elliptic curve over a field K is a set of points (x, y) ∈ K2 satisfying
an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

together with a point at infinity O with no singular point; we will write this
set E(K) or, more simply, E. When the characteristic of K is neither 2 nor
3, the curve can be given in Weierstrass form

E : y2 = x3 + a4x+ a6

by changing coordinates. The set of points of an elliptic curve can be given an
Abelian group structure with O as the neutral element; additions formulae
are given in [Sil08], Section 3.2. The l-torsion of an elliptic curve is the
subgroup made of the points of order dividing l in any sufficiently large
extension of K.

Two elliptic curves E and E ′ are isomorphic if there exists a change of
coordinates mapping the points of E to the points of E ′; isomorphic curves
are often thought of as a single curve represented by two different equations.
Isomorphic elliptic curves also have the same j-invariant, which is defined
for Weierstrass equations as j(E) := 1728

4a34
4a34+27a26

.

66

Given two elliptic curves E,E ′ defined over the same field, a homomor-
phism from E to E ′ is a rational map preserving the group addition. An
isogeny from E to E ′ is a non-zero homomorphism; its degree is the cardi-
nality of its kernel. An isogeny from E to itself is called an endomorphism.
The set of endomorphisms of an elliptic curve is a ring, and is isomorphic
either to Z, to an order in a quadratic number field, or to an order in a
quaternion algebra. An isogeny of degree 1 is called an automorphism.

When K is a finite field Fq of characteristic p, an elliptic curve over Fq
is supersingular if for every finite extension Fqr , the curve E(Fqr) has no
point of order p. The j-invariants of supersingular elliptic curves are called
supersingular j-invariants. The endomorphism ring of a supersingular elliptic
surge is an order in a quaternion algebra. For more information regarding
elliptic curves, see Silverman’s book [Sil08].

67

C Expander Graphs in Riemannian Geometry

The majority of this section is taken from a paper by Alexander Lubotzky
[Lub11]. The Cheeger constant and Cheeger inequality both originally ap-
peared in the context of Riemannian manifolds, so we will take this section to
introduce these concepts in their original environment. This section contains
material that will be unfamiliar to readers who have not studied Riemannian
Geometry.

Let M be an n-dimensional connected closed Riemannian manifold (i.e.
compact with no boundary). Let ∆ = −div(grad), where div and grad de-
note the divergence and gradient on the manifold respectively, be the Lapla-
cian operator of L2(M), which is the intrinsic Lebesgue space of the Manifold.
Its eigenvalues 0 = λ1(M) < λ2(M) ≤ λ3(M) ≤ . . . form a discrete subset
(with multiplicities) of R+ called the spectrum of M .

The spectrum of M is very much related to the geometry of M and
these relations are the subject of spectral geometry. A more intuitive
description of ∆ is given by the following formula:

(∆f)(p) = lim
r→0

2n

r2

(∫
Sr
f

vol(Sr)
− f(p)

)

where n = dim M , p ∈ M , f ∈ L2(M) and Sr is the sphere of radius r
around p. This description is similar to the combinatorial Laplacian as an
averaging operator.

We will specifically be interested in the second eigenvalue λ2(M) of the
manifold, which can be described as follows:

λ2(M) = inf

{∫
M
‖df‖2∫

M
|f |2

|f ∈ C∞(M),

∫
M

f = 0

}
.

68

Another important geometric invariant of M, whose connection with ex-
pander graphs is even more evident, is the Cheeger constant:

Definition C.1. The Cheeger isoperimetric constant h(M) is

h(M) = inf
E

µ(E)

min(ν(A), ν(B))

where E runs over all the compact (n − 1)-dimensional submanifolds of M
which divide M into disjoint submanifolds A and B, µ(E) is the “area” of E,
and ν is the volume form of M .

Just as for graphs, h(M) and λ2(M) are closely related. In fact, the
relation between the two was discovered for manifolds before it was discovered
for graphs.

Theorem C.2. The Cheeger inequality for a manifold M is as follows:

λ2(M) ≥ h2(M)

4
.

A converse to this inequality exists that depends on the Ricci curva-
ture Ric(M) of the manifold, where the Ricci curvature is defined as follows
[Gal14]:

Definition C.3. Let M be a Riemannian manifold with the Levi-Civita
connection. The Ricci curvature, Ric, of M is the (0, 2)-tensor defined as
follows: For every p ∈M , for all x, y ∈ TpM , set Ricp(x, y) to be the trace of
the endomorphism, v 7→ Rp(x, v)y. With respect to any orthonormal basis,
(e1, . . . , en) of TpM , we have

Ricp(x, y) =
n∑
j=1

〈Rp(x, ej)y, ej〉p =
n∑
j=1

Rp(x, e− j, y, ej)

69

where Rp(x, y, z, w) is the Riemannian curvature (0, 4)-tensor, Rp(X, Y)Z is
the Riemannian curvature (1, 3)-tensor, and TpM is the tangent space of M
at a point p.

This leads to the following inequality:

Theorem C.4. If Ric(M) ≥ −(n− 1)a2 for some a ≥ 0 where n = dim M ,
then

λ2(M) ≤ 2a(n− 1)h(M) + 10h2(M).

What is important for us is that in the case of bounded Ricci curvature,
which will hold in all our considerations, λ2(M) is also bounded above by a
function of h(M).

70

	Introduction
	Fundamental Graph Theory
	Basic Concepts
	Cayley Graphs

	Fundamental Cryptography
	Hash Functions
	Computational Security
	The Merkle-Damgård transform
	Cryptanalysis
	Generic Attacks
	Attacks on Iterated Hash Functions
	Differential Cryptanalysis

	Examples of Hash Functions
	MD5
	SHA-1

	Expander Graphs
	Graph Expansion
	Spectral Graph Theory
	Eigenvalue Bound and Ramanujan Graphs
	Expansion in Cayley Graphs
	Expanders and Random Graphs

	Random Walks and Expander Hashes
	Introduction to Random Walks
	Expander Hashes
	General Construction
	Cayley Hashes
	Security considerations

	Examples of Expander Hashes
	Zémor's first proposal
	Zémor-Tillich hash function
	LPS hash function
	Morgenstern hash function
	Pizer hash function
	ZesT hash function

	Cryptanalysis of Expander and Cayley Hashes

	Conclusion
	References
	Finite Fields
	Elliptic Curves
	Expander Graphs in Riemannian Geometry

