
14

Three Dimensions

14.1 The Coordinate System

So far we have been investigating functions of the form y = f(x), with one independent and

one dependent variable. Such functions can be represented in two dimensions, using two

numerical axes that allow us to identify every point in the plane with two numbers. We now

want to talk about three-dimensional space; to identify every point in three dimensions

we require three numerical values. The obvious way to make this association is to add

one new axis, perpendicular to the x and y axes we already understand. We could, for

example, add a third axis, the z axis, with the positive z axis coming straight out of the

page, and the negative z axis going out the back of the page. This is difficult to work with

on a printed page, so more often we draw a view of the three axes from an angle:
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You must then imagine that the z axis is perpendicular to the other two. Just as we have

investigated functions of the form y = f(x) in two dimensions, we will investigate three

dimensions largely by considering functions; now the functions will (typically) have the

form z = f(x, y). Because we are used to having the result of a function graphed in the

vertical direction, it is somewhat easier to maintain that convention in three dimensions.

To accomplish this, we normally rotate the axes so that z points up; the result is then:
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Note that if you imagine looking down from above, along the z axis, the positive z axis

will come straight toward you, the positive y axis will point up, and the positive x axis

will point to your right, as usual. Any point in space is identified by providing the three

coordinates of the point, as shown; naturally, we list the coordinates in the order (x, y, z).

One useful way to think of this is to use the x and y coordinates to identify a point in the

x-y plane, then move straight up (or down) a distance given by the z coordinate.

It is now fairly simple to understand some “shapes” in three dimensions that corre-

spond to simple conditions on the coordinates. In two dimensions the equation x = 1

describes the vertical line through (1, 0). In three dimensions, it still describes all points

with x-coordinate 1, but this is now a plane, as in figure 14.1.1.

Recall the very useful distance formula in two dimensions: the distance between points

(x1, y1) and (x2, y2) is
√

(x1 − x2)2 + (y1 − y2)2; this comes directly from the Pythagorean

theorem. What is the distance between two points (x1, y1, z1) and (x2, y2, z2) in three

dimensions? Geometrically, we want the length of the long diagonal labeled c in the

“box” in figure 14.1.2. Since a, b, c form a right triangle, a2 + b2 = c2. b is the vertical

distance between (x1, y1, z1) and (x2, y2, z2), so b = |z1 − z2|. The length a runs parallel

to the x-y plane, so it is simply the distance between (x1, y1) and (x2, y2), that is, a2 =

(x1 − x2)
2 + (y1 − y2)

2. Now we see that c2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 and

c =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

It is sometimes useful to give names to points, for example we might let P1 =

(x1, y1, z1), or more concisely we might refer to the point P1(x1, y1, z1), and subsequently
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Figure 14.1.1 The plane x = 1. (AP)

use just P1. Distance between two points in either two or three dimensions is some-

times denoted by d, so for example the formula for the distance between P1(x1, y1, z1) and

P2(x2, y2, z2) might be expressed as

d(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.
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Figure 14.1.2 Distance in three dimensions.

In two dimensions, the distance formula immediately gives us the equation of a circle:

the circle of radius r and center at (h, k) consists of all points (x, y) at distance r from
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(h, k), so the equation is r =
√

(x− h)2 + (y − k)2 or r2 = (x − h)2 + (y − k)2. Now we

can get the similar equation r2 = (x− h)2 + (y− k)2 + (z − l)2, which describes all points

(x, y, z) at distance r from (h, k, l), namely, the sphere with radius r and center (h, k, l).

Exercises 14.1.

1. Sketch the location of the points (1, 1, 0), (2, 3,−1), and (−1, 2, 3) on a single set of axes.

2. Describe geometrically the set of points (x, y, z) that satisfy z = 4.

3. Describe geometrically the set of points (x, y, z) that satisfy y = −3.

4. Describe geometrically the set of points (x, y, z) that satisfy x+ y = 2.

5. The equation x + y + z = 1 describes some collection of points in R
3. Describe and sketch

the points that satisfy x + y + z = 1 and are in the x-y plane, in the x-z plane, and in the
y-z plane.

6. Find the lengths of the sides of the triangle with vertices (1, 0, 1), (2, 2,−1), and (−3, 2,−2).
⇒

7. Find the lengths of the sides of the triangle with vertices (2, 2, 3), (8, 6, 5), and (−1, 0, 2).
Why do the results tell you that this isn’t really a triangle? ⇒

8. Find an equation of the sphere with center at (1, 1, 1) and radius 2. ⇒
9. Find an equation of the sphere with center at (2,−1, 3) and radius 5. ⇒

10. Find an equation of the sphere with center (3,−2, 1) and that goes through the point (4, 2, 5).
⇒

11. Find an equation of the sphere with center at (2, 1,−1) and radius 4. Find an equation for
the intersection of this sphere with the y-z plane; describe this intersection geometrically. ⇒

12. Consider the sphere of radius 5 centered at (2, 3, 4). What is the intersection of this sphere
with each of the coordinate planes?

13. Show that for all values of θ and φ, the point (a sinφ cos θ, a sinφ sin θ, a cosφ) lies on the
sphere given by x2 + y2 + z2 = a2.

14. Prove that the midpoint of the line segment connecting (x1, y1, z1) to (x2, y2, z2) is at
(x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)

.

15. Any three points P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3), lie in a plane and form a triangle.
The triangle inequality says that d(P1, P3) ≤ d(P1, P2) + d(P2, P3). Prove the triangle
inequality using either algebra (messy) or the law of cosines (less messy).

16. Is it possible for a plane to intersect a sphere in exactly two points? Exactly one point?
Explain.

14.2 Vetors

A vector is a quantity consisting of a non-negative magnitude and a direction. We could

represent a vector in two dimensions as (m, θ), where m is the magnitude and θ is the

direction, measured as an angle from some agreed upon direction (in the case of compass

directions, we usually measure clockwise from north, in degrees). For example, we might
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think of the vector (5, 45◦) as representing “5 km toward the northeast”; that is, this

vector might be a displacement vector, indicating, say, that your grandmother walked

5 kilometers toward the northeast to school in the snow. On the other hand, the same

vector could represent a velocity, indicating that your grandmother walked at 5 km/hr

toward the northeast. What the vector does not indicate is where this walk occurred: a

vector represents a magnitude and a direction, but not a location. Pictorially it is useful

to represent a vector as an arrow; the direction of the vector, naturally, is the direction in

which the arrow points; the magnitude of the vector is reflected in the length of the arrow.

It turns out that many, many quantities behave as vectors, e.g., displacement, velocity,

acceleration, force. Already we can get some idea of their usefulness using displacement

vectors. Suppose that your grandmother walked 5 km NE and then 2 km SSE; if the terrain

allows, and perhaps armed with a compass, how could your grandmother have walked

directly to her destination? We can use vectors (and a bit of geometry) to answer this

question. We begin by noting that since vectors do not include a specification of position,

we can “place” them anywhere that is convenient. So we can picture your grandmother’s

journey as two displacement vectors drawn head to tail:
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The displacement vector for the shortcut route is the vector drawn with a dashed line,

from the tail of the first to the head of the second. With a little trigonometry, we can

compute that the third vector has magnitude approximately 4.62 and direction 21.43◦,

so walking 4.62 km in the direction 21.43◦ north of east (approximately ENE) would get

your grandmother to school. This sort of calculation is so common, we dignify it with a

name: we say that the third vector is the sum of the other two vectors. There is another

common way to picture the sum of two vectors. Put the vectors tail to tail and then

complete the parallelogram they indicate; the sum of the two vectors is the diagonal of the

parallelogram:
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This is a more natural representation in some circumstances. For example, if the two

original vectors represent forces acting on an object, the sum of the two vectors is the

net or effective force on the object, and it is nice to draw all three with their tails at the

location of the object.

We also define scalar multiplication for vectors: if A is a vector (m, θ) and a ≥ 0

is a real number, the vector aA is (am, θ), namely, it points in the same direction but

has a times the magnitude. If a < 0, aA is (|a|m, θ + π), with |a| times the magnitude

and pointing in the opposite direction (unless we specify otherwise, angles are measured

in radians).

Now we can understand subtraction of vectors: A−B = A+ (−1)B:
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Note that as you would expect, B+ (A−B) = A.

We can represent a vector in ways other than (m, θ), and in fact (m, θ) is not generally

used at all. How else could we describe a particular vector? Consider again the vector

(5, 45◦). Let’s draw it again, but impose a coordinate system. If we put the tail of the

arrow at the origin, the head of the arrow ends up at the point (5/
√
2, 5/

√
2) ≈ (3.54, 3.54).
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In this picture the coordinates (3.54, 3.54) identify the head of the arrow, provided we

know that the tail of the arrow has been placed at (0, 0). Then in fact the vector can

always be identified as (3.54, 3.54), no matter where it is placed; we just have to remember

that the numbers 3.54 must be interpreted as a change from the position of the tail, not

as the actual coordinates of the arrow head; to emphasize this we will write 〈3.54, 3.54〉
to mean the vector and (3.54, 3.54) to mean the point. Then if the vector 〈3.54, 3.54〉 is
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drawn with its tail at (1, 2) it looks like this:
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(4.54, 5.54)

Consider again the two part trip: 5 km NE and then 2 km SSE. The vector representing

the first part of the trip is 〈5/
√
2, 5/

√
2〉, and the second part of the trip is represented by

〈2 cos(−3π/8), 2 sin(−3π/8)〉 ≈ 〈0.77,−1.85〉. We can represent the sum of these with the

usual head to tail picture:
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(4.3, 1.69)
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It is clear from the picture that the coordinates of the destination point are (5/
√
2 +

2 cos(−3π/8), 5/
√
2 + 2 sin(−3π/8)) or approximately (4.3, 1.69), so the sum of the two

vectors is 〈5/
√
2 + 2 cos(−3π/8), 5/

√
2 + 2 sin(−3π/8)〉 ≈ 〈4.3, 1.69〉. Adding the two

vectors is easier in this form than in the (m, θ) form, provided that we’re willing to have

the answer in this form as well. In general: 〈v1, w1〉+ 〈v2, w2〉 = 〈v1 + v2, w1 + w2〉.
It is easy to see that scalar multiplication and vector subtraction are also easy to

compute in this form: a〈v, w〉 = 〈av, aw〉 and 〈v1, w1〉 − 〈v2, w2〉 = 〈v1 − v2, w1 − w2〉.
What about the magnitude? The magnitude of the vector 〈v, w〉 is still the length of the

corresponding arrow representation; this is the distance from the origin to the point (v, w),

namely, the distance from the tail to the head of the arrow. We know how to compute

distances, so the magnitude of the vector is simply
√

v2 + w2, which we also denote with

absolute value bars: |〈v, w〉| =
√

v2 + w2.

In three dimensions, vectors are still quantities consisting of a magnitude and a direc-

tion, but of course there are many more possible directions. It’s not clear how we might

represent the direction explicitly, but the coordinate version of vectors makes just as much
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sense in three dimensions as in two. By 〈1, 2, 3〉 we mean the vector whose head is at

(1, 2, 3) if its tail is at the origin. As before, we can place the vector anywhere we want;

if it has its tail at (4, 5, 6) then its head is at (5, 7, 9). It remains true that arithmetic is

easy to do with vectors in this form:

a〈v1, v2, v3〉 = 〈av1, av2, av3〉
〈v1, v2, v3〉+ 〈w1, w2, w3〉 = 〈v1 + w1, v2 + w2, v3 + w3〉
〈v1, v2, v3〉 − 〈w1, w2, w3〉 = 〈v1 − w1, v2 − w2, v3 − w3〉

The magnitude of the vector is again the distance from the origin to the head of the arrow,

or |〈v1, v2, v3〉| =
√

v2
1
+ v2

2
+ v2

3
.
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Figure 14.2.1 The vector 〈2, 4, 5〉 with its tail at the origin.

Three particularly simple vectors turn out to be quite useful: i = 〈1, 0, 0〉, j = 〈0, 1, 0〉,
and k = 〈0, 0, 1〉. These play much the same role for vectors that the axes play for points.

In particular, notice that

〈v1, v2, v3〉 = 〈v1, 0, 0〉+ 〈0, v2, 0〉+ 〈0, 0, v3〉
= v1〈1, 0, 0〉+ v2〈0, 1, 0〉+ v3〈0, 0, 1〉
= v1i+ v2j+ v3k

We will frequently want to produce a vector that points from one point to another.

That is, if P and Q are points, we seek the vector x such that when the tail of x is placed

at P , its head is at Q; we refer to this vector as
−−→
PQ. If we know the coordinates of P and

Q, the coordinates of the vector are easy to find.
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EXAMPLE 14.2.1 Suppose P = (1,−2, 4) and Q = (−2, 1, 3). The vector
−−→
PQ is

〈−2 − 1, 1 − −2, 3 − 4〉 = 〈−3, 3,−1〉 and
−−→
QP = 〈3,−3, 1〉. Note that this is the same

as subtracting the vectors with tails at the origin and heads at P and Q: 〈−2, 1, 3〉 −
〈1,−2, 4〉 = 〈−3, 3,−1〉.

Arithmetic with vectors has some familiar properties, listed in the next theorem. These

are all quite easy to prove, by simply representing the vectors in standard form.

THEOREM 14.2.2 If u, v, and w are vectors and a and b are real numbers, then

1. u+ v = v + u

2. au = ua

3. a(u+ v) = au+ av

4. (a+ b)u = au+ bu

5. (u+ v) +w = u+ (v +w)

6. |au| = |a||u|

Proof. We do one of these as an example, part 3. Write u = 〈x1, y1, z1〉, v = 〈x2, y2, z2〉.
Then

a(u+ v) = a(〈x1, y1, z1〉+ 〈x2, y2, z2〉)
= a〈x1 + x2, y1 + y2, z1 + z2〉
= 〈a(x1 + x2), a(y1 + y2), a(z1 + z2)〉
= 〈ax1 + ax2, ay1 + ay2, az1 + az2〉
= 〈ax1, ay1, az1〉+ 〈ax2, ay2, az2〉
= a〈x1, y1, z1〉+ a〈x2, y2, z2〉
= au+ av

Exercises 14.2.

1. Draw the vector 〈3,−1〉 with its tail at the origin.

2. Draw the vector 〈3,−1, 2〉 with its tail at the origin.

3. Let A be the vector with tail at the origin and head at (1, 2); let B be the vector with tail
at the origin and head at (3, 1). Draw A and B and a vector C with tail at (1, 2) and head
at (3, 1). Draw C with its tail at the origin.

4. Let A be the vector with tail at the origin and head at (−1, 2); let B be the vector with tail
at the origin and head at (3, 3). Draw A and B and a vector C with tail at (−1, 2) and head
at (3, 3). Draw C with its tail at the origin.
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5. Let A be the vector with tail at the origin and head at (5, 2); let B be the vector with tail
at the origin and head at (1, 5). Draw A and B and a vector C with tail at (5, 2) and head
at (1, 5). Draw C with its tail at the origin.

6. Find |v|, v +w, v −w, |v +w|, |v−w| and −2v for v = 〈1, 3〉 and w = 〈−1,−5〉. ⇒
7. Find |v|, v+w, v−w, |v+w|, |v−w| and −2v for v = 〈1, 2, 3〉 and w = 〈−1, 2,−3〉. ⇒
8. Find |v|, v+w, v−w, |v+w|, |v−w| and −2v for v = 〈1, 0, 1〉 and w = 〈−1,−2, 2〉. ⇒
9. Find |v|, v +w, v −w, |v +w|, |v−w| and −2v for v = 〈1,−1, 1〉 and w = 〈0, 0, 3〉. ⇒

10. Find |v|, v+w, v−w, |v+w|, |v−w| and −2v for v = 〈3, 2, 1〉 and w = 〈−1,−1,−1〉. ⇒
11. Let P = (4, 5, 6), Q = (1, 2,−5). Find

−−→
PQ. Find a vector with the same direction as

−−→
PQ but

with length 1. Find a vector with the same direction as
−−→
PQ but with length 4. ⇒

12. If A,B, and C are three points, find
−→
AB +

−−→
BC +

−→
CA. ⇒

13. Consider the 12 vectors that have their tails at the center of a clock and their respective
heads at each of the 12 digits. What is the sum of these vectors? What if we remove the
vector corresponding to 4 o’clock? What if, instead, all vectors have their tails at 12 o’clock,
and their heads on the remaining digits? ⇒

14. Let a and b be nonzero vectors in two dimensions that are not parallel or anti-parallel.
Show, algebraically, that if c is any two dimensional vector, there are scalars s and t such
that c = sa+ tb.

15. Does the statement in the previous exercise hold if the vectors a, b, and c are three dimen-
sional vectors? Explain.

16. Prove the remaining parts of Theorem 14.2.2.

14.3 The Dot Produt

Here’s a question whose answer turns out to be very useful: Given two vectors, what is

the angle between them?

It may not be immediately clear that the question makes sense, but it’s not hard to turn

it into a question that does. Since vectors have no position, we are as usual free to place

vectors wherever we like. If the two vectors are placed tail-to-tail, there is now a reasonable

interpretation of the question: we seek the measure of the smallest angle between the two

vectors, in the plane in which they lie. Figure 14.3.1 illustrates the situation.
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Figure 14.3.1 The angle between vectors A and B.

14.3 The Dot Product 321

Since the angle θ lies in a triangle, we can compute it using a bit of trigonometry,

namely, the law of cosines. The lengths of the sides of the triangle in figure 14.3.1 are |A|,
|B|, and |A−B|. Let A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉; then

|A−B|2 = |A|2 + |B|2 − 2|A||B| cos θ
2|A||B| cos θ = |A|2 + |B|2 − |A−B|2

= a2
1
+ a2

2
+ a2

3
+ b2

1
+ b2

2
+ b2

3
− (a1 − b1)

2 − (a2 − b2)
2 − (a3 − b3)

2

= a2
1
+ a2

2
+ a2

3
+ b2

1
+ b2

2
+ b2

3

− (a2
1
− 2a1b1 + b2

1
)− (a2

2
− 2a2b2 + b2

2
)− (a2

3
− 2a3b3 + b2

3
)

= 2a1b1 + 2a2b2 + 2a3b3

|A||B| cos θ = a1b1 + a2b2 + a3b3

cos θ = (a1b1 + a2b2 + a3b3)/(|A||B|)

So a bit of simple arithmetic with the coordinates of A and B allows us to compute the

cosine of the angle between them. If necessary we can use the arccosine to get θ, but in

many problems cos θ turns out to be all we really need.

The numerator of the fraction that gives us cos θ turns up a lot, so we give it a name

and more compact notation: we call it the dot product, and write it as

A ·B = a1b1 + a2b2 + a3b3.

This is the same symbol we use for ordinary multiplication, but there should never be any

confusion; you can tell from context whether we are “multiplying” vectors or numbers.

(We might also use the dot for scalar multiplication: a ·V = aV; again, it is clear what is

meant from context.)

EXAMPLE 14.3.1 Find the angle between the vectors A = 〈1, 2, 1〉 and B = 〈3, 1,−5〉.
We know that cos θ = A ·B/(|A||B|) = (1 · 3 + 2 · 1 + 1 · (−5))/(|A||B|) = 0, so θ = π/2,

that is, the vectors are perpendicular.

EXAMPLE 14.3.2 Find the angle between the vectors A = 〈3, 3, 0〉 and B = 〈1, 0, 0〉.
We compute

cos θ = (3 · 1 + 3 · 0 + 0 · 0)/(
√
9 + 9 + 0

√
1 + 0 + 0)

= 3/
√
18 = 1/

√
2

so θ = π/4.

EXAMPLE 14.3.3 Some special cases are worth looking at: Find the angles between

A and A; A and −A; A and 0 = 〈0, 0, 0〉.
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cos θ = A · A/(|A||A|) = (a2
1
+ a2

2
+ a2

3
)/(

√

a2
1
+ a2

2
+ a2

3

√

a2
1
+ a2

2
+ a2

3
) = 1, so the

angle between A and itself is zero, which of course is correct.

cos θ = A · −A/(|A||−A|) = (−a2
1
− a2

2
− a2

3
)/(

√

a2
1
+ a2

2
+ a2

3

√

a2
1
+ a2

2
+ a2

3
) = −1,

so the angle is π, that is, the vectors point in opposite directions, as of course we already

knew.

cos θ = A ·0/(|A||0|) = (0+0+0)/(
√

a2
1
+ a2

2
+ a2

3

√

02 + 02 + 02), which is undefined.

On the other hand, note that since A · 0 = 0 it looks at first as if cos θ will be zero, which

as we have seen means that vectors are perpendicular; only when we notice that the

denominator is also zero do we run into trouble. One way to “fix” this is to adopt the

convention that the zero vector 0 is perpendicular to all vectors; then we can say in general

that if A ·B = 0, A and B are perpendicular.

Generalizing the examples, note the following useful facts:

1. If A is parallel or anti-parallel to B then A · B/(|A||B|) = ±1, and conversely,

if A · B/(|A||B|) = 1, A and B are parallel, while if A · B/(|A||B|) = −1, A

and B are anti-parallel. (Vectors are parallel if they point in the same direction,

anti-parallel if they point in opposite directions.)

2. If A is perpendicular to B then A · B/(|A||B|) = 0, and conversely if A ·
B/(|A||B|) = 0 then A and B are perpendicular.

Given two vectors, it is often useful to find the projection of one vector onto the

other, because this turns out to have important meaning in many circumstances. More

precisely, given A and B, we seek a vector parallel to B but with length determined by A

in a natural way, as shown in figure 14.3.2. V is chosen so that the triangle formed by A,

V, and A−V is a right triangle.
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Figure 14.3.2 V is the projection of A onto B.

Using a little trigonometry, we see that

|V| = |A| cos θ = |A| A ·B
|A||B| =

A ·B
|B| ;
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this is sometimes called the scalar projection of A onto B. To get V itself, we multiply

this length by a vector of length one parallel to B:

V =
A ·B
|B|

B

|B| =
A ·B
|B|2 B.

Be sure that you understand why B/|B| is a vector of length one (also called a unit

vector) parallel to B.

The discussion so far implicitly assumed that 0 ≤ θ ≤ π/2. If π/2 < θ ≤ π, the picture

is like figure 14.3.3. In this case A ·B is negative, so the vector

A ·B
|B|2 B

is anti-parallel to B, and its length is
∣

∣

∣

∣

A ·B
|B|

∣

∣

∣

∣

.

So in general, the scalar projection of A onto B may be positive or negative. If it is

negative, it means that the projection vector is anti-parallel to B and that the length of

the projection vector is the absolute value of the scalar projection. Of course, you can also

compute the length of the projection vector as usual, by applying the distance formula to

the vector.
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Figure 14.3.3 V is the projection of A onto B.

Note that the phrase “projection onto B” is a bit misleading if taken literally; all that

B provides is a direction; the length of B has no impact on the final vector. In figure 14.3.4,

for example, B is shorter than the projection vector, but this is perfectly acceptable.
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Figure 14.3.4 V is the projection of A onto B.
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EXAMPLE 14.3.4 Physical force is a vector quantity. It is often necessary to compute

the “component” of a force acting in a different direction than the force is being applied.

For example, suppose a ten pound weight is resting on an inclined plane—a pitched roof,

for example. Gravity exerts a force of ten pounds on the object, directed straight down.

It is useful to think of the component of this force directed down and parallel to the roof,

and the component down and directly into the roof. These forces are the projections of the

force vector onto vectors parallel and perpendicular to the roof. Suppose the roof is tilted

at a 30◦ angle, as in figure 14.3.5. A vector parallel to the roof is 〈−
√
3,−1〉, and a vector

perpendicular to the roof is 〈1,−
√
3〉. The force vector is F = 〈0,−10〉. The component

of the force directed down the roof is then

F1 =
F · 〈−

√
3,−1〉

|〈−
√
3,−1〉|2

〈−
√
3,−1〉 = 10

2

〈−
√
3,−1〉
2

= 〈−5
√
3/2,−5/2〉

with length 5. The component of the force directed into the roof is

F2 =
F · 〈1,−

√
3〉

|〈1,−
√
3〉|2

〈1,−
√
3〉 = 10

√
3

2

〈1,−
√
3〉

2
= 〈5

√
3/2,−15/2〉

with length 5
√
3. Thus, a force of 5 pounds is pulling the object down the roof, while a

force of 5
√
3 pounds is pulling the object into the roof.
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Figure 14.3.5 Components of a force.

The dot product has some familiar-looking properties that will be useful later, so we

list them here. These may be proved by writing the vectors in coordinate form and then

performing the indicated calculations; subsequently it can be easier to use the properties

instead of calculating with coordinates.

THEOREM 14.3.5 If u, v, and w are vectors and a is a real number, then

1. u · u = |u|2
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2. u · v = v · u
3. u · (v +w) = u · v + u ·w
4. (au) · v = a(u · v) = u · (av)

Exercises 14.3.

1. Find 〈1, 1, 1〉 · 〈2,−3, 4〉. ⇒
2. Find 〈1, 2, 0〉 · 〈0, 0, 57〉. ⇒
3. Find 〈3, 2, 1〉 · 〈0, 1, 0〉. ⇒
4. Find 〈−1,−2, 5〉 · 〈1, 0,−1〉. ⇒
5. Find 〈3, 4, 6〉 · 〈2, 3, 4〉. ⇒
6. Find the cosine of the angle between 〈1, 2, 3〉 and 〈1, 1, 1〉; use a calculator if necessary to

find the angle. ⇒
7. Find the cosine of the angle between 〈−1,−2,−3〉 and 〈5, 0, 2〉; use a calculator if necessary

to find the angle. ⇒
8. Find the cosine of the angle between 〈47, 100, 0〉 and 〈0, 0, 5〉; use a calculator if necessary to

find the angle. ⇒
9. Find the cosine of the angle between 〈1, 0, 1〉 and 〈0, 1, 1〉; use a calculator if necessary to

find the angle. ⇒
10. Find the cosine of the angle between 〈2, 0, 0〉 and 〈−1, 1,−1〉; use a calculator if necessary to

find the angle. ⇒
11. Find the angle between the diagonal of a cube and one of the edges adjacent to the diagonal.

⇒
12. Find the scalar and vector projections of 〈1, 2, 3〉 onto 〈1, 2, 0〉. ⇒
13. Find the scalar and vector projections of 〈1, 1, 1〉 onto 〈3, 2, 1〉. ⇒
14. A 20 pound object sits on a ramp at an angle of 30◦ from the horizontal, as in figure 14.3.5.

Find the force pulling the object down the ramp and the force pulling the object directly
into the ramp. ⇒

15. A 20 pound object sits on a ramp at an angle of 45◦ from the horizontal. Find the force
pulling the object down the ramp and the force pulling the object directly into the ramp. ⇒

16. A force of 10 pounds is applied to a wagon, directed at an angle of 30◦ from the horizontal, as
shown. Find the component of this force pulling the wagon straight up, and the component
pulling it horizontally along the ground. ⇒
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Figure 14.3.6 Pulling a wagon.
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17. A force of 15 pounds is applied to a wagon, directed at an angle of 45◦ from the horizontal.
Find the component of this force pulling the wagon straight up, and the component pulling
it horizontally along the ground. ⇒

18. A force F is to be applied to a wagon, directed at an angle of 30◦ from the horizontal. The
resulting force pulling the wagon horizontally along the ground is to be 10 pounds. What is
the magnitude of the required force F? ⇒

19. Use the dot product to find a non-zero vector w perpendicular to both u = 〈1, 2,−3〉 and
v = 〈2, 0, 1〉. ⇒

20. Let x = 〈1, 1, 0〉 and y = 〈2, 4, 2〉. Find a unit vector that is perpendicular to both x and y.
⇒

21. Do the three points (1, 2, 0), (−2, 1, 1), and (0, 3,−1) form a right triangle? ⇒
22. Do the three points (1, 1, 1), (2, 3, 2), and (5, 0,−1) form a right triangle? ⇒
23. Show that |A ·B| ≤ |A||B|
24. Let x and y be perpendicular vectors. Use Theorem 14.3.5 to prove that |x|2+|y|2 = |x+y|2.

What is this result better known as?

25. Prove that the diagonals of a rhombus intersect at right angles.

26. Suppose that z = |x|y+ |y|x where x, y, and z are all nonzero vectors. Prove that z bisects
the angle between x and y.

27. Prove Theorem 14.3.5.

14.4 The Cross Produt

Another useful operation: Given two vectors, find a third (non-zero!) vector perpendicular

to the first two. There are of course an infinite number of such vectors of different lengths.

Nevertheless, let us find one. Suppose A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉. We want to

find a vector v = 〈v1, v2, v3〉 with v ·A = v ·B = 0, or

a1v1 + a2v2 + a3v3 = 0,

b1v1 + b2v2 + b3v3 = 0.

Multiply the first equation by b3 and the second by a3 and subtract to get

b3a1v1 + b3a2v2 + b3a3v3 = 0

a3b1v1 + a3b2v2 + a3b3v3 = 0

(a1b3 − b1a3)v1 + (a2b3 − b2a3)v2 = 0

Of course, this equation in two variables has many solutions; a particularly easy one to

see is v1 = a2b3 − b2a3, v2 = b1a3 − a1b3. Substituting back into either of the original

equations and solving for v3 gives v3 = a1b2 − b1a2.



14.4 The Cross Product 327

This particular answer to the problem turns out to have some nice properties, and it

is dignified with a name: the cross product:

A×B = 〈a2b3 − b2a3, b1a3 − a1b3, a1b2 − b1a2〉.
While there is a nice pattern to this vector, it can be a bit difficult to memorize; here is a

convenient mnemonic. The determinant of a two by two matrix is
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− cb.

This is extended to the determinant of a three by three matrix:
∣

∣

∣

∣

∣

∣

x y z
a1 a2 a3
b1 b2 b3

∣

∣

∣

∣

∣

∣

= x

∣

∣

∣

∣

a2 a3
b2 b3

∣

∣

∣

∣

− y

∣

∣

∣

∣

a1 a3
b1 b3

∣

∣

∣

∣

+ z

∣

∣

∣

∣

a1 a2
b1 b2

∣

∣

∣

∣

= x(a2b3 − b2a3)− y(a1b3 − b1a3) + z(a1b2 − b1a2)

= x(a2b3 − b2a3) + y(b1a3 − a1b3) + z(a1b2 − b1a2).

Each of the two by two matrices is formed by deleting the top row and one column of the

three by three matrix; the subtraction of the middle term must also be memorized. This

is not the place to extol the uses of the determinant; suffice it to say that determinants

are extraordinarily useful and important. Here we want to use it merely as a mnemonic

device. You will have noticed that the three expressions in parentheses on the last line are

precisely the three coordinates of the cross product; replacing x, y, z by i, j, k gives us
∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3
b1 b2 b3

∣

∣

∣

∣

∣

∣

= (a2b3 − b2a3)i− (a1b3 − b1a3)j+ (a1b2 − b1a2)k

= (a2b3 − b2a3)i+ (b1a3 − a1b3)j+ (a1b2 − b1a2)k

= 〈a2b3 − b2a3, b1a3 − a1b3, a1b2 − b1a2〉
= A×B.

EXAMPLE 14.4.1 Suppose A = 〈1, 2, 3〉, B = 〈4, 5, 6〉. Then

A×B =

∣

∣

∣

∣

∣

∣

i j k

1 2 3
4 5 6

∣

∣

∣

∣

∣

∣

= (2 · 6− 5 · 3)i+ (4 · 3− 1 · 6)j+ (1 · 5− 4 · 2)k
= −3i+ 6j− 3k

= 〈−3, 6,−3〉
With a little practice, you should find it easy to eliminate the intermediate steps, going

directly from the 3× 3 matrix to the usual vector form.
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Given A and B, there are typically two possible directions and an infinite number of

magnitudes that will give a vector perpendicular to both A and B. As we have picked a

particular one, we should investigate the magnitude and direction.

We know how to compute the magnitude of A ×B; it’s a bit messy but not difficult.

It is somewhat easier to work initially with the square of the magnitude, so as to avoid the

square root:

|A×B|2 = (a2b3 − b2a3)
2 + (b1a3 − a1b3)

2 + (a1b2 − b1a2)
2

= a2
2
b2
3
− 2a2b3b2a3 + b2

2
a2
3
+ b2

1
a2
3
− 2b1a3a1b3 + a2

1
b2
3
+ a2

1
b2
2
− 2a1b2b1a2 + b2

1
a2
2

While it is far from obvious, this nasty looking expression can be simplified:

|A×B|2 = (a2
1
+ a2

2
+ a2

3
)(b2

1
+ b2

2
+ b2

3
)− (a1b1 + a2b2 + a3b3)

2

= |A|2|B|2 − (A ·B)2

= |A|2|B|2 − |A|2|B|2 cos2 θ
= |A|2|B|2(1− cos2 θ)

= |A|2|B|2 sin2 θ
|A×B| = |A||B| sin θ

The magnitude of A×B is thus very similar to the dot product. In particular, notice that

if A is parallel to B, the angle between them is zero, so sin θ = 0, so |A × B| = 0, and

likewise if they are anti-parallel, sin θ = 0, and |A × B| = 0. Conversely, if |A × B| = 0

and |A| and |B| are not zero, it must be that sin θ = 0, so A is parallel or anti-parallel to

B.

Here is a curious fact about this quantity that turns out to be quite useful later on:

Given two vectors, we can put them tail to tail and form a parallelogram, as in figure 14.4.1.

The height of the parallelogram, h, is |A| sin θ, and the base is |B|, so the area of the

parallelogram is |A||B| sin θ, exactly the magnitude of |A×B|.
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Figure 14.4.1 A parallelogram.

What about the direction of the cross product? Remarkably, there is a simple rule that

describes the direction. Let’s look at a simple example: Let A = 〈a, 0, 0〉, B = 〈b, c, 0〉. If
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the vectors are placed with tails at the origin, A lies along the x-axis and B lies in the x-y

plane, so we know the cross product will point either up or down. The cross product is

A×B =

∣

∣

∣

∣

∣

∣

i j k

a 0 0
b c 0

∣

∣

∣

∣

∣

∣

= 〈0, 0, ac〉.

As predicted, this is a vector pointing up or down, depending on the sign of ac. Suppose

that a > 0, so the sign depends only on c: if c > 0, ac > 0 and the vector points up; if

c < 0, the vector points down. On the other hand, if a < 0 and c > 0, the vector points

down, while if a < 0 and c < 0, the vector points up. Here is how to interpret these facts

with a single rule: Imagine rotating vector A until it points in the same direction as B;

there are two ways to do this—use the rotation that goes through the smaller angle. If

a > 0 and c > 0, or a < 0 and c < 0, the rotation will be counter-clockwise when viewed

from above; in the other two cases, A must be rotated clockwise to reach B. The rule is:

counter-clockwise means up, clockwise means down. If A and B are any vectors in the x-y

plane, the same rule applies—A need not be parallel to the x-axis.

Although it is somewhat difficult computationally to see how this plays out for any

two starting vectors, the rule is essentially the same. Place A and B tail to tail. The plane

in which A and B lie may be viewed from two sides; view it from the side for which A

must rotate counter-clockwise to reach B; then the vector A×B points toward you.

This rule is usually called the right hand rule. Imagine placing the heel of your right

hand at the point where the tails are joined, so that your slightly curled fingers indicate

the direction of rotation from A to B. Then your thumb points in the direction of the

cross product A×B.

One immediate consequence of these facts is that A × B 6= B × A, because the two

cross products point in the opposite direction. On the other hand, since

|A×B| = |A||B| sin θ = |B||A| sin θ = |B×A|,

the lengths of the two cross products are equal, so we know that A×B = −(B×A).

The cross product has some familiar-looking properties that will be useful later, so we

list them here. As with the dot product, these can be proved by performing the appropriate

calculations on coordinates, after which we may sometimes avoid such calculations by using

the properties.
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THEOREM 14.4.2 If u, v, and w are vectors and a is a real number, then

1. u× (v +w) = u× v + u×w

2. (v +w)× u = v × u+w × u

3. (au)× v = a(u× v) = u× (av)

4. u · (v ×w) = (u× v) ·w
5. u× (v ×w) = (u ·w)v− (u · v)w

Exercises 14.4.

1. Find the cross product of 〈1, 1, 1〉 and 〈1, 2, 3〉. ⇒
2. Find the cross product of 〈1, 0, 2〉 and 〈−1,−2, 4〉. ⇒
3. Find the cross product of 〈−2, 1, 3〉 and 〈5, 2,−1〉. ⇒
4. Find the cross product of 〈1, 0, 0〉 and 〈0, 0, 1〉. ⇒
5. Two vectors u and v are separated by an angle of π/6, and |u| = 2 and |v| = 3. Find |u×v|.

⇒
6. Two vectors u and v are separated by an angle of π/4, and |u| = 3 and |v| = 7. Find |u×v|.

⇒
7. Find the area of the parallelogram with vertices (0, 0), (1, 2), (3, 7), and (2, 5). ⇒
8. Find the area of the parallelogram with vertices (0,−1), (3, 4), (1, 6), and (−2, 1). ⇒
9. Find the area of the triangle with vertices (2, 0, 0), (1, 3, 4), and (−2,−1, 1). ⇒

10. Find the area of the triangle with vertices (2,−2, 1), (−3, 2, 3), and (3, 3,−2). ⇒
11. Find and explain the value of (i× j)× k and (i+ j)× (i− j).

12. Prove that for all vectors u and v, (u× v) · v = 0.

13. Prove Theorem 14.4.2.

14. Define the triple product of three vectors, x, y, and z, to be the scalar x · (y × z). Show
that three vectors lie in the same plane if and only if their triple product is zero. Verify that
〈1, 5,−2〉, 〈4, 3, 0〉 and 〈6, 13,−4〉 are coplanar.

14.5 Lines and Planes

Lines and planes are perhaps the simplest of curves and surfaces in three dimensional

space. They also will prove important as we seek to understand more complicated curves

and surfaces.

The equation of a line in two dimensions is ax+ by = c; it is reasonable to expect that

a line in three dimensions is given by ax + by + cz = d; reasonable, but wrong—it turns

out that this is the equation of a plane.

A plane does not have an obvious “direction” as does a line. It is possible to associate

a plane with a direction in a very useful way, however: there are exactly two directions

perpendicular to a plane. Any vector with one of these two directions is called normal to
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the plane. So while there are many normal vectors to a given plane, they are all parallel

or anti-parallel to each other.

Suppose two points (v1, v2, v3) and (w1, w2, w3) are in a plane; then the vector 〈w1 −
v1, w2 − v2, w3 − v3〉 is parallel to the plane; in particular, if this vector is placed with its

tail at (v1, v2, v3) then its head is at (w1, w2, w3) and it lies in the plane. As a result, any

vector perpendicular to the plane is perpendicular to 〈w1−v1, w2−v2, w3−v3〉. In fact, it

is easy to see that the plane consists of precisely those points (w1, w2, w3) for which 〈w1 −
v1, w2−v2, w3−v3〉 is perpendicular to a normal to the plane, as indicated in figure 14.5.1.

That is, suppose we know that 〈a, b, c〉 is normal to a plane containing the point (v1, v2, v3).

Then (x, y, z) is in the plane if and only if 〈a, b, c〉 is perpendicular to 〈x−v1, y−v2, z−v3〉.
In turn, we know that this is true precisely when 〈a, b, c〉 · 〈x−v1, y−v2, z−v3〉 = 0. Thus,

(x, y, z) is in the plane if and only if

〈a, b, c〉 · 〈x− v1, y − v2, z − v3〉 = 0

a(x− v1) + b(y − v2) + c(z − v3) = 0

ax+ by + cz − av1 − bv2 − cv3 = 0

ax+ by + cz = av1 + bv2 + cv3.

Working backwards, note that if (x, y, z) is a point satisfying ax+ by + cz = d then

ax+ by + cz = d

ax+ by + cz − d = 0

a(x− d/a) + b(y − 0) + c(z − 0) = 0

〈a, b, c〉 · 〈x− d/a, y, z〉 = 0.

Namely, 〈a, b, c〉 is perpendicular to the vector with tail at (d/a, 0, 0) and head at (x, y, z).

This means that the points (x, y, z) that satisfy the equation ax + by + cz = d form a

plane perpendicular to 〈a, b, c〉. (This doesn’t work if a = 0, but in that case we can

use b or c in the role of a. That is, either a(x − 0) + b(y − d/b) + c(z − 0) = 0 or

a(x− 0) + b(y − 0) + c(z − d/c) = 0.)

Thus, given a vector 〈a, b, c〉 we know that all planes perpendicular to this vector have

the form ax+ by+ cz = d, and any surface of this form is a plane perpendicular to 〈a, b, c〉.

EXAMPLE 14.5.1 Find an equation for the plane perpendicular to 〈1, 2, 3〉 and con-

taining the point (5, 0, 7).

Using the derivation above, the plane is 1x + 2y + 3z = 1 · 5 + 2 · 0 + 3 · 7 = 26.

Alternately, we know that the plane is x + 2y + 3z = d, and to find d we may substitute

the known point on the plane to get 5+2 ·0+3 ·7 = d, so d = 26. We could also write this
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Figure 14.5.1 A plane defined via vectors perpendicular to a normal. (AP)

simply as (x− 5) + 2(y) + 3(z − 7) = 0, which is for many purposes a fine representation;

it can always be multiplied out to give x+ 2y + 3z = 26.

EXAMPLE 14.5.2 Find a vector normal to the plane 2x− 3y + z = 15.

One example is 〈2,−3, 1〉. Any vector parallel or anti-parallel to this works as well, so

for example −2〈2,−3, 1〉 = 〈−4, 6,−2〉 is also normal to the plane.

We will frequently need to find an equation for a plane given certain information about

the plane. While there may occasionally be slightly shorter ways to get to the desired result,

it is always possible, and usually advisable, to use the given information to find a normal

to the plane and a point on the plane, and then to find the equation as above.

EXAMPLE 14.5.3 The planes x − z = 1 and y + 2z = 3 intersect in a line. Find a

third plane that contains this line and is perpendicular to the plane x+ y − 2z = 1.

First, we note that two planes are perpendicular if and only if their normal vectors

are perpendicular. Thus, we seek a vector 〈a, b, c〉 that is perpendicular to 〈1, 1,−2〉. In

addition, since the desired plane is to contain a certain line, 〈a, b, c〉 must be perpendicular

to any vector parallel to this line. Since 〈a, b, c〉 must be perpendicular to two vectors, we

may find it by computing the cross product of the two. So we need a vector parallel to the

line of intersection of the given planes. For this, it suffices to know two points on the line.
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To find two points on this line, we must find two points that are simultaneously on the

two planes, x− z = 1 and y+2z = 3. Any point on both planes will satisfy x− z = 1 and

y + 2z = 3. It is easy to find values for x and z satisfying the first, such as x = 1, z = 0

and x = 2, z = 1. Then we can find corresponding values for y using the second equation,

namely y = 3 and y = 1, so (1, 3, 0) and (2, 1, 1) are both on the line of intersection because

both are on both planes. Now 〈2−1, 1−3, 1−0〉 = 〈1,−2, 1〉 is parallel to the line. Finally,

we may choose 〈a, b, c〉 = 〈1, 1,−2〉 × 〈1,−2, 1〉 = 〈−3,−3,−3〉. While this vector will do

perfectly well, any vector parallel or anti-parallel to it will work as well, so for example we

might choose 〈1, 1, 1〉 which is anti-parallel to it.

Now we know that 〈1, 1, 1〉 is normal to the desired plane and (2, 1, 1) is a point on

the plane. Therefore an equation of the plane is x + y + z = 4. As a quick check, since

(1, 3, 0) is also on the line, it should be on the plane; since 1 + 3 + 0 = 4, we see that this

is indeed the case.

Note that had we used 〈−3,−3,−3〉 as the normal, we would have discovered the

equation −3x−3y−3z = −12, then we might well have noticed that we could divide both

sides by −3 to get the equivalent x+ y + z = 4.

So we now understand equations of planes; let us turn to lines. Unfortunately, it turns

out to be quite inconvenient to represent a typical line with a single equation; we need to

approach lines in a different way.

Unlike a plane, a line in three dimensions does have an obvious direction, namely, the

direction of any vector parallel to it. In fact a line can be defined and uniquely identified

by providing one point on the line and a vector parallel to the line (in one of two possible

directions). That is, the line consists of exactly those points we can reach by starting at

the point and going for some distance in the direction of the vector. Let’s see how we can

translate this into more mathematical language.

Suppose a line contains the point (v1, v2, v3) and is parallel to the vector 〈a, b, c〉; we
call 〈a, b, c〉 a direction vector for the line. If we place the vector 〈v1, v2, v3〉 with its

tail at the origin and its head at (v1, v2, v3), and if we place the vector 〈a, b, c〉 with its

tail at (v1, v2, v3), then the head of 〈a, b, c〉 is at a point on the line. We can get to any

point on the line by doing the same thing, except using t〈a, b, c〉 in place of 〈a, b, c〉, where
t is some real number. Because of the way vector addition works, the point at the head

of the vector t〈a, b, c〉 is the point at the head of the vector 〈v1, v2, v3〉 + t〈a, b, c〉, namely

(v1 + ta, v2 + tb, v3 + tc); see figure 14.5.2.

In other words, as t runs through all possible real values, the vector 〈v1, v2, v3〉+t〈a, b, c〉
points to every point on the line when its tail is placed at the origin. Another common

way to write this is as a set of parametric equations:

x = v1 + ta y = v2 + tb z = v3 + tc.
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Figure 14.5.2 Vector form of a line.

It is occasionally useful to use this form of a line even in two dimensions; a vector form for

a line in the x-y plane is 〈v1, v2〉+ t〈a, b〉, which is the same as 〈v1, v2, 0〉+ t〈a, b, 0〉.

EXAMPLE 14.5.4 Find a vector expression for the line through (6, 1,−3) and (2, 4, 5).

To get a vector parallel to the line we subtract 〈6, 1,−3〉− 〈2, 4, 5〉 = 〈4,−3,−8〉. The line

is then given by 〈2, 4, 5〉+ t〈4,−3,−8〉; there are of course many other possibilities, such

as 〈6, 1,−3〉+ t〈4,−3,−8〉.

EXAMPLE 14.5.5 Determine whether the lines 〈1, 1, 1〉 + t〈1, 2,−1〉 and 〈3, 2, 1〉 +
t〈−1,−5, 3〉 are parallel, intersect, or neither.

In two dimensions, two lines either intersect or are parallel; in three dimensions, lines

that do not intersect might not be parallel. In this case, since the direction vectors for the

lines are not parallel or anti-parallel we know the lines are not parallel. If they intersect,

there must be two values a and b so that 〈1, 1, 1〉 + a〈1, 2,−1〉 = 〈3, 2, 1〉 + b〈−1,−5, 3〉,
that is,

1 + a = 3− b

1 + 2a = 2− 5b

1− a = 1 + 3b

This gives three equations in two unknowns, so there may or may not be a solution in

general. In this case, it is easy to discover that a = 3 and b = −1 satisfies all three

equations, so the lines do intersect at the point (4, 7,−2).

EXAMPLE 14.5.6 Find the distance from the point (1, 2, 3) to the plane 2x−y+3z = 5.

The distance from a point P to a plane is the shortest distance from P to any point on the

plane; this is the distance measured from P perpendicular to the plane; see figure 14.5.3.

This distance is the absolute value of the scalar projection of
−−→
QP onto a normal vector n,

where Q is any point on the plane. It is easy to find a point on the plane, say (1, 0, 1).

Thus the distance is −−→
QP · n
|n| =

〈0, 2, 2〉 · 〈2,−1, 3〉
|〈2,−1, 3〉| =

4√
14

.
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Figure 14.5.3 Distance from a point to a plane.

EXAMPLE 14.5.7 Find the distance from the point (−1, 2, 1) to the line 〈1, 1, 1〉 +
t〈2, 3,−1〉. Again we want the distance measured perpendicular to the line, as indicated

in figure 14.5.4. The desired distance is

|−−→QP | sin θ =
|
−−→
QP ×A|

|A| ,

where A is any vector parallel to the line. From the equation of the line, we can use

Q = (1, 1, 1) and A = 〈2, 3,−1〉, so the distance is

|〈−2, 1, 0〉 × 〈2, 3,−1〉|√
14

=
|〈−1,−2,−8〉|√

14
=

√
69√
14

.
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Figure 14.5.4 Distance from a point to a line.
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Exercises 14.5.

1. Find an equation of the plane containing (6, 2, 1) and perpendicular to 〈1, 1, 1〉. ⇒
2. Find an equation of the plane containing (−1, 2,−3) and perpendicular to 〈4, 5,−1〉. ⇒
3. Find an equation of the plane containing (1, 2,−3), (0, 1,−2) and (1, 2,−2). ⇒
4. Find an equation of the plane containing (1, 0, 0), (4, 2, 0) and (3, 2, 1). ⇒
5. Find an equation of the plane containing (1, 0, 0) and the line 〈1, 0, 2〉+ t〈3, 2, 1〉. ⇒
6. Find an equation of the plane containing the line of intersection of x + y + z = 1 and

x− y + 2z = 2, and perpendicular to the plane 2x+ 3y − z = 4. ⇒
7. Find an equation of the plane containing the line of intersection of x + 2y − z = 3 and

3x− y + 4z = 7, and perpendicular to the plane 6x− y + 3z = 16. ⇒
8. Find an equation of the plane containing the line of intersection of x + 3y − z = 6 and

2x+ 2y − 3z = 8, and perpendicular to the plane 3x+ y − z = 11. ⇒
9. Find an equation of the line through (1, 0, 3) and (1, 2, 4). ⇒

10. Find an equation of the line through (1, 0, 3) and perpendicular to the plane x+ 2y − z = 1.
⇒

11. Find an equation of the line through the origin and perpendicular to the plane x+ y− z = 2.
⇒

12. Find a and c so that (a, 1, c) is on the line through (0, 2, 3) and (2, 7, 5). ⇒
13. Explain how to discover the solution in example 14.5.5.

14. Determine whether the lines 〈1, 3,−1〉+t〈1,1, 0〉 and 〈0, 0, 0〉+t〈1, 4, 5〉 are parallel, intersect,
or neither. ⇒

15. Determine whether the lines 〈1, 0, 2〉 + t〈−1,−1, 2〉 and 〈4, 4, 2〉 + t〈2, 2,−4〉 are parallel,
intersect, or neither. ⇒

16. Determine whether the lines 〈1, 2,−1〉 + t〈1, 2, 3〉 and 〈1, 0, 1〉 + t〈2/3, 2, 4/3〉 are parallel,
intersect, or neither. ⇒

17. Determine whether the lines 〈1, 1, 2〉 + t〈1, 2,−3〉 and 〈2, 3,−1〉 + t〈2, 4,−6〉 are parallel,
intersect, or neither. ⇒

18. Find a unit normal vector to each of the coordinate planes.

19. Show that 〈2, 1, 3〉+ t〈1, 1, 2〉 and 〈3, 2, 5〉+ s〈2, 2, 4〉 are the same line.

20. Give a prose description for each of the following processes:

a. Given two distinct points, find the line that goes through them.

b. Given three points (not all on the same line), find the plane that goes through them.
Why do we need the caveat that not all points be on the same line?

c. Given a line and a point not on the line, find the plane that contains them both.

d. Given a plane and a point not on the plane, find the line that is perpendicular to the
plane through the given point.

21. Find the distance from (2, 2, 2) to x+ y + z = −1. ⇒
22. Find the distance from (2,−1,−1) to 2x− 3y + z = 2. ⇒
23. Find the distance from (2,−1, 1) to 〈2, 2, 0〉+ t〈1, 2, 3〉. ⇒
24. Find the distance from (1, 0, 1) to 〈3, 2, 1〉+ t〈2,−1,−2〉. ⇒
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25. Find the distance between the lines 〈5, 3, 1〉+ t〈2, 4, 3〉 and 〈6, 1, 0〉+ t〈3, 5, 7〉. ⇒
26. Find the distance between the lines 〈2, 1, 3〉+ t〈−1, 2,−3〉 and 〈1,−3, 4〉+ t〈4,−4, 1〉. ⇒
27. Find the distance between the lines 〈1, 2, 3〉+ t〈2,−1, 3〉 and 〈4, 5, 6〉+ t〈−4, 2,−6〉. ⇒
28. Find the distance between the lines 〈3, 2, 1〉+ t〈1, 4,−1〉 and 〈3, 1, 3〉+ t〈2, 8,−2〉. ⇒
29. Find the cosine of the angle between the planes x+ y + z = 2 and x+ 2y + 3z = 8. ⇒
30. Find the cosine of the angle between the planes x− y + 2z = 2 and 3x− 2y + z = 5. ⇒

14.6 Other Coordinate Systems

Coordinate systems are tools that let us use algebraic methods to understand geometry.

While the rectangular (also called Cartesian) coordinates that we have been discussing

are the most common, some problems are easier to analyze in alternate coordinate systems.

A coordinate system is a scheme that allows us to identify any point in the plane or

in three-dimensional space by a set of numbers. In rectangular coordinates these numbers

are interpreted, roughly speaking, as the lengths of the sides of a rectangular “box.”

In two dimensions you may already be familiar with an alternative, called polar co-

ordinates. In this system, each point in the plane is identified by a pair of numbers (r, θ).

The number θ measures the angle between the positive x-axis and a vector with tail at

the origin and head at the point, as shown in figure 14.6.1; the number r measures the

distance from the origin to the point. Either of these may be negative; a negative θ indi-

cates the angle is measured clockwise from the positive x-axis instead of counter-clockwise,

and a negative r indicates the point at distance |r| in the opposite of the direction given

by θ. Figure 14.6.1 also shows the point with rectangular coordinates (1,
√
3) and polar

coordinates (2, π/3), 2 units from the origin and π/3 radians from the positive x-axis.
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Figure 14.6.1 Polar coordinates: the general case and the point with rectangular coordi-
nates (1,

√
3).

We can extend polar coordinates to three dimensions simply by adding a z coordi-

nate; this is called cylindrical coordinates. Each point in three-dimensional space is

represented by three coordinates (r, θ, z) in the obvious way: this point is z units above
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Figure 14.6.2 Cylindrical coordinates: the general case and the point with rectangular
coordinates (1,

√
3, 3).

or below the point (r, θ) in the x-y plane, as shown in figure 14.6.2. The point with rect-

angular coordinates (1,
√
3, 3) and cylindrical coordinates (2, π/3, 3) is also indicated in

figure 14.6.2.

Some figures with relatively complicated equations in rectangular coordinates will be

represented by simpler equations in cylindrical coordinates. For example, the cylinder in

figure 14.6.3 has equation x2 + y2 = 4 in rectangular coordinates, but equation r = 2 in

cylindrical coordinates.
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Figure 14.6.3 The cylinder r = 2.
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Given a point (r, θ) in polar coordinates, it is easy to see (as in figure 14.6.1) that the

rectangular coordinates of the same point are (r cos θ, r sin θ), and so the point (r, θ, z) in

cylindrical coordinates is (r cos θ, r sin θ, z) in rectangular coordinates. This means it is

usually easy to convert any equation from rectangular to cylindrical coordinates: simply

substitute
x = r cos θ

y = r sin θ

and leave z alone. For example, starting with x2 + y2 = 4 and substituting x = r cos θ,

y = r sin θ gives

r2 cos2 θ + r2 sin2 θ = 4

r2(cos2 θ + sin2 θ) = 4

r2 = 4

r = 2.

Of course, it’s easy to see directly that this defines a cylinder as mentioned above.

Cylindrical coordinates are an obvious extension of polar coordinates to three dimen-

sions, but the use of the z coordinate means they are not as closely analogous to polar

coordinates as another standard coordinate system. In polar coordinates, we identify a

point by a direction and distance from the origin; in three dimensions we can do the same

thing, in a variety of ways. The question is: how do we represent a direction? One way is

to give the angle of rotation, θ, from the positive x axis, just as in cylindrical coordinates,

and also an angle of rotation, φ, from the positive z axis. Roughly speaking, θ is like lon-

gitude and φ is like latitude. (Earth longitude is measured as a positive or negative angle

from the prime meridian, and is always between 0 and 180 degrees, east or west; θ can be

any positive or negative angle, and we use radians except in informal circumstances. Earth

latitude is measured north or south from the equator; φ is measured from the north pole

down.) This system is called spherical coordinates; the coordinates are listed in the

order (ρ, θ, φ), where ρ is the distance from the origin, and like r in cylindrical coordinates

it may be negative. The general case and an example are pictured in figure 14.6.4; the

length marked r is the r of cylindrical coordinates.

As with cylindrical coordinates, we can easily convert equations in rectangular coordi-

nates to the equivalent in spherical coordinates, though it is a bit more difficult to discover

the proper substitutions. Figure 14.6.5 shows the typical point in spherical coordinates

from figure 14.6.4, viewed now so that the arrow marked r in the original graph appears as

the horizontal “axis” in the left hand graph. From this diagram it is easy to see that the z

coordinate is ρ cosφ, and that r = ρ sinφ, as shown. Thus, in converting from rectangular

to spherical coordinates we will replace z by ρ cosφ. To see the substitutions for x and y we
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Figure 14.6.4 Spherical coordinates: the general case and the point with rectangular coor-
dinates (1,

√
3, 3).

now view the same point from above, as shown in the right hand graph. The hypotenuse of

the triangle in the right hand graph is r = ρ sinφ, so the sides of the triangle, as shown, are

x = r cos θ = ρ sinφ cos θ and y = r sin θ = ρ sinφ sin θ. So the upshot is that to convert

from rectangular to spherical coordinates, we make these substitutions:

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ.
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Figure 14.6.5 Converting from rectangular to spherical coordinates.

EXAMPLE 14.6.1 As the cylinder had a simple equation in cylindrical coordinates,

so does the sphere in spherical coordinates: ρ = 2 is the sphere of radius 2. If we start
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with the Cartesian equation of the sphere and substitute, we get the spherical equation:

x2 + y2 + z2 = 22

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ + ρ2 cos2 φ = 22

ρ2 sin2 φ(cos2 θ + sin2 θ) + ρ2 cos2 φ = 22

ρ2 sin2 φ+ ρ2 cos2 φ = 22

ρ2(sin2 φ+ cos2 φ) = 22

ρ2 = 22

ρ = 2

EXAMPLE 14.6.2 Find an equation for the cylinder x2 + y2 = 4 in spherical coordi-

nates.

Proceeding as in the previous example:

x2 + y2 = 4

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = 4

ρ2 sin2 φ(cos2 θ + sin2 θ) = 4

ρ2 sin2 φ = 4

ρ sinφ = 2

ρ =
2

sinφ

Exercises 14.6.

1. Convert the following points in rectangular coordinates to cylindrical and spherical coordi-
nates:

a. (1, 1, 1)

b. (7,−7, 5)

c. (cos(1), sin(1), 1)

d. (0, 0,−π) ⇒
2. Find an equation for the sphere x2 + y2 + z2 = 4 in cylindrical coordinates. ⇒
3. Find an equation for the y-z plane in cylindrical coordinates. ⇒
4. Find an equation equivalent to x2 + y2 + 2z2 + 2z − 5 = 0 in cylindrical coordinates. ⇒
5. Suppose the curve z = e−x

2

in the x-z plane is rotated around the z axis. Find an equation
for the resulting surface in cylindrical coordinates. ⇒

342 Chapter 14 Three Dimensions

6. Suppose the curve z = x in the x-z plane is rotated around the z axis. Find an equation for
the resulting surface in cylindrical coordinates. ⇒

7. Find an equation for the plane y = 0 in spherical coordinates. ⇒
8. Find an equation for the plane z = 1 in spherical coordinates. ⇒
9. Find an equation for the sphere with radius 1 and center at (0, 1, 0) in spherical coordinates.

⇒
10. Find an equation for the cylinder x2 + y2 = 9 in spherical coordinates. ⇒
11. Suppose the curve z = x in the x-z plane is rotated around the z axis. Find an equation for

the resulting surface in spherical coordinates. ⇒
12. Plot the polar equations r = sin(θ) and r = cos(θ) and comment on their similarities. (If

you get stuck on how to plot these, you can multiply both sides of each equation by r and
convert back to rectangular coordinates).

13. Extend exercises 6 and 11 by rotating the curve z = mx around the z axis and converting to
both cylindrical and spherical coordinates. ⇒

14. Convert the spherical formula ρ = sin θ sinφ to rectangular coordinates and describe the
surface defined by the formula (Hint: Multiply both sides by ρ.) ⇒

15. We can describe points in the first octant by x > 0, y > 0 and z > 0. Give similar inequalities
for the first octant in cylindrical and spherical coordinates. ⇒


