
16

Partial Differentiation

16.1 Funtions of Several Variables

In single-variable calculus we were concerned with functions that map the real numbers R

to R, sometimes called “real functions of one variable”, meaning the “input” is a single real

number and the “output” is likewise a single real number. In the last chapter we considered

functions taking a real number to a vector, which may also be viewed as functions f :R →
R

3, that is, for each input value we get a position in space. Now we turn to functions

of several variables, meaning several input variables, functions f :Rn → R. We will deal

primarily with n = 2 and to a lesser extent n = 3; in fact many of the techniques we

discuss can be applied to larger values of n as well.

A function f :R2 → R maps a pair of values (x, y) to a single real number. The three-

dimensional coordinate system we have already used is a convenient way to visualize such

functions: above each point (x, y) in the x-y plane we graph the point (x, y, z), where of

course z = f(x, y).

EXAMPLE 16.1.1 Consider f(x, y) = 3x+4y−5. Writing this as z = 3x+4y−5 and

then 3x+4y−z = 5 we recognize the equation of a plane. In the form f(x, y) = 3x+4y−5

the emphasis has shifted: we now think of x and y as independent variables and z as a

variable dependent on them, but the geometry is unchanged.

EXAMPLE 16.1.2 We have seen that x2 + y2+ z2 = 4 represents a sphere of radius 2.

We cannot write this in the form f(x, y), since for each x and y in the disk x2+y2 < 4 there

are two corresponding points on the sphere. As with the equation of a circle, we can resolve
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this equation into two functions, f(x, y) =
√

4− x2 − y2 and f(x, y) = −
√

4− x2 − y2,

representing the upper and lower hemispheres. Each of these is an example of a function

with a restricted domain: only certain values of x and y make sense (namely, those for

which x2 + y2 ≤ 4) and the graphs of these functions are limited to a small region of the

plane.

EXAMPLE 16.1.3 Consider f =
√
x +

√
y. This function is defined only when both

x and y are non-negative. When y = 0 we get f(x, y) =
√
x, the familiar square root

function in the x-z plane, and when x = 0 we get the same curve in the y-z plane.

Generally speaking, we see that starting from f(0, 0) = 0 this function gets larger in every

direction in roughly the same way that the square root function gets larger. For example,

if we restrict attention to the line x = y, we get f(x, y) = 2
√
x and along the line y = 2x

we have f(x, y) =
√
x+

√
2x = (1 +

√
2)
√
x.
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Figure 16.1.1 f(x, y) =
√
x+

√
y (AP)

A computer program that plots such surfaces can be very useful, as it is often difficult

to get a good idea of what they look like. Still, it is valuable to be able to visualize

relatively simple surfaces without such aids. As in the previous example, it is often a good

idea to examine the function on restricted subsets of the plane, especially lines. It can also

be useful to identify those points (x, y) that share a common z-value.

EXAMPLE 16.1.4 Consider f(x, y) = x2 + y2. When x = 0 this becomes f = y2, a

parabola in the y-z plane; when y = 0 we get the “same” parabola f = x2 in the x-z plane.

Now consider the line y = kx. If we simply replace y by kx we get f(x, y) = (1 + k2)x2

which is a parabola, but it does not really “represent” the cross-section along y = kx,

because the cross-section has the line y = kx where the horizontal axis should be. In
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order to pretend that this line is the horizontal axis, we need to write the function in

terms of the distance from the origin, which is
√

x2 + y2 =
√

x2 + k2x2. Now f(x, y) =

x2 + k2x2 = (
√

x2 + k2x2)2. So the cross-section is the “same” parabola as in the x-z and

y-z planes, namely, the height is always the distance from the origin squared. This means

that f(x, y) = x2 + y2 can be formed by starting with z = x2 and rotating this curve

around the z axis.

Finally, picking a value z = k, at what points does f(x, y) = k? This means x2+y2 = k,

which we recognize as the equation of a circle of radius
√
k. So the graph of f(x, y) has

parabolic cross-sections, and the same height everywhere on concentric circles with center

at the origin. This fits with what we have already discovered.
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Figure 16.1.2 f(x, y) = x2 + y2 (AP)

As in this example, the points (x, y) such that f(x, y) = k usually form a curve, called

a level curve of the function. A graph of some level curves can give a good idea of the

shape of the surface; it looks much like a topographic map of the surface. In figure 16.1.2

both the surface and its associated level curves are shown. Note that, as with a topographic

map, the heights corresponding to the level curves are evenly spaced, so that where curves

are closer together the surface is steeper.

Functions f :Rn → R behave much like functions of two variables; we will on occasion

discuss functions of three variables. The principal difficulty with such functions is visual-

izing them, as they do not “fit” in the three dimensions we are familiar with. For three

variables there are various ways to interpret functions that make them easier to under-

stand. For example, f(x, y, z) could represent the temperature at the point (x, y, z), or the

pressure, or the strength of a magnetic field. It remains useful to consider those points at

which f(x, y, z) = k, where k is some constant value. If f(x, y, z) is temperature, the set of

points (x, y, z) such that f(x, y, z) = k is the collection of points in space with temperature
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k; in general this is called a level set; for three variables, a level set is typically a surface,

called a level surface.

EXAMPLE 16.1.5 Suppose the temperature at (x, y, z) is T (x, y, z) = e−(x2+y2+z2).

This function has a maximum value of 1 at the origin, and tends to 0 in all directions.

If k is positive and at most 1, the set of points for which T (x, y, z) = k is those points

satisfying x2 + y2 + z2 = − ln k, a sphere centered at the origin. The level surfaces are the

concentric spheres centered at the origin.

Exercises 16.1.

1. Let f(x, y) = (x−y)2. Determine the equations and shapes of the cross-sections when x = 0,
y = 0, x = y, and describe the level curves. Use a three-dimensional graphing tool to graph
the surface. ⇒

2. Let f(x, y) = |x|+ |y|. Determine the equations and shapes of the cross-sections when x = 0,
y = 0, x = y, and describe the level curves. Use a three-dimensional graphing tool to graph
the surface. ⇒

3. Let f(x, y) = e−(x2+y2) sin(x2+y2). Determine the equations and shapes of the cross-sections
when x = 0, y = 0, x = y, and describe the level curves. Use a three-dimensional graphing
tool to graph the surface. ⇒

4. Let f(x, y) = sin(x − y). Determine the equations and shapes of the cross-sections when
x = 0, y = 0, x = y, and describe the level curves. Use a three-dimensional graphing tool to
graph the surface. ⇒

5. Let f(x, y) = (x2 − y2)2. Determine the equations and shapes of the cross-sections when
x = 0, y = 0, x = y, and describe the level curves. Use a three-dimensional graphing tool to
graph the surface. ⇒

6. Find the domain of each of the following functions of two variables:

a.
√

9− x2 +
√

y2 − 4

b. arcsin(x2 + y2 − 2)

c.
√

16− x2 − 4y2

⇒
7. Below are two sets of level curves. One is for a cone, one is for a paraboloid. Which is which?

Explain.
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16.2 Limits and Continuity

To develop calculus for functions of one variable, we needed to make sense of the concept of

a limit, which we needed to understand continuous functions and to define the derivative.

Limits involving functions of two variables can be considerably more difficult to deal with;

fortunately, most of the functions we encounter are fairly easy to understand.

The potential difficulty is largely due to the fact that there are many ways to “ap-

proach” a point in the x-y plane. If we want to say that lim
(x,y)→(a,b)

f(x, y) = L, we need to

capture the idea that as (x, y) gets close to (a, b) then f(x, y) gets close to L. For functions

of one variable, f(x), there are only two ways that x can approach a: from the left or right.

But there are an infinite number of ways to approach (a, b): along any one of an infinite

number of lines, or an infinite number of parabolas, or an infinite number of sine curves,

and so on. We might hope that it’s really not so bad—suppose, for example, that along

every possible line through (a, b) the value of f(x, y) gets close to L; surely this means that

“f(x, y) approaches L as (x, y) approaches (a, b)”. Sadly, no.

EXAMPLE 16.2.1 Consider f(x, y) = xy2/(x2 + y4). When x = 0 or y = 0, f(x, y) is

0, so the limit of f(x, y) approaching the origin along either the x or y axis is 0. Moreover,

along the line y = mx, f(x, y) = m2x3/(x2 + m4x4). As x approaches 0 this expression

approaches 0 as well. So along every line through the origin f(x, y) approaches 0. Now

suppose we approach the origin along x = y2. Then

f(x, y) =
y2y2

y4 + y4
=

y4

2y4
=

1

2
,

so the limit is 1/2. Looking at figure 16.2.1, it is apparent that there is a ridge above

x = y2. Approaching the origin along a straight line, we go over the ridge and then drop

down toward 0, but approaching along the ridge the height is a constant 1/2. Thus, there

is no limit at (0, 0).

Fortunately, we can define the concept of limit without needing to specify how a

particular point is approached—indeed, in definition 2.3.2, we didn’t need the concept of

“approach.” Roughly, that definition says that when x is close to a then f(x) is close to

L; there is no mention of “how” we get close to a. We can adapt that definition to two

variables quite easily:

DEFINITION 16.2.2 Limit Suppose f(x, y) is a function. We say that

lim
(x,y)→(a,b)

f(x, y) = L

if for every ǫ > 0 there is a δ > 0 so that whenever 0 <
√

(x− a)2 + (y − b)2 < δ,

|f(x, y)− L| < ǫ.
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Figure 16.2.1 f(x, y) =
xy2

x2 + y4
(AP)

This says that we can make |f(x, y)−L| < ǫ, no matter how small ǫ is, by making the

distance from (x, y) to (a, b) “small enough”.

EXAMPLE 16.2.3 We show that lim
(x,y)→(0,0)

3x2y

x2 + y2
= 0. Suppose ǫ > 0. Then

∣

∣

∣

∣

3x2y

x2 + y2

∣

∣

∣

∣

=
x2

x2 + y2
3|y|.

Note that x2/(x2 + y2) ≤ 1 and |y| =
√

y2 ≤
√

x2 + y2 < δ. So

x2

x2 + y2
3|y| < 1 · 3 · δ.
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We want to force this to be less than ǫ by picking δ “small enough.” If we choose δ = ǫ/3

then
∣

∣

∣

∣

3x2y

x2 + y2

∣

∣

∣

∣

< 1 · 3 · ǫ
3
= ǫ.

Recall that a function f(x) is continuous at x = a if lim
x→a

f(x) = f(a); roughly this

says that there is no “hole” or “jump” at x = a. We can say exactly the same thing about

a function of two variables.

DEFINITION 16.2.4 f(x, y) is continuous at (a, b) if lim
(x,y)→(a,b)

f(x, y) = f(a, b).

EXAMPLE 16.2.5 The function f(x, y) = 3x2y/(x2 + y2) is not continuous at (0, 0),

because f(0, 0) is not defined. However, we know that lim
(x,y)→(0,0)

f(x, y) = 0, so we can

easily “fix” the problem, by extending the definition of f so that f(0, 0) = 0. This surface

is shown in figure 16.2.2.
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Note that in contrast to this example we cannot fix example 16.2.1 at (0, 0) because

the limit does not exist. No matter what value we try to assign to f at (0, 0) the surface

will have a “jump” there.

Fortunately, the functions we will examine will typically be continuous almost ev-

erywhere. Usually this follows easily from the fact that closely related functions of one

variable are continuous. As with single variable functions, two classes of common functions

are particularly useful and easy to describe. A polynomial in two variables is a sum of

terms of the form axmyn, where a is a real number and m and n are non-negative integers.

A rational function is a quotient of polynomials.

THEOREM 16.2.6 Polynomials are continuous everywhere. Rational functions are

continuous everywhere they are defined.

Exercises 16.2.

Determine whether each limit exists. If it does, find the limit and prove that it is the limit; if it
does not, explain how you know.

1. lim
(x,y)→(0,0)

x2

x2 + y2
⇒

2. lim
(x,y)→(0,0)

xy

x2 + y2
⇒

3. lim
(x,y)→(0,0)

xy

2x2 + y2
⇒

4. lim
(x,y)→(0,0)

x4 − y4

x2 + y2
⇒

5. lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
⇒

6. lim
(x,y)→(0,0)

xy
√

2x2 + y2
⇒

7. lim
(x,y)→(0,0)

e−x2
−y2 − 1

x2 + y2
⇒

8. lim
(x,y)→(0,0)

x3 + y3

x2 + y2
⇒

9. lim
(x,y)→(0,0)

x2 + sin2 y

2x2 + y2
⇒

10. lim
(x,y)→(1,0)

(x− 1)2 lnx

(x− 1)2 + y2
⇒

11. lim
(x,y)→(1,−1)

3x+ 4y ⇒

12. lim
(x,y)→(0,0)

4x2y

x2 + y2
⇒
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13. Does the function f(x, y) =
x− y

1 + x+ y
have any discontinuities? What about f(x, y) =

x− y

1 + x2 + y2
? Explain.

16.3 Partial Differentiation

When we first considered what the derivative of a vector function might mean, there was

really not much difficulty in understanding either how such a thing might be computed or

what it might measure. In the case of functions of two variables, things are a bit harder

to understand. If we think of a function of two variables in terms of its graph, a surface,

there is a more-or-less obvious derivative-like question we might ask, namely, how “steep”

is the surface. But it’s not clear that this has a simple answer, nor how we might proceed.

We will start with what seem to be very small steps toward the goal; surprisingly, it turns

out that these simple ideas hold the keys to a more general understanding.
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Figure 16.3.1 f(x, y) = x2 + y2, cut by the plane x+ y = 1 (AP)

Imagine a particular point on a surface; what might we be able to say about how steep

it is? We can limit the question to make it more familiar: how steep is the surface in a

particular direction? What does this even mean? Here’s one way to think of it: Suppose

we’re interested in the point (a, b, c). Pick a straight line in the x-y plane through the

point (a, b, 0), then extend the line vertically into a plane. Look at the intersection of the

372 Chapter 16 Partial Differentiation

plane with the surface. If we pay attention to just the plane, we see the chosen straight

line where the x-axis would normally be, and the intersection with the surface shows up as

a curve in the plane. Figure 16.3.1 shows the parabolic surface from figure 16.1.2, exposing

its cross-section above the line x+ y = 1.

In principle, this is a problem we know how to solve: find the slope of a curve in a

plane. Let’s start by looking at some particularly easy lines: those parallel to the x or y

axis. Suppose we are interested in the cross-section of f(x, y) above the line y = b. If we

substitute b for y in f(x, y), we get a function in one variable, describing the height of the

cross-section as a function of x. Because y = b is parallel to the x-axis, if we view it from

a vantage point on the negative y-axis, we will see what appears to be simply an ordinary

curve in the x-z plane.
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Figure 16.3.2 f(x, y) = x2 + y2, cut by the plane y = 2 (AP)

Consider again the parabolic surface f(x, y) = x2+y2. The cross-section above the line

y = 2 consists of all points (x, 2, x2 +4). Looking at this cross-section from somewhere on

the negative y axis, we see what appears to be just the curve f(x) = x2 + 4. At any point

on the cross-section, (a, 2, a2 + 4), the steepness of the surface in the direction of the line

y = 2 is simply the slope of the curve f(x) = x2 + 4 at x = a, namely 2a. Figure 16.3.2

shows the same parabolic surface as before, but now cut by the plane y = 2. The left

graph shows the cut-off surface, the right shows just the cross-section, looking up from the

negative y-axis toward the origin.
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If, say, we’re interested in the point (−1, 2, 5) on the surface, then the slope in the

direction of the line y = 2 is 2x = 2(−1) = −2. This means that starting at (−1, 2, 5) and

moving on the surface, above the line y = 2, in the direction of increasing x values, the

surface goes down; of course moving in the opposite direction, toward decreasing x values,

the surface will rise.

If we’re interested in some other line y = k, there is really no change in the computa-

tion. The equation of the cross-section above y = k is x2 + k2 with derivative 2x. We can

save ourselves the effort, small as it is, of substituting k for y: all we are in effect doing

is temporarily assuming that y is some constant. With this assumption, the derivative
d
dx (x

2 + y2) = 2x. To emphasize that we are only temporarily assuming y is constant, we

use a slightly different notation: ∂
∂x (x

2+y2) = 2x; the “∂” reminds us that there are more

variables than x, but that only x is being treated as a variable. We read the equation

as “the partial derivative of (x2 + y2) with respect to x is 2x.” A convenient alternate

notation for the partial derivative of f(x, y) with respect to x is fx(x, y).

EXAMPLE 16.3.1 The partial derivative with respect to x of x3 + 3xy is 3x2 + 3y.

Note that the partial derivative includes the variable y, unlike the example x2 + y2. It is

somewhat unusual for the partial derivative to depend on a single variable; this example

is more typical.

Of course, we can do the same sort of calculation for lines parallel to the y-axis. We

temporarily hold x constant, which gives us the equation of the cross-section above a line

x = k. We can then compute the derivative with respect to y; this will measure the

steepness of the curve in the y direction.

EXAMPLE 16.3.2 The partial derivative with respect to y of f(x, y) = sin(xy) + 3xy

is

fy(x, y) =
∂

∂y
sin(xy) + 3xy = cos(xy)

∂

∂y
(xy) + 3x = x cos(xy) + 3x.

So far, using no new techniques, we have succeeded in measuring the slope of a surface

in two quite special directions. For functions of one variable, the derivative is closely linked

to the notion of tangent line. For surfaces, the analogous idea is the tangent plane—a

plane that just touches a surface at a point, and has the same “steepness” as the surface

in all directions. Even though we haven’t yet figured out how to compute the slope in

all directions, we have enough information to find tangent planes. Suppose we want the

plane tangent to a surface at a particular point (a, b, c). If we compute the two partial

derivatives of the function for that point, we get enough information to determine two

lines tangent to the surface, both through (a, b, c) and both tangent to the surface in their
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Figure 16.3.3 Tangent vectors and tangent plane. (AP)

respective directions. These two lines determine a plane, that is, there is exactly one plane

containing the two lines: the tangent plane. Figure 16.3.3 shows (part of) two tangent

lines at a point, and the tangent plane containing them.

How can we discover an equation for this tangent plane? We know a point on the

plane, (a, b, c); we need a vector normal to the plane. If we can find two vectors, one

parallel to each of the tangent lines we know how to find, then the cross product of these

vectors will give the desired normal vector.
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Figure 16.3.4 A tangent vector.

How can we find vectors parallel to the tangent lines? Consider first the line tangent

to the surface above the line y = b. A vector 〈u, v, w〉 parallel to this tangent line must

have y component v = 0, and we may as well take the x component to be u = 1. The ratio
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of the z component to the x component is the slope of the tangent line, precisely what we

know how to compute. The slope of the tangent line is fx(a, b), so

fx(a, b) =
w

u
=

w

1
= w.

In other words, a vector parallel to this tangent line is 〈1, 0, fx(a, b)〉, as shown in fig-

ure 16.3.4. If we repeat the reasoning for the tangent line above x = a, we get the vector

〈0, 1, fy(a, b)〉.
Now to find the desired normal vector we compute the cross product, 〈0, 1, fy〉 ×

〈1, 0, fx〉 = 〈fx, fy,−1〉. From our earlier discussion of planes, we can write down the

equation we seek: fx(a, b)x + fy(a, b)y − z = k, and k as usual can be computed by

substituting a known point: fx(a, b)(a) + fy(a, b)(b)− c = k. There are various more-or-

less nice ways to write the result:

fx(a, b)x+ fy(a, b)y − z = fx(a, b)a+ fy(a, b)b− c

fx(a, b)x+ fy(a, b)y − fx(a, b)a− fy(a, b)b+ c = z

fx(a, b)(x− a) + fy(a, b)(y− b) + c = z

fx(a, b)(x− a) + fy(a, b)(y− b) + f(a, b) = z

EXAMPLE 16.3.3 Find the plane tangent to x2 + y2 + z2 = 4 at (1, 1,
√
2). This

point is on the upper hemisphere, so we use f(x, y) =
√

4− x2 − y2. Then fx(x, y) =

−x(4− x2 − y2)−1/2 and fy(x, y) = −y(4− x2 − y2)−1/2, so fx(1, 1) = fy(1, 1) = −1/
√
2

and the equation of the plane is

z = − 1√
2
(x− 1)− 1√

2
(y − 1) +

√
2.

The hemisphere and this tangent plane are pictured in figure 16.3.3.

So it appears that to find a tangent plane, we need only find two quite simple ordinary

derivatives, namely fx and fy. This is true if the tangent plane exists. It is, unfortunately,

not always the case that if fx and fy exist there is a tangent plane. Consider the function

xy2/(x2 + y4) pictured in figure 16.2.1. This function has value 0 when x = 0 or y = 0,

and we can “plug the hole” by agreeing that f(0, 0) = 0. Now it’s clear that fx(0, 0) =

fy(0, 0) = 0, because in the x and y directions the surface is simply a horizontal line. But

it’s also clear from the picture that this surface does not have anything that deserves to

be called a “tangent plane” at the origin, certainly not the x-y plane containing these two

tangent lines.
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When does a surface have a tangent plane at a particular point? What we really want

from a tangent plane, as from a tangent line, is that the plane be a “good” approximation

of the surface near the point. Here is how we can make this precise:

DEFINITION 16.3.4 Let ∆x = x − x0, ∆y = y − y0, and ∆z = z − z0 where

z0 = f(x0, y0). The function z = f(x, y) is differentiable at (x0, y0) if

∆z = fx(x0, y0)∆x+ fy(x0, y0)∆y + ǫ1∆x+ ǫ2∆y,

and both ǫ1 and ǫ2 approach 0 as (x, y) approaches (x0, y0).

This definition takes a bit of absorbing. Let’s rewrite the central equation a bit:

z = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0) + ǫ1∆x+ ǫ2∆y. (16.3.1)

The first three terms on the right give the value of z on the tangent plane, that is,

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0)

is the z-value of the point on the plane above (x, y). Equation 16.3.1 says that the z-value

of a point on the surface is equal to the z-value of a point on the plane plus a “little bit,”

namely ǫ1∆x+ ǫ2∆y. As (x, y) approaches (x0, y0), both ∆x and ∆y approach 0, so this

little bit ǫ1∆x + ǫ2∆y also approaches 0, and the z-values on the surface and the plane

get close to each other. But that by itself is not very interesting: since the surface and

the plane both contain the point (x0, y0, z0), the z values will approach z0 and hence get

close to each other whether the tangent plane is “tangent” to the surface or not. The extra

condition in the definition says that as (x, y) approaches (x0, y0), the ǫ values approach

0—this means that ǫ1∆x+ ǫ2∆y approaches 0 much, much faster, because ǫ1∆x is much

smaller than either ǫ1 or ∆x. It is this extra condition that makes the plane a tangent

plane.

We can see that the extra condition on ǫ1 and ǫ2 fits neatly with the definition of

partial derivatives. Suppose we temporarily fix y = y0, so ∆y = 0. Then the equation

from the definition becomes

∆z = fx(x0, y0)∆x+ ǫ1∆x

or
∆z

∆x
= fx(x0, y0) + ǫ1.

Now taking the limit of the two sides as ∆x approaches 0, the left side turns into the

partial derivative of z with respect to x at (x0, y0), or in other words fx(x0, y0), and the
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right side does the same, because as (x, y) approaches (x0, y0), ǫ1 approaches 0. Essentially

the same calculation works for fy.

Almost all of the functions we will encounter are differentiable at points we will be

interested in, and often at all points. This is usually because the functions satisfy the

hypotheses of this theorem.

THEOREM 16.3.5 If f(x, y) and its partial derivatives are continuous at a point

(x0, y0), then f is differentiable there.

Exercises 16.3.

1. Find fx and fy where f(x, y) = cos(x2y) + y3. ⇒
2. Find fx and fy where f(x, y) =

xy

x2 + y
. ⇒

3. Find fx and fy where f(x, y) = ex
2+y2

. ⇒
4. Find fx and fy where f(x, y) = xy ln(xy). ⇒
5. Find fx and fy where f(x, y) =

√

1− x2 − y2. ⇒
6. Find fx and fy where f(x, y) = x tan(y). ⇒

7. Find fx and fy where f(x, y) =
1

xy
. ⇒

8. Find an equation for the plane tangent to 2x2 + 3y2 − z2 = 4 at (1, 1,−1). ⇒
9. Find an equation for the plane tangent to f(x, y) = sin(xy) at (π, 1/2, 1). ⇒

10. Find an equation for the plane tangent to f(x, y) = x2 + y3 at (3, 1, 10). ⇒
11. Find an equation for the plane tangent to f(x, y) = x ln(xy) at (2, 1/2, 0). ⇒
12. Find an equation for the line normal to x2 + 4y2 = 2z at (2, 1, 4). ⇒
13. Explain in your own words why, when taking a partial derivative of a function of multiple

variables, we can treat the variables not being differentiated as constants.

14. Consider a differentiable function, f(x, y). Give physical interpretations of the meanings of
fx(a, b) and fy(a, b) as they relate to the graph of f .

15. In much the same way that we used the tangent line to approximate the value of a function
from single variable calculus, we can use the tangent plane to approximate a function from
multivariable calculus. Consider the tangent plane found in Exercise 11. Use this plane to
approximate f(1.98, 0.4). ⇒

16. Suppose that one of your colleagues has calculated the partial derivatives of a given function,
and reported to you that fx(x, y) = 2x + 3y and that fy(x, y) = 4x + 6y. Do you believe
them? Why or why not? If not, what answer might you have accepted for fy?

17. Suppose f(t) and g(t) are single variable differentiable functions. Find ∂z/∂x and ∂z/∂y for
each of the following functions of two variables.

a. z = f(x)g(y)

b. z = f(xy)

c. z = f(x/y)
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⇒

16.4 The Chain Rule

Consider the surface z = x2y + xy2, and suppose that x = 2 + t4 and y = 1− t3. We can

think of the latter two equations as describing how x and y change relative to, say, time.

Then

z = x2y + xy2 = (2 + t4)2(1− t3) + (2 + t4)(1− t3)2

tells us explicitly how the z coordinate of the corresponding point on the surface depends

on t. If we want to know dz/dt we can compute it more or less directly—it’s actually a bit

simpler to use the chain rule:

dz

dt
= x2y′ + 2xx′y + x2yy′ + x′y2

= (2xy + y2)x′ + (x2 + 2xy)y′

= (2(2 + t4)(1− t3) + (1− t3)2)(4t3) + ((2 + t4)2 + 2(2 + t4)(1− t3))(−3t2)

If we look carefully at the middle step, dz/dt = (2xy+y2)x′+(x2+2xy)y′, we notice that

2xy+ y2 is ∂z/∂x, and x2 + 2xy is ∂z/∂y. This turns out to be true in general, and gives

us a new chain rule:

THEOREM 16.4.1 Suppose that z = f(x, y), f is differentiable, x = g(t), and y = h(t).

Assuming that the relevant derivatives exist,

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

Proof. If f is differentiable, then

∆z = fx(x0, y0)∆x+ fy(x0, y0)∆y + ǫ1∆x+ ǫ2∆y,

where ǫ1 and ǫ2 approach 0 as (x, y) approaches (x0, y0). Then

∆z

∆t
= fx

∆x

∆t
+ fy

∆y

∆t
+ ǫ1

∆x

∆t
+ ǫ2

∆y

∆t
. (16.4.1)
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As ∆t approaches 0, (x, y) approaches (x0, y0) and so

lim
∆t→0

∆z

∆t
=

dz

dt

lim
∆t→0

ǫ1
∆x

∆t
= 0 · dx

dt

lim
∆t→0

ǫ2
∆y

∆t
= 0 · dy

dt

and so taking the limit of (16.4.1) as ∆t goes to 0 gives

dz

dt
= fx

dx

dt
+ fy

dy

dt
,

as desired.

We can write the chain rule in way that is somewhat closer to the single variable chain

rule:
df

dt
= 〈fx, fy〉 · 〈x′, y′〉,

or (roughly) the derivatives of the outside function “times” the derivatives of the inside

functions. Not surprisingly, essentially the same chain rule works for functions of more

than two variables, for example, given a function of three variables f(x, y, z), where each

of x, y and z is a function of t,

df

dt
= 〈fx, fy, fz〉 · 〈x′, y′, z′〉.

We can even extend the idea further. Suppose that f(x, y) is a function and x = g(s, t)

and y = h(s, t) are functions of two variables s and t. Then f is “really” a function of s

and t as well, and
∂f

∂s
= fxgs + fyhs

∂f

∂t
= fxgt + fyht.

The natural extension of this to f(x, y, z) works as well.

Recall that we used the ordinary chain rule to do implicit differentiation. We can do

the same with the new chain rule.

EXAMPLE 16.4.2 x2 + y2 + z2 = 4 defines a sphere, which is not a function of x and

y, though it can be thought of as two functions, the top and bottom hemispheres. We

can think of z as one of these two functions, so really z = z(x, y), and we can think of x
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and y as particularly simple functions of x and y, and let f(x, y, z) = x2 + y2 + z2. Since

f(x, y, z) = 4, ∂f/∂x = 0, but using the chain rule:

0 =
∂f

∂x
= fx

∂x

∂x
+ fy

∂y

∂x
+ fz

∂z

∂x

= (2x)(1) + (2y)(0) + (2z)
∂z

∂x
,

noting that since y is temporarily held constant its derivative ∂y/∂x = 0. Now we can

solve for ∂z/∂x:
∂z

∂x
= −2x

2z
= −x

z
.

In a similar manner we can compute ∂z/∂y.

Exercises 16.4.

1. Use the chain rule to compute dz/dt for z = sin(x2 + y2), x = t2 + 3, y = t3. ⇒
2. Use the chain rule to compute dz/dt for z = x2y, x = sin(t), y = t2 + 1. ⇒
3. Use the chain rule to compute ∂z/∂s and ∂z/∂t for z = x2y, x = sin(st), y = t2 + s2. ⇒
4. Use the chain rule to compute ∂z/∂s and ∂z/∂t for z = x2y2, x = st, y = t2 − s2. ⇒
5. Use the chain rule to compute ∂z/∂x and ∂z/∂y for 2x2 + 3y2 − 2z2 = 9. ⇒
6. Use the chain rule to compute ∂z/∂x and ∂z/∂y for 2x2 + y2 + z2 = 9. ⇒
7. Use the chain rule to compute ∂z/∂x and ∂z/∂y for xy2 + z2 = 5. ⇒
8. Use the chain rule to compute ∂z/∂x and ∂z/∂y for 2 sin(xyz) = 1. ⇒
9. Chemistry students will recognize the ideal gas law , given by PV = nRT which relates the

Pressure, Volume, and Temperature of n moles of gas. (R is the ideal gas constant). Thus,
we can view pressure, volume, and temperature as variables, each one dependent on the other
two.

a. If pressure of a gas is increasing at a rate of 0.2Pa/min and temperature is increasing at
a rate of 1K/min, how fast is the volume changing?

b. If the volume of a gas is decreasing at a rate of 0.3m3/min and temperature is increasing
at a rate of .5K/min, how fast is the pressure changing?

c. If the pressure of a gas is decreasing at a rate of 0.4Pa/min and the volume is increasing
at a rate of 3L/min, how fast is the temperature changing?

⇒
10. Verify the following identity in the case of the ideal gas law:

∂P

∂V

∂V

∂T

∂T

∂P
= −1

11. The previous exercise was a special case of the following fact, which you are to verify here:
If F (x, y, z) is a function of 3 variables, and the relation F (x, y, z) = 0 defines each of the
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variables in terms of the other two, namely x = f(y, z), y = g(x, z) and z = h(x, y), then

∂x

∂y

∂y

∂z

∂z

∂x
= −1

16.5 Diretional Derivatives

We still have not answered one of our first questions about the steepness of a surface:

starting at a point on a surface given by f(x, y), and walking in a particular direction, how

steep is the surface? We are now ready to answer the question.

We already know roughly what has to be done: as shown in figure 16.3.1, we extend a

line in the x-y plane to a vertical plane, and we then compute the slope of the curve that

is the cross-section of the surface in that plane. The major stumbling block is that what

appears in this plane to be the horizontal axis, namely the line in the x-y plane, is not an

actual axis—we know nothing about the “units” along the axis. Our goal is to make this

line into a t axis; then we need formulas to write x and y in terms of this new variable t;

then we can write z in terms of t since we know z in terms of x and y; and finally we can

simply take the derivative.

So we need to somehow “mark off” units on the line, and we need a convenient way

to refer to the line in calculations. It turns out that we can accomplish both by using the

vector form of a line. Suppose that u is a unit vector 〈u1, u2〉 in the direction of interest. A

vector equation for the line through (x0, y0) in this direction is v(t) = 〈u1t+ x0, u2t+ y0〉.
The height of the surface above the point (u1t+x0, u2t+y0) is g(t) = f(u1t+x0, u2t+y0).

Because u is a unit vector, the value of t is precisely the distance along the line from

(x0, y0) to (u1t+ x0, u2t+ y0); this means that the line is effectively a t axis, with origin

at the point (x0, y0), so the slope we seek is

g′(0) = 〈fx(x0, y0), fy(x0, y0)〉 · 〈u1, u2〉
= 〈fx, fy〉 · u
= ∇f · u

Here we have used the chain rule and the derivatives d
dt (u1t+x0) = u1 and

d
dt (u2t+y0) = u2.

The vector 〈fx, fy〉 is very useful, so it has its own symbol, ∇f , pronounced “del f”; it is

also called the gradient of f .

EXAMPLE 16.5.1 Find the slope of z = x2+y2 at (1, 2) in the direction of the vector

〈3, 4〉.
We first compute the gradient at (1, 2): ∇f = 〈2x, 2y〉, which is 〈2, 4〉 at (1, 2). A unit

vector in the desired direction is 〈3/5, 4/5〉, and the desired slope is then 〈2, 4〉·〈3/5, 4/5〉 =
6/5 + 16/5 = 22/5.
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When doing such problems, it is easy to forget that we require a unit vector in the

calculation ∇f · u. You may prefer to remember that this can always be written as

∇f · v/|v|. In the previous example, we might then have computed 〈2, 4〉 · 〈3, 4〉/|〈3, 4〉|,
rather than remembering to first compute u = 〈3, 4〉/|〈3, 4〉|.

EXAMPLE 16.5.2 Find a tangent vector to z = x2 + y2 at (1, 2) in the direction of

the vector 〈3, 4〉 and show that it is parallel to the tangent plane at that point.

Since 〈3/5, 4/5〉 is a unit vector in the desired direction, we can easily expand it to a

tangent vector simply by adding the third coordinate computed in the previous example:

〈3/5, 4/5, 22/5〉. To see that this vector is parallel to the tangent plane, we can compute

its dot product with a normal to the plane. We know that a normal to the tangent plane

is

〈fx(1, 2), fy(1, 2),−1〉 = 〈2, 4,−1〉,
and the dot product is 〈2, 4,−1〉 · 〈3/5, 4/5, 22/5〉 = 6/5 + 16/5 − 22/5 = 0, so the two

vectors are perpendicular. (Note that the vector normal to the surface, namely 〈fx, fy,−1〉,
is simply the gradient with a −1 tacked on as the third component.)

The slope of a surface given by z = f(x, y) in the direction of a (two-dimensional)

unit vector u is called the directional derivative of f , written Duf . The directional

derivative immediately provides us with some additional information. We know that

Duf = ∇f · u = |∇f ||u| cos θ = |∇f | cos θ

if u is a unit vector; θ is the angle between ∇f and u. This tells us immediately that the

largest value of Duf occurs when cos θ = 1, namely, when θ = 0, so ∇f is parallel to u.

In other words, the gradient ∇f points in the direction of steepest ascent of the surface,

and |∇f | is the slope in that direction. Likewise, the smallest value of Duf occurs when

cos θ = −1, namely, when θ = π, so ∇f is anti-parallel to u. In other words, −∇f points

in the direction of steepest descent of the surface, and −|∇f | is the slope in that direction.

EXAMPLE 16.5.3 Investigate the direction of steepest ascent and descent for z =

x2 + y2.

The gradient is 〈2x, 2y〉 = 2〈x, y〉; this is a vector parallel to the vector 〈x, y〉, so the

direction of steepest ascent is directly away from the origin, starting at the point (x, y).

The direction of steepest descent is thus directly toward the origin from (x, y). Note that

at (0, 0) the gradient vector is 〈0, 0〉, which has no direction, and it is clear from the plot

of this surface that there is a minimum point at the origin, and tangent vectors in all

directions are parallel to the x-y plane.

If ∇f is perpendicular to u, Duf = |∇f | cos(π/2) = 0, since cos(π/2) = 0. This means

that in either of the two directions perpendicular to ∇f , the slope of the surface is 0; this
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implies that a vector in either of these directions is tangent to the level curve at that point.

Starting with ∇f = 〈fx, fy〉, it is easy to find a vector perpendicular to it: either 〈fy,−fx〉
or 〈−fy, fx〉 will work.

If f(x, y, z) is a function of three variables, all the calculations proceed in essentially

the same way. The rate at which f changes in a particular direction is ∇f · u, where now

∇f = 〈fx, fy, fz〉 and u = 〈u1, u2, u3〉 is a unit vector. Again ∇f points in the direction of

maximum rate of increase, −∇f points in the direction of maximum rate of decrease, and

any vector perpendicular to ∇f is tangent to the level surface f(x, y, z) = k at the point

in question. Of course there are no longer just two such vectors; the vectors perpendicular

to ∇f describe the tangent plane to the level surface, or in other words ∇f is a normal to

the tangent plane.

EXAMPLE 16.5.4 Suppose the temperature at a point in space is given by T (x, y, z) =

T0/(1+x2+y2+z2); at the origin the temperature in Kelvin is T0 > 0, and it decreases in

every direction from there. It might be, for example, that there is a source of heat at the

origin, and as we get farther from the source, the temperature decreases. The gradient is

∇T = 〈 −2T0x

(1 + x2 + y2 + z2)2
,

−2T0y

(1 + x2 + y2 + z2)2
,

−2T0z

(1 + x2 + y2 + z2)2
〉

=
−2T0

(1 + x2 + y2 + z2)2
〈x, y, z〉.

The gradient points directly at the origin from the point (x, y, z)—by moving directly

toward the heat source, we increase the temperature as quickly as possible.

EXAMPLE 16.5.5 Find the points on the surface defined by x2+2y2+3z2 = 1 where

the tangent plane is parallel to the plane defined by 3x− y + 3z = 1.

Two planes are parallel if their normals are parallel or anti-parallel, so we want to

find the points on the surface with normal parallel or anti-parallel to 〈3,−1, 3〉. Let f =

x2 + 2y2 + 3z2; the gradient of f is normal to the level surface at every point, so we are

looking for a gradient parallel or anti-parallel to 〈3,−1, 3〉. The gradient is 〈2x, 4y, 6z〉; if
it is parallel or anti-parallel to 〈3,−1, 3〉, then

〈2x, 4y, 6z〉 = k〈3,−1, 3〉

for some k. This means we need a solution to the equations

2x = 3k 4y = −k 6z = 3k

but this is three equations in four unknowns—we need another equation. What we haven’t

used so far is that the points we seek are on the surface x2 + 2y2 + 3z2 = 1; this is the
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fourth equation. If we solve the first three equations for x, y, and z and substitute into

the fourth equation we get

1 =

(

3k

2

)2

+ 2

(−k

4

)2

+ 3

(

3k

6

)2

=

(

9

4
+

2

16
+

3

4

)

k2

=
25

8
k2

so k = ±2
√
2

5
. The desired points are

(

3
√
2

5
,−

√
2

10
,

√
2

5

)

and

(

−3
√
2

5
,

√
2

10
,−

√
2

5

)

. The

ellipsoid and the three planes are shown in figure 16.5.1.

Figure 16.5.1 Ellipsoid with two tangent planes parallel to a given plane. (AP)

Exercises 16.5.

1. Find Duf for f = x2 + xy + y2 in the direction of v = 〈2, 1〉 at the point (1, 1). ⇒
2. Find Duf for f = sin(xy) in the direction of v = 〈−1, 1〉 at the point (3, 1). ⇒
3. Find Duf for f = ex cos(y) in the direction 30 degrees from the positive x axis at the point

(1, π/4). ⇒
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4. The temperature of a thin plate in the x-y plane is T = x2 + y2. How fast does temperature
change at the point (1, 5) moving in a direction 30 degrees from the positive x axis? ⇒

5. Suppose the density of a thin plate at (x, y) is 1/
√

x2 + y2 + 1. Find the rate of change of
the density at (2, 1) in a direction π/3 radians from the positive x axis. ⇒

6. Suppose the electric potential at (x, y) is ln
√

x2 + y2. Find the rate of change of the potential
at (3, 4) toward the origin and also in a direction at a right angle to the direction toward the
origin. ⇒

7. A plane perpendicular to the x-y plane contains the point (2, 1, 8) on the paraboloid z =
x2 +4y2. The cross-section of the paraboloid created by this plane has slope 0 at this point.
Find an equation of the plane. ⇒

8. A plane perpendicular to the x-y plane contains the point (3, 2, 2) on the paraboloid 36z =
4x2+9y2. The cross-section of the paraboloid created by this plane has slope 0 at this point.
Find an equation of the plane. ⇒

9. Suppose the temperature at (x, y, z) is given by T = xy + sin(yz). In what direction should
you go from the point (1, 1, 1) to decrease the temperature as quickly as possible? What is
the rate of change of temperature in this direction? ⇒

10. Suppose the temperature at (x, y, z) is given by T = xyz. In what direction can you go from
the point (1, 1, 1) to maintain the same temperature? ⇒

11. Find an equation for the plane tangent to x2 − 3y2 + z2 = 7 at (1, 1, 3). ⇒
12. Find an equation for the plane tangent to xyz = 6 at (1, 2, 3). ⇒
13. Find a vector function for the line normal to x2 + 2y2 + 4z2 = 26 at (2,−3,−1). ⇒
14. Find a vector function for the line normal to x2 + y2 + 9z2 = 56 at (4, 2,−2). ⇒
15. Find a vector function for the line normal to x2 + 5y2 − z2 = 0 at (4, 2, 6). ⇒
16. Find the directions in which the directional derivative of f(x, y) = x2 + sin(xy) at the point

(1, 0) has the value 1. ⇒
17. Show that the curve r(t) = 〈ln(t), t ln(t), t〉 is tangent to the surface xz2 − yz + cos(xy) = 1

at the point (0, 0, 1).

18. A bug is crawling on the surface of a hot plate, the temperature of which at the point x
units to the right of the lower left corner and y units up from the lower left corner is given
by T (x, y) = 100− x2 − 3y3.

a. If the bug is at the point (2, 1), in what direction should it move to cool off the fastest?
How fast will the temperature drop in this direction?

b. If the bug is at the point (1, 3), in what direction should it move in order to maintain its
temperature?

⇒
19. The elevation on a portion of a hill is given by f(x, y) = 100− 4x2 − 2y. From the location

above (2, 1), in which direction will water run? ⇒
20. The contour map here shows wind speed in knots during Hurricane Andrew on August

24, 1992. Use it to estimate the value of the directional derivative of the wind speed at
Homestead, FL, in the direction of the eye of the hurricane. Explain the meaning of your
answer to a lay person. ⇒
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21. Suppose that g(x, y) = y− x2. Find the gradient at the point (−1, 3). Sketch the level curve
to the graph of g when g(x, y) = 2, and plot both the tangent line and the gradient vector
at the point (−1, 3). (Make your sketch large). What do you notice, geometrically? ⇒

22. The gradient ∇f is a vector valued function of two variables. Prove the following gradient
rules. Assume f(x, y) and g(x, y) are differentiable functions.

a. ∇(fg) = f∇(g) + g∇(f)

b. ∇(f/g) = (g∇f − f∇g)/g2

c. ∇((f(x, y))n) = nf(x, y)n−1∇f

16.6 Higher order derivatives

In single variable calculus we saw that the second derivative is often useful: in appropriate

circumstances it measures acceleration; it can be used to identify maximum and minimum

points; it tells us something about how sharply curved a graph is. Not surprisingly, second

derivatives are also useful in the multi-variable case, but again not surprisingly, things are

a bit more complicated.

It’s easy to see where some complication is going to come from: with two variables

there are four possible second derivatives. To take a “derivative,” we must take a partial

derivative with respect to x or y, and there are four ways to do it: x then x, x then y, y

then x, y then y.

EXAMPLE 16.6.1 Compute all four second derivatives of f(x, y) = x2y2.

Using an obvious notation, we get:

fxx = 2y2 fxy = 4xy fyx = 4xy fyy = 2x2.
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You will have noticed that two of these are the same, the “mixed partials” computed

by taking partial derivatives with respect to both variables in the two possible orders. This

is not an accident—as long as the function is reasonably nice, this will always be true.

THEOREM 16.6.2 Clairaut’s Theorem If the mixed partial derivatives are con-

tinuous, they are equal.

EXAMPLE 16.6.3 Compute the mixed partials of f = xy/(x2 + y2).

fx =
y3 − x2y

(x2 + y2)2
fxy = −x4 − 6x2y2 + y4

(x2 + y2)3

We leave fyx as an exercise.

Exercises 16.6.

1. Find all first and second partial derivatives of f = xy/(x2 + y2). ⇒
2. Find all first and second partial derivatives of x3y2 + y5. ⇒
3. Find all first and second partial derivatives of 4x3 + xy2 + 10. ⇒
4. Find all first and second partial derivatives of x sin y. ⇒
5. Find all first and second partial derivatives of sin(3x) cos(2y). ⇒
6. Find all first and second partial derivatives of ex+y2

. ⇒
7. Find all first and second partial derivatives of ln

√

x3 + y4. ⇒
8. Find all first and second partial derivatives of z with respect to x and y if x2+4y2+16z2−64 =

0. ⇒
9. Find all first and second partial derivatives of z with respect to x and y if xy + yz + xz = 1.

⇒
10. Let α and k be constants. Prove that the function u(x, t) = e−α2k2t sin(kx) is a solution to

the heat equation ut = α2uxx

11. Let a be a constant. Prove that u = sin(x−at)+ln(x+at) is a solution to the wave equation
utt = a2uxx.

12. How many third-order derivatives does a function of 2 variables have? How many of these
are distinct?

13. How many nth order derivatives does a function of 2 variables have? How many of these are
distinct?

16.7 Maxima and minima

Suppose a surface given by f(x, y) has a local maximum at (x0, y0, z0); geometrically, this

point on the surface looks like the top of a hill. If we look at the cross-section in the

plane y = y0, we will see a local maximum on the curve at (x0, z0), and we know from

single-variable calculus that ∂z
∂x = 0 at this point. Likewise, in the plane x = x0,

∂z
∂y = 0.
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So if there is a local maximum at (x0, y0, z0), both partial derivatives at the point must

be zero, and likewise for a local minimum. Thus, to find local maximum and minimum

points, we need only consider those points at which both partial derivatives are 0. As in

the single-variable case, it is possible for the derivatives to be 0 at a point that is neither

a maximum or a minimum, so we need to test these points further.

You will recall that in the single variable case, we examined three methods to identify

maximum and minimum points; the most useful is the second derivative test, though it

does not always work. For functions of two variables there is also a second derivative test;

again it is by far the most useful test, though it doesn’t always work.

THEOREM 16.7.1 Suppose that the second partial derivatives of f(x, y) are continuous

near (x0, y0), and fx(x0, y0) = fy(x0, y0) = 0. We denote by D the discriminant:

D(x0, y0) = fxx(x0, y0)fyy(x0, y0)− fxy(x0, y0)
2.

If D > 0:

if fxx(x0, y0) < 0: there is a local maximum at (x0, y0);

if fxx(x0, y0) > 0: there is a local minimum at (x0, y0);

if D < 0: there is neither a maximum nor a minimum at (x0, y0);

if D = 0: the test fails.

EXAMPLE 16.7.2 Verify that f(x, y) = x2 + y2 has a minimum at (0, 0).

First, we compute all the needed derivatives:

fx = 2x fy = 2y fxx = 2 fyy = 2 fxy = 0.

The derivatives fx and fy are zero only at (0, 0). Applying the second derivative test there:

D(0, 0) = fxx(0, 0)fyy(0, 0)− fxy(0, 0)
2 = 2 · 2− 0 = 4 > 0

and

fxx(0, 0) = 2 > 0,

so there is a local minimum at (0, 0), and there are no other possibilities.

EXAMPLE 16.7.3 Find all local maxima and minima for f(x, y) = x2 − y2.

The derivatives:

fx = 2x fy = −2y fxx = 2 fyy = −2 fxy = 0.

Again there is a single critical point, at (0, 0), and

D(0, 0) = fxx(0, 0)fyy(0, 0)− fxy(0, 0)
2 = 2 · −2− 0 = −4 < 0,

so there is neither a maximum nor minimum there, and so there are no local maxima or

minima. The surface is shown in figure 16.7.1.
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Figure 16.7.1 A saddle point, neither a maximum nor a minimum. (AP)

EXAMPLE 16.7.4 Find all local maxima and minima for f(x, y) = x4 + y4.

The derivatives:

fx = 4x3 fy = 4y3 fxx = 12x2 fyy = 12y2 fxy = 0.

Again there is a single critical point, at (0, 0), and

D(0, 0) = fxx(0, 0)fyy(0, 0)− fxy(0, 0)
2 = 0 · 0− 0 = 0,

so we get no information. However, in this case it is easy to see that there is a minimum

at (0, 0), because f(0, 0) = 0 and at all other points f(x, y) > 0.

EXAMPLE 16.7.5 Find all local maxima and minima for f(x, y) = x3 + y3.

The derivatives:

fx = 3x2 fy = 3y2 fxx = 6x2 fyy = 6y2 fxy = 0.

Again there is a single critical point, at (0, 0), and

D(0, 0) = fxx(0, 0)fyy(0, 0)− fxy(0, 0)
2 = 0 · 0− 0 = 0,

so we get no information. In this case, a little thought shows there is neither a maximum

nor a minimum at (0, 0): when x and y are both positive, f(x, y) > 0, and when x and
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y are both negative, f(x, y) < 0, and there are points of both kinds arbitrarily close to

(0, 0). Alternately, if we look at the cross-section when y = 0, we get f(x, 0) = x3, which

does not have either a maximum or minimum at x = 0.

EXAMPLE 16.7.6 Suppose a box with no top is to hold a certain volume V . Find the

dimensions for the box that result in the minimum surface area.

The area of the box is A = 2hw + 2hl + lw, and the volume is V = lwh, so we can

write the area as a function of two variables,

A(l, w) =
2V

l
+

2V

w
+ lw.

Then

Al = −2V

l2
+ w and Aw = −2V

w2
+ l.

If we set these equal to zero and solve, we find w = (2V )1/3 and l = (2V )1/3, and the

corresponding height is h = V/(2V )2/3.

The second derivatives are

All =
4V

l3
Aww =

4V

w3
Alw = 1,

so the discriminant is

D =
4V

l3
4V

w3
− 1 = 4− 1 = 3 > 0.

Since All is 2, there is a local minimum at the critical point. Is this a global minimum?

It is, but it is difficult to see this analytically; physically and graphically it is clear that

there is a minimum, in which case it must be at the single critical point. This applet shows

an example of such a graph. Note that we must choose a value for V in order to graph

it.

Recall that when we did single variable global maximum and minimum problems, the

easiest cases were those for which the variable could be limited to a finite closed interval,

for then we simply had to check all critical values and the endpoints. The previous example

is difficult because there is no finite boundary to the domain of the problem—both w and

l can be in (0,∞). As in the single variable case, the problem is often simpler when there

is a finite boundary.

THEOREM 16.7.7 If f(x, y) is continuous on a closed and bounded subset of R2, then

it has both a maximum and minimum value.
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As in the case of single variable functions, this means that the maximum and minimum

values must occur at a critical point or on the boundary; in the two variable case, however,

the boundary is a curve, not merely two endpoints.

EXAMPLE 16.7.8 The length of the diagonal of a box is to be 1 meter; find the

maximum possible volume.

If the box is placed with one corner at the origin, and sides along the axes, the length

of the diagonal is
√

x2 + y2 + z2, and the volume is

V = xyz = xy
√

1− x2 − y2.

Clearly, x2 + y2 ≤ 1, so the domain we are interested in is the quarter of the unit disk in

the first quadrant. Computing derivatives:

Vx =
y − 2yx2 − y3
√

1− x2 − y2

Vy =
x− 2xy2 − x3

√

1− x2 − y2

If these are both 0, then x = 0 or y = 0, or x = y = 1/
√
3. The boundary of the domain is

composed of three curves: x = 0 for y ∈ [0, 1]; y = 0 for x ∈ [0, 1]; and x2 + y2 = 1, where

x ≥ 0 and y ≥ 0. In all three cases, the volume xy
√

1− x2 − y2 is 0, so the maximum

occurs at the only critical point (1/
√
3, 1/

√
3, 1/

√
3), giving a volume of 1/(3

√
3). See

figure 16.7.2.

Exercises 16.7.

1. Find all local maximum and minimum points of f = x2 + 4y2 − 2x+ 8y − 1. ⇒
2. Find all local maximum and minimum points of f = x2 − y2 + 6x− 10y + 2. ⇒
3. Find all local maximum and minimum points of f = xy. ⇒
4. Find all local maximum and minimum points of f = 9 + 4x− y − 2x2 − 3y2. ⇒
5. Find all local maximum and minimum points of f = x2 + 4xy + y2 − 6y + 1. ⇒
6. Find all local maximum and minimum points of f = x2 − xy + 2y2 − 5x+ 6y − 9. ⇒
7. Find the absolute maximum and minimum points of f = x2 + 3y − 3xy over the region

bounded by y = x, y = 0, and x = 2. ⇒
8. A six-sided rectangular box is to hold 1/2 cubic meter; what shape should the box be to

minimize surface area? ⇒
9. The post office will accept packages whose combined length and girth is at most 130 inches.

(Girth is the maximum distance around the package perpendicular to the length; for a rect-
angular box, the length is the largest of the three dimensions.) What is the largest volume
that can be sent in a rectangular box? ⇒
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Figure 16.7.2 The volume of a box with fixed length diagonal.

10. The bottom of a rectangular box costs twice as much per unit area as the sides and top.
Find the shape for a given volume that will minimize cost. ⇒

11. Using the methods of this section, find the shortest distance from the origin to the plane
x+ y + z = 10. ⇒

12. Using the methods of this section, find the shortest distance from the point (x0, y0, z0) to
the plane ax + by + cz = d. You may assume that c 6= 0; use of Sage or similar software is
recommended. ⇒

13. A trough is to be formed by bending up two sides of a long metal rectangle so that the
cross-section of the trough is an isosceles trapezoid, as in figure 6.2.6. If the width of the
metal sheet is 2 meters, how should it be bent to maximize the volume of the trough? ⇒

14. Given the three points (1, 4), (5, 2), and (3,−2), (x− 1)2 + (y − 4)2 + (x− 5)2 + (y − 2)2 +
(x − 3)2 + (y + 2)2 is the sum of the squares of the distances from point (x, y) to the three
points. Find x and y so that this quantity is minimized. ⇒

15. Suppose that f(x, y) = x2 + y2 + kxy. Find and classify the critical points, and discuss how
they change when k takes on different values.

16. Find the shortest distance from the point (0, b) to the parabola y = x2. ⇒
17. Find the shortest distance from the point (0, 0, b) to the paraboloid z = x2 + y2. ⇒
18. Consider the function f(x, y) = x3 − 3x2y + y3.

a. Show that (0, 0) is the only critical point of f .

b. Show that the discriminant test is inconclusive for f .

c. Determine the cross-sections of f obtained by setting y = kx for various values of k.
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d. What kind of critical point is (0, 0)?

19. Find the volume of the largest rectangular box with edges parallel to the axes that can be
inscribed in the ellipsoid 2x2 + 72y2 + 18z2 = 288. ⇒

16.8 Lagrange Multipliers

Many applied max/min problems take the form of the last two examples: we want to

find an extreme value of a function, like V = xyz, subject to a constraint, like 1 =
√

x2 + y2 + z2. Often this can be done, as we have, by explicitly combining the equations

and then finding critical points. There is another approach that is often convenient, the

method of Lagrange multipliers.

It is somewhat easier to understand two variable problems, so we begin with one as

an example. Suppose the perimeter of a rectangle is to be 100 units. Find the rectangle

with largest area. This is a fairly straightforward problem from single variable calculus.

We write down the two equations: A = xy, P = 100 = 2x + 2y, solve the second of

these for y (or x), substitute into the first, and end up with a one-variable maximization

problem. Let’s now think of it differently: the equation A = xy defines a surface, and the

equation 100 = 2x+ 2y defines a curve (a line, in this case) in the x-y plane. If we graph

both of these in the three-dimensional coordinate system, we can phrase the problem like

this: what is the highest point on the surface above the line? The solution we already

understand effectively produces the equation of the cross-section of the surface above the

line and then treats it as a single variable problem. Instead, imagine that we draw the

level curves (the contour lines) for the surface in the x-y plane, along with the line.
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Figure 16.8.1 Constraint line with contour plot of the surface xy.
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Imagine that the line represents a hiking trail and the contour lines are, as on a

topographic map, the lines of constant altitude. How could you estimate, based on the

graph, the high (or low) points on the path? As the path crosses contour lines, you know

the path must be increasing or decreasing in elevation. At some point you will see the path

just touch a contour line (tangent to it), and then begin to cross contours in the opposite

order—that point of tangency must be a maximum or minimum point. If we can identify

all such points, we can then check them to see which gives the maximum and which the

minimum value. As usual, we also need to check boundary points; in this problem, we

know that x and y are positive, so we are interested in just the portion of the line in the

first quadrant, as shown. The endpoints of the path, the two points on the axes, are not

points of tangency, but they are the two places that the function xy is a minimum in the

first quadrant.

How can we actually make use of this? At the points of tangency that we seek, the

constraint curve (in this case the line) and the level curve have the same slope—their

tangent lines are parallel. This also means that the constraint curve is perpendicular to

the gradient vector of the function; going a bit further, if we can express the constraint

curve itself as a level curve, then we seek the points at which the two level curves have

parallel gradients. The curve 100 = 2x + 2y can be thought of as a level curve of the

function 2x + 2y; figure 16.8.2 shows both sets of level curves on a single graph. We are

interested in those points where two level curves are tangent—but there are many such

points, in fact an infinite number, as we’ve only shown a few of the level curves. All along

the line y = x are points at which two level curves are tangent. While this might seem to

be a show-stopper, it is not.
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Figure 16.8.2 Contour plots for 2x+ 2y and xy.
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The gradient of 2x + 2y is 〈2, 2〉, and the gradient of xy is 〈y, x〉. They are parallel

when 〈2, 2〉 = λ〈y, x〉, that is, when 2 = λy and 2 = λx. We have two equations in three

unknowns, which typically results in many solutions (as we expected). A third equation will

reduce the number of solutions; the third equation is the original constraint, 100 = 2x+2y.

So we have the following system to solve:

2 = λy 2 = λx 100 = 2x+ 2y.

In the first two equations, λ can’t be 0, so we may divide by it to get x = y = 2/λ.

Substituting into the third equation we get

2
2

λ
+ 2

2

λ
= 100

8

100
= λ

so x = y = 25. Note that we are not really interested in the value of λ—it is a clever

tool, the Lagrange multiplier, introduced to solve the problem. In many cases, as here, it

is easier to find λ than to find everything else without using λ.

The same method works for functions of three variables, except of course everything

is one dimension higher: the function to be optimized is a function of three variables and

the constraint represents a surface—for example, the function may represent temperature,

and we may be interested in the maximum temperature on some surface, like a sphere.

The points we seek are those at which the constraint surface is tangent to a level surface of

the function. Once again, we consider the constraint surface to be a level surface of some

function, and we look for points at which the two gradients are parallel, giving us three

equations in four unknowns. The constraint provides a fourth equation.

EXAMPLE 16.8.1 Recall example 16.7.8: the diagonal of a box is 1, we seek to

maximize the volume. The constraint is 1 =
√

x2 + y2 + z2, which is the same as 1 =

x2 + y2 + z2. The function to maximize is xyz. The two gradient vectors are 〈2x, 2y, 2z〉
and 〈yz, xz, xy〉, so the equations to be solved are

yz = 2xλ

xz = 2yλ

xy = 2zλ

1 = x2 + y2 + z2

If λ = 0 then at least two of x, y, z must be 0, giving a volume of 0, which will not be the

maximum. If we multiply the first two equations by x and y respectively, we get

xyz = 2x2λ

xyz = 2y2λ
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so 2x2λ = 2y2λ or x2 = y2; in the same way we can show x2 = z2. Hence the fourth

equation becomes 1 = x2 + x2 + x2 or x = 1/
√
3, and so x = y = z = 1/

√
3 gives the

maximum volume. This is of course the same answer we obtained previously.

Another possibility is that we have a function of three variables, and we want to

find a maximum or minimum value not on a surface but on a curve; often the curve

is the intersection of two surfaces, so that we really have two constraint equations, say

g(x, y, z) = c1 and h(x, y, z) = c2. It turns out that at points on the intersection of the

surfaces where f has a maximum or minimum value,

∇f = λ∇g + µ∇h.

As before, this gives us three equations, one for each component of the vectors, but now

in five unknowns, x, y, z, λ, and µ. Since there are two constraint functions, we have a

total of five equations in five unknowns, and so can usually find the solutions we need.

EXAMPLE 16.8.2 The plane x + y − z = 1 intersects the cylinder x2 + y2 = 1 in an

ellipse. Find the points on the ellipse closest to and farthest from the origin.

We want the extreme values of f =
√

x2 + y2 + z2 subject to the constraints g =

x2 + y2 = 1 and h = x + y − z = 1. To simplify the algebra, we may use instead

f = x2 + y2 + z2, since this has a maximum or minimum value at exactly the points at

which
√

x2 + y2 + z2 does. The gradients are

∇f = 〈2x, 2y, 2z〉 ∇g = 〈2x, 2y, 0〉 ∇h = 〈1, 1,−1〉,

so the equations we need to solve are

2x = λ2x+ µ

2y = λ2y + µ

2z = 0− µ

1 = x2 + y2

1 = x+ y − z.

Subtracting the first two we get 2y − 2x = λ(2y − 2x), so either λ = 1 or x = y. If λ = 1

then µ = 0, so z = 0 and the last two equations are

1 = x2 + y2 and 1 = x+ y.

Solving these gives x = 1, y = 0, or x = 0, y = 1, so the points of interest are (1, 0, 0) and

(0, 1, 0), which are both distance 1 from the origin. If x = y, the fourth equation is 2x2 = 1,
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giving x = y = ±1/
√
2, and from the fifth equation we get z = −1 ±

√
2. The distance

from the origin to (1/
√
2, 1/

√
2,−1 +

√
2) is

√

4− 2
√
2 ≈ 1.08 and the distance from the

origin to (−1/
√
2,−1/

√
2,−1 −

√
2) is

√

4 + 2
√
2 ≈ 2.6. Thus, the points (1, 0, 0) and

(0, 1, 0) are closest to the origin and (−1/
√
2,−1/

√
2,−1−

√
2) is farthest from the origin.

This applet shows the cylinder, the plane, the four points of interest, and the origin.

Exercises 16.8.

1. A six-sided rectangular box is to hold 1/2 cubic meter; what shape should the box be to
minimize surface area? ⇒

2. The post office will accept packages whose combined length and girth are at most 130 inches
(girth is the maximum distance around the package perpendicular to the length). What is
the largest volume that can be sent in a rectangular box? ⇒

3. The bottom of a rectangular box costs twice as much per unit area as the sides and top.
Find the shape for a given volume that will minimize cost. ⇒

4. Using Lagrange multipliers, find the shortest distance from the point (x0, y0, z0) to the plane
ax+ by + cz = d. ⇒

5. Find all points on the surface xy − z2 + 1 = 0 that are closest to the origin. ⇒
6. The material for the bottom of an aquarium costs half as much as the high strength glass for

the four sides. Find the shape of the cheapest aquarium that holds a given volume V . ⇒
7. The plane x− y + z = 2 intersects the cylinder x2 + y2 = 4 in an ellipse. Find the points on

the ellipse closest to and farthest from the origin. ⇒
8. Find three positive numbers whose sum is 48 and whose product is as large as possible. ⇒
9. Find all points on the plane x+ y + z = 5 in the first octant at which f(x, y, z) = xy2z2 has

a maximum value. ⇒
10. Find the points on the surface x2 − yz = 5 that are closest to the origin. ⇒
11. A manufacturer makes two models of an item, standard and deluxe. It costs $40 to manu-

facture the standard model and $60 for the deluxe. A market research firm estimates that if
the standard model is priced at x dollars and the deluxe at y dollars, then the manufacturer
will sell 500(y − x) of the standard items and 45, 000 + 500(x− 2y) of the deluxe each year.
How should the items be priced to maximize profit? ⇒

12. A length of sheet metal is to be made into a water trough by bending up two sides as shown
in figure 16.8.3. Find x and φ so that the trapezoid–shaped cross section has maximum area,
when the width of the metal sheet is 2 meters (that is, 2x+ y = 2). ⇒
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Figure 16.8.3 Cross-section of a trough.

13. Find the maximum and minimum values of f(x, y, z) = 6x+3y+2z subject to the constraint
g(x, y, z) = 4x2 + 2y2 + z2 − 70 = 0. ⇒
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14. Find the maximum and minimum values of f(x, y) = exy subject to the constraint g(x, y) =
x3 + y3 − 16 = 0. ⇒

15. Find the maximum and minimum values of f(x, y) = xy +
√

9− x2 − y2 when x2 + y2 ≤ 9.
⇒

16. Find three real numbers whose sum is 9 and the sum of whose squares is a small as possible.
⇒

17. Find the dimensions of the closed rectangular box with maximum volume that can be in-
scribed in the unit sphere. ⇒

18. Find the isosceles triangle with perimeter 12 and maximum area. ⇒


